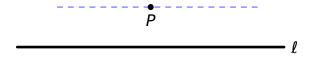

THE HITCHHIKER'S GUIDE TO GEOMETRY

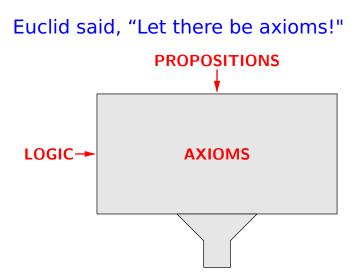
AMSI Public Lecture @ The University of Newcastle 16 January 2015

Norm Do Monash University

IN THE BEGINNING...

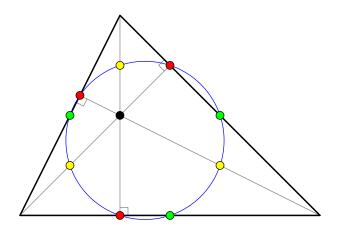
Euclid said, "Let there be axioms!"


Ruler. You can draw a line segment between two points.


Long ruler. You can extend a line segment indefinitely.

Compass. You can draw a circle with a line segment as radius.

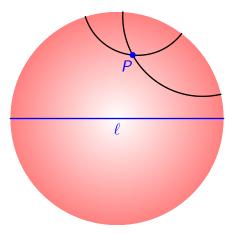
Set square. All right angles are the same.


Parallel postulate. Given a point *P* not on a line l, you can draw **exactly one line** through *P* parallel to l.

Euclid's Elements, Book 1, Proposition 32 The sum of the angles in a triangle is 180°.

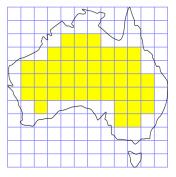
This is the nine-point circle!

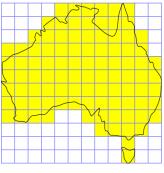
Was Euclid wrong?


Could there be geometry that doesn't satisfy Euclid's axioms? Yes, just consider the geometry of the Earth!

You can draw **no lines** through Paris parallel to the equator.

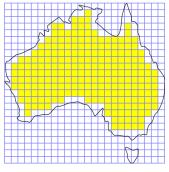
How wrong was Euclid?


This circular pond of quicksand is called the hyperbolic plane.

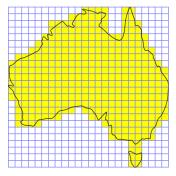

You can draw **many lines** through P parallel to l.

MEASUREMENT

What is the area of Australia?



underestimate



overestimate

What is the area of Australia?

better underestimate

better overestimate

Can we calculate area finitely?

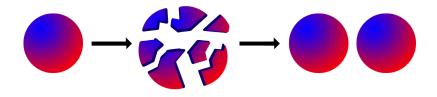
Two polygons are called scissors congruent if you can cut one into polygons that can be rearranged to give the other.

Wallace–Bolyai–Gerwien theorem

Two polygons are scissors congruent if and only if they have the same area.

Can we calculate volume finitely?

Hilbert's third problem

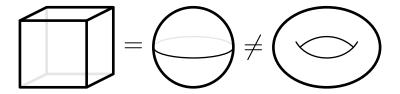

Are two polyhedra with the same volume scissors congruent?

Dehn's theorem

A regular tetrahedron and a cube are **not** scissors congruent.

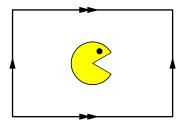
The Banach–Tarski paradox

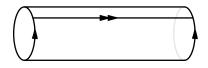
You can divide the points of a unit sphere into five "groups", then move those groups around to recreate two unit spheres!

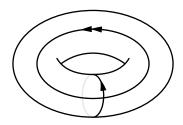


TOPOLOGY

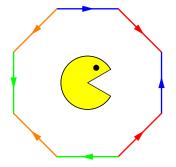
Coffee cups = doughnuts?

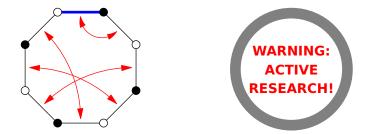



These are all the same in topology!



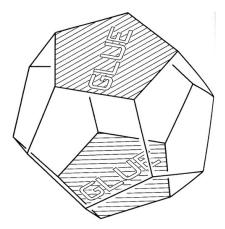
Coffee cups = doughnuts!

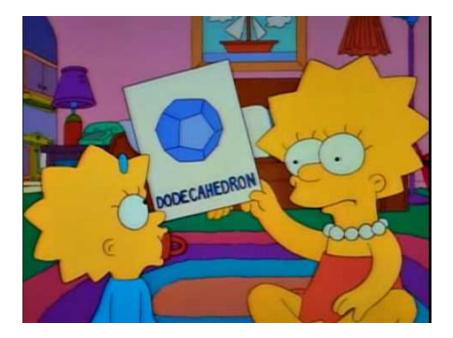

Pac-Man world


Other Pac-Man worlds

My latest problem

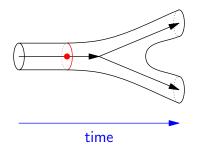
Question. How many ways are there to glue a black-and-white polygon with 2n sides and obtain a surface with h holes?




Answer. If we call the answer F(h, n), then

$$F(h,n) = \frac{2(2n-1)}{n+1}F(h,n-1) + \frac{(n-1)^2(n-2)}{n+1}F(h-1,n-2).$$

What if Pac-Man lived in three dimensions?


Mathematical 3-dimensional universes are called 3-manifolds. Here is Poincaré dodecahedral space, which we might live in!

GEOMETRY MEETS "PHYSICS"

Particles vs. strings

Counting curves

Euclid's 1st axiom. Exactly **1** line passes through **2** points. Question. How many rational curves of degree d pass through 3d - 1 points?

Here is a degree 2 curve.

$$x = \frac{1 - t^2}{1 + t^2}$$
 $y = \frac{2t}{1 + t^2}$

Here is a degree 3 curve.

$$x = \frac{t^2 - 1}{1} \qquad y = \frac{t^3 - t}{1}$$

String theory provides the answer!

d	N _d	discoverer
1	1	_
2	1	_
3	12	Steiner, 1848
4	620	Zeuthen, 1873
5	87,304	Kontsevich, 1995
6	26,312,976	Kontsevich, 1995
÷	:	:

Kontsevich's formula

$$N_{d} = \sum_{a+b=d} N_{a} N_{b} \left[a^{2} b^{2} \binom{3d-4}{3a-2} - a^{3} b \binom{3d-4}{3a-1} \right]$$

TODAY'S LESSON : WO OR "WITTEN'S DOG" NEUTRON ENCRUSTED STEAMING HOT DARK MATTER $\Omega_{\gamma} = \int_{i=1}^{C^{*}} \left(\frac{m_{L}}{93 \text{ eV}} \right)_{*} \left(\frac{\Lambda_{0} W_{0} \gamma}{(z+1)^{4}} \right)_{*}$ "SUPERDUPERSYMMETRIC STRING THEORY"