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Tiles have been used in art and architecture since the dawn of civilisation.

Toddlers grapple with tiling problems when they pack away their wooden

blocks and home renovators encounter similar conundrums in the bathroom.

However, rather than being a frivolous pastime, mathematicians have found

the art of tiling to be brimming with amazing results. In this seminar, we will

discover the colourful world of tiles, learn about faulty tilings, unlock the

secrets of the Aztec diamond, and discuss a sequence of numbers which (I

bet) grows faster than any you have ever imagined!



Dominoes on a checkerboard

Questions

Can you tile an 8× 8 checkerboard with dominoes?

What if one corner corner is removed?

What if opposite corner squares are removed?

Can you always tile the checkerboard if two squares of opposite
colours are removed?
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Dominoes on a checkerboard

Question
When can you tile a mutilated checkerboard with dominoes?

×

×
×

×

×
×

Black squares are men and
white squares are women.

We want to marry everyone
off to their neighbour.

We need to have gender
balance. . . but we also need
every group of men to have
enough women to marry.

Answer
If every group of men has enough women to marry and vice versa,
then you can tile the mutilated checkerboard with dominoes.



Dominoes on a checkerboard

Question
When can you tile a mutilated checkerboard with dominoes?

×

×
×

×

×
×

Black squares are men and
white squares are women.

We want to marry everyone
off to their neighbour.

We need to have gender
balance. . . but we also need
every group of men to have
enough women to marry.

Answer
If every group of men has enough women to marry and vice versa,
then you can tile the mutilated checkerboard with dominoes.



Dominoes on a checkerboard

Question
When can you tile a mutilated checkerboard with dominoes?

×

×
×

×

×
×

Black squares are men and
white squares are women.

We want to marry everyone
off to their neighbour.

We need to have gender
balance. . . but we also need
every group of men to have
enough women to marry.

Answer
If every group of men has enough women to marry and vice versa,
then you can tile the mutilated checkerboard with dominoes.



Dominoes on a checkerboard

Question
When can you tile a mutilated checkerboard with dominoes?

×

×
×

×

×
×

Black squares are men and
white squares are women.

We want to marry everyone
off to their neighbour.

We need to have gender
balance. . . but we also need
every group of men to have
enough women to marry.

Answer
If every group of men has enough women to marry and vice versa,
then you can tile the mutilated checkerboard with dominoes.



Dominoes on a checkerboard

Question
When can you tile a mutilated checkerboard with dominoes?

×

×
×

×

×
×

Black squares are men and
white squares are women.

We want to marry everyone
off to their neighbour.

We need to have gender
balance. . . but we also need
every group of men to have
enough women to marry.

Answer
If every group of men has enough women to marry and vice versa,
then you can tile the mutilated checkerboard with dominoes.



Dominoes on a checkerboard

Question
How many ways can you tile an 8× 8 checkerboard with dominoes?

Theorem (Fisher–Temperley and Kasteleyn, 1961)

The number of tilings of a 2m× 2n checkerboard with dominoes is
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= 7.064 . . . × 5.879 . . . × 4.532 . . . × · · · = 12,988,816 = 36042
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Rectangles on a checkerboard

Question
When can you tile an m× n checkerboard with a× b rectangles?

Some observations

Can you tile a 12× 15 checkerboard with 4× 7 rectangles?
NO. . . the area of one tile does not divide the area of the board.

Can you tile a 17× 28 checkerboard with 4× 7 rectangles?
NO. . . you can’t even tile the first column.

Can you tile a 14× 18 checkerboard with 4× 7 rectangles?
NO. . . you can’t even tile it with 4× 1 rectangles.

We will prove this with COLOURS!
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Rectangles on a checkerboard

Every 4× 1 rectangle covers one square of each colour. On a 14× 18
checkerboard, there are fewer squares of colour 1 than of colour 2.
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Answer
Let a and b be relatively prime positive integers. A tiling of an m× n
rectangle with a× b rectangles exists if and only if

both m and n can be written as xa+ yb, where x and y are
non-negative integers; and

either m or n is divisible by a, and either m or n is divisible by b.
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Faulty tilings

All Soviet Union Mathematical Olympiad 1963

A 6× 6 checkerboard is tiled with dominoes. Prove that you can cut
the board with a line that does not pass through any domino.

Proof.

To obtain a contradiction, we suppose otherwise.

There are 10 lines — 5 horizontal and 5 vertical — each of which
must be crossed by at least 1 domino.

Each of these lines must
actually be crossed by at
least 2 dominoes.

So there must be at least 20
dominoes, which is a
contradiction!
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Faulty tilings

If you can cut a checkerboard tiling with a line that does not pass
through any tile, then the tiling is faulty — otherwise, it is faultless.

faulty faultless

We know that every domino tiling of a 6× 6 checkerboard is faulty.
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Faulty tilings

Question
When can you find a faultless tiling of an m× n checkerboard with
a× b rectangles?

Answer
Assume that a and b are relatively prime. You can find a faultless
tiling of an m× n checkerboard with a× b rectangles if and only if

either m or n is divisible by a, and either m or n is divisible by b;

both m and n can be expressed as xa+ yb in at least two ways,
where x and y are positive integers; and

if the tiles are dominoes, the checkerboard is not 6× 6.
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Aztec diamonds

Question
How many ways are there to tile an Aztec diamond with dominoes?

Here are the Aztec diamonds AZ(1), AZ(2), AZ(3) and AZ(4).

Answer
The number of ways to tile AZ(n) is 2n(n+1)/2.
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Aztec diamonds

A domino flip rotates two adjacent dominoes by 90◦.

Domino flipping theorem

Domino tilings of a shape without holes are related by domino flips.
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Aztec diamonds

Arctic circle theorem
As n approaches infinity, the disorded region of a random domino
tiling of the Aztec diamond AZ(n) will approach a circle.



Aztec diamonds

Arctic circle theorem
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Tiling a square with similar rectangles

Question
For what values of r can you tile a square with rectangles that are
similar to a 1× r rectangle?

Call the number r happy if such a tiling is possible.

All rational numbers are happy. . . but are all happy numbers
rational?

No, some irrational numbers
can be happy too!

x2 + 1 = 2x+
1

x

x3 − 2x2 + x− 1 = 0

x = 1.75488 or 0.122561±0.744862i 1 x2

x

x+ 1
x
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Tiling a square with similar rectangles

Polynomials and algebraic numbers

A number is called algebraic if it is the root of a non-zero
polynomial with integer coefficients.
For example,

p
2 and 1+ i are algebraic but π and e are not.

Every algebraic number is the root of infinitely many non-zero
polynomials with integer coefficients.
For example,

p
2 is the root of x2 − 2 and −7x2 + 14 and

(x2 − 2)(x3 + 3x+ 1) and more.

The most efficient one is called the minimal polynomial.
For example, the minimal polynomial of

p
2 is x2 − 2.

If two algebraic numbers are roots of the same minimal
polynomial, then we call them friends.
For example

p
2 and −

p
2 are friends.
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Tiling a square with similar rectangles

Answer
The number r is happy if and only if it is a positive real algebraic
number whose friends all have positive real part.

The number
p

2 is not happy, because the polynomial x2 − 2 also
has the root −

p
2.

In fact, a
b +
p

2 is happy if and only if a
b >
p

2. This is because the
minimal polynomial of a

b +
p

2 is

b2x2 − 2abx+ a2 − 2b2,

whose other root is a
b −
p

2.

Challenge

Tile a square with rectangles similar to a
�3

2 +
p

2
�

× 1 rectangle.
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Tiling a square with infinitely many rectangles

Consider the equation
1

1× 2
+

1

2× 3
+

1

3× 4
+ · · · =

�

1

1
−

1

2

�

+

�

1

2
−

1

3

�

+

�

1

3
−

1

4

�

+ · · · = 1.

Question
Can you tile a unit square with one rectangle of size 1× 1

2 , one
rectangle of size 1

2 ×
1
3 , one rectangle of size 1

3 ×
1
4 , and so on?

Amazingly, no one knows the answer to this question!

Someone has squeezed these rectangles into a square of side
length 1.000000001!
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Polyominoes in the plane

A polyomino is a shape obtained by gluing unit squares together
along their edges.

The who-can-tile-lots-but-not-all game

I give you n unit squares and you construct a set of polyominoes.

If it is possible to tile the whole plane with tiles of these shapes,
then you lose.

If it is not possible, then you win L dollars, where L is the side
length of the largest square you can cover.

Let L(n) be the largest number of dollars you can win.

Theorem
The sequence L(1), L(2), L(3), . . . grows quicker than any sequence

that can be output by a computer program.
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then you lose.
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length of the largest square you can cover.
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Polyominoes in the plane

Consequences

A computer program can output the sequence

nn
··
n

︸︷︷︸

n copies of n

whose fourth term has over 8× 10153 digits. This sequence pales
in comparison to the sequence L(1), L(2), L(3), . . ..

It is impossible to write a computer program to calculate L(n).

There probably exists a set of polyominoes constructed from 100
squares of side length one centimetre such that it is impossible
to tile the whole plane with them, but it is possible to tile a
region that covers Australia.
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