
Norman Do∗

Welcome to the Australian Mathematical Society Gazette’s Puzzle Corner. Each
issue will include a handful of entertaining puzzles for adventurous readers to try.
The puzzles cover a range of difficulties, come from a variety of topics, and require
a minimum of mathematical prerequisites to be solved. And should you happen
to be ingenious enough to solve one of them, then the first thing you should do is
send your solution to us.

In each Puzzle Corner, the reader with the best submission will receive a book
voucher to the value of $50, not to mention fame, glory and unlimited bragging
rights! Entries are judged on the following criteria, in decreasing order of impor-
tance: accuracy, elegance, difficulty, and the number of correct solutions submit-
ted. Please note that the judge’s decision — that is, my decision — is absolutely
final. Please e-mail solutions to N.Do@ms.unimelb.edu.au or send paper entries to:
Gazette of the AustMS, Birgit Loch, Department of Mathematics and Computing,
University of Southern Queensland, Toowoomba, Qld 4350, Australia.

The deadline for submission of solutions for Puzzle Corner 11 is 1 May 2009. The
solutions to Puzzle Corner 11 will appear in Puzzle Corner 13 in the July 2009
issue of the Gazette.

Bags and eggs
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If you have 20 bags, what is the minimum
number of eggs required so that you can
have a different number of eggs in each bag?

Area identity

Suppose that M and N are points on the sides AB and BC of the square ABCD
such that AM = 2MB and BN = 3NC. Let AN and DM meet at P , AN and
CM meet at Q, and CM and DN meet at R. Prove the identity

Area(AMP ) + Area(BMQN) + Area(CNR) = Area(DPQR).

Hint: Of course, it should be possible to calculate each of the individual areas —
but it should be possible to solve this puzzle without doing so!
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Factorial fun

The numbers 1!, 2!, 3!, . . . , 100! are written on a blackboard. Is it possible to erase
one of the numbers so that the product of the remaining 99 numbers is a perfect
square?
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Highway construction

A highway is being built between two cities
which are 100 kilometres apart. In the first
month, one kilometre of the highway is built.
If X kilometres of the highway have been
built by the start of a given month, then

1
X100 more kilometres of highway are built
during that month. Will the highway con-
struction ever be finished?

Busy bee

A bee flies along a path of length four metres, ending precisely where it began.
Show that this path is contained in some sphere of radius one metre.

Coin-flipping games

(1) You have a bent coin which lands heads with probability 0 < p < 1 and tails
with probability 1 − p. Can you devise a coin-flipping game between two
players so that each player has probability 1

2 of winning?
(2) You have a fair coin which lands heads with probability 1

2 and tails with
probability 1

2 . Can you devise a coin-flipping game between two players so
that one player has probability 1

3 of winning?
(3) You have a fair coin which lands heads with probability 1

2 and tails with
probability 1

2 . Can you devise a coin-flipping game between two players so
that one player has probability 1

π of winning?

Solutions to Puzzle Corner 9

The $50 book voucher for the best submission to Puzzle Corner 9 is awarded to
Stephen Howe.

Lucky lottery

Solution by Samuel Mueller: First, note that it is impossible to win $49, since any
two permutations of the numbers from 1 to 50 which agree in 49 places must also
agree in the remaining place. So there are at most 50 possible amounts that a
player can win, namely $0, $1, $2, . . . , $48, and $50. So if each of the 50 players
wins a different amount of money, then one and only one must win $50 and the
jackpot.
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Ultramagic square

Solution by Joachim Hempel: The ten primes between 40 and 81 are 41, 43, 47,
53, 59, 61, 67, 71, 73 and 79. If one of these primes, say p, lies in the ith row
and the jth column where i �= j, then the product of the numbers in the ith row
is divisible by p, while the product of the numbers in the ith column cannot be
divisible by p. It follows that these primes have to lie on the diagonal of the grid.
Since there are only nine places available for these ten numbers, there does not
exist an ultramagic square.

Note: It is a simple matter to generalise to the notion of n×n ultramagic squares.
It would be interesting to know for which positive integers n there exists an n × n
ultramagic square.

Cakes and boxes

Solution by Alan Jones:

(a) Denote the triangle by ABC, let the angle at A be a and let the angle at B
be 3a. Let D be the point on AC such that ∠ABD = a. By construction, the
triangle ABD is isosceles with AD = BD. Furthermore, we have ∠BDC =
∠DBC = 2a, so that the triangle BCD is also isosceles with BC = DC.
Cutting off the triangle ABD and placing it so that A moves to D and D
moves to B achieves the desired result.

(b) Denote the triangle by ABC, let the angle at A be a and the angle at B
be 2a. Let D be the point on AC such that BC = DC and let E be the
point on AB such that ∠AED = a. By construction, the triangle AED is
isosceles with AD = ED. Furthermore, we have ∠BDE = ∠DBE, so that
the triangle BDE is isosceles with BE = DE. Cutting off the the triangle
AED and placing it so that A moves to E and D moves to B achieves the
desired result.

Golden circle

Solution by Ross Atkins: Consider the sequence of points P0, P1, P2, . . . on a circle
whose circumference is equal to the golden ratio φ such that Pn+1 is one unit of
arc length along from Pn in the clockwise direction for all n. The irrationality of
φ guarantees that the points P0, P1, P2, . . . are distinct and that they form a dense
subset of the circle. Define the sequence f(1) = 1, f(2) = 2, and for n ≥ 3, let
f(n) be the smallest number larger than f(n − 1) such that Pf(n) lies on the arc
between Pf(n−2) and Pf(n−1) containing P0. The solution to the problem follows
if we can prove that P0 lies on the minor arc between Pf(n−1) and Pf(n) for all
n ≥ 3, that φ|P0Pf(n)| = |P0Pf(n−1)| where distance is measured by arc length,
and that f(1), f(2), . . . is the Fibonacci sequence. This can be verified for small
values of n, so to continue by induction, let us assume that the statement is true
for some n ≥ 3.

First, observe that Pf(n+1) cannot lie on the minor arc between P0 and Pf(n),
because it would imply that Pf(n+1)−f(n) lies on the minor arc between Pf(n−1)
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and Pf(n), contradicting the minimality of f(n + 1). Therefore, P0 lies on the
minor arc between Pf(n) and Pf(n+1).

Next, we assume for the sake of contradiction that f(n + 1) = f(n) + k, where
k < f(n−1). Then we have the following chain of equalities, where m = f(n − 2)+
k < f(n − 2) + f(n − 1) = f(n).

|Pf(n−1)Pf(n)| = |Pf(n−1)Pf(n)+k| + |Pf(n)+kPf(n)|
= |P0Pf(n)+k−f(n−1)| + |P0Pk|
= |P0Pm| + |P0Pk|

By the inductive hypothesis, Pf(n) is closer to P0 than Pm for any m < f(n). It
follows that

|Pf(n−1)Pf(n)| = |P0Pm| + |P0Pk| > |P0Pf(n)| + |P0Pf(n−1)| = |Pf(n−1)Pf(n)|,

which yields the desired contradiction. Now we observe that Pf(n)+f(n−1) must
lie on the minor arc between Pf(n−1) and Pf(n), and we may now conclude that
f(n + 1) = f(n) + f(n − 1).

Finally, we have

|P0Pf(n+1)| = |P0Pf(n)+f(n−1)| = |P0Pf(n−1)| − |P0Pf(n)|
= φ|P0Pf(n)| − |P0Pf(n)| = (φ − 1)|P0Pf(n)| =

1
φ

|P0Pf(n)|,

which completes the induction.

Robots in mazes

Solution by Stephen Howe:

(1) We will prove that on an n × n chessboard, there are more bad mazes than
good mazes for n ≥ 2. First, note that there are 2n2 − 2n possible positions
for walls on the interior of the chessboard, so there are 22n2−2n mazes. For
a maze M , consider the graph G with a vertex corresponding to each square
of the chessboard, with two vertices joined by an edge if and only if there is
no wall between the corresponding squares. If e(G) is the number of edges
in G, then the number of walls in M is 2n2 − 2n − e(G). When M is a good
maze, G is connected and so contains at least n2 − 1 edges. Therefore, the
number of walls in a good maze is at most (2n2 − 2n) − (n2 − 1) = (n − 1)2.
If we let An denote the number of good mazes, then

An ≤
(n−1)2∑

k=0

(
2n2 − 2n

k

)
.
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So, for n ≥ 2, we have

2An ≤ 2
(n−1)2∑

k=0

(
2n2 − 2n

k

)

=
(n−1)2∑

k=0

(
2n2 − 2n

k

)
+

(n−1)2∑
k=0

(
2n2 − 2n

2n2 − 2n − k

)

<
2n2−2n∑

k=0

(
2n2 − 2n

k

)
= 22n2−2n.

So the number of good mazes is less than half the number of mazes altogether.
Since every maze is either good or bad, there must be more bad mazes than
good mazes.

(2) Let M1, M2, . . . , MN be the list of all proper mazes. If P and Q are two
programs, we write the program P followed by Q as PQ. Let P1 be a program
which takes the robot from the start square in M1 to the finish square in M1.
Next, let P2 be a program such that P1P2 takes the robot from the start
square in M2 to the finish square in M2. We inductively define Pk to be a
program such that P1P2 . . . Pk takes the robot from the start square in Mk to
the finish square in Mk. It should be clear that, at every step, it is possible
to define the program Pk. Furthermore, if the robot is in the maze Mk,
then they will be on the finish square after running the program P1P2 . . . Pk.
Therefore, the program P1P2 . . . PN satisfies the conditions of the problem.

Norman is a PhD student in the Department of Math-
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