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Choose an even number of points on the boundary of a surface. How

many ways are there to pair up these points with disjoint arcs on the

surface? The most basic instance of this problem produces the Catalan

numbers while the problem in general exhibits a surprisingly rich

structure. For example, we will show that this enumeration obeys an

effective recursion and exhibits polynomial behaviour. Moreover, there are

unexpected connections to algebraic geometry and mathematical physics.



Counting curves creates Catalan

How many ways are there to pair up b points on the boundary of a disk

with disjoint arcs?

For b even, we get the sequence 1, 1, 2, 5, 14, 42, . . . of Catalan numbers.

For b odd, we get zero.



From disks to surfaces
Surfaces are classified by their genus (g) and number of boundaries (n).

g = 1
n = 2

1 2
b1 = 4
b2 = 6

Question
Label the boundaries 1, 2, . . . , n and choose bi points on boundary i .

How many ways are there to pair up these points with disjoint arcs?

Denote the answer by Gg ,n(b1, . . . , bn).

Example

Gg ,n(0, . . . , 0) = 1

Gg ,n(b1, . . . , bn) = 0 if
∑

bi odd

G0,1(2m) = Catm = 1
m+1

(
2m
m

)
G1,1(2) = 3



Why isn’t the answer infinite?

Two arc diagrams are equivalent if there is a continuous bijection

(preserving orientation and boundary points) that takes one to the other.

Equivalently, two arc diagrams are equivalent if they can be related by

Dehn twists. (One creates a Dehn twist by cutting along a simple closed

curve and gluing back the surface with a 360◦ twist.)

So equivalent arc diagrams might look different “on the surface”!



Annuli — Insular arc diagrams

Write G0,2(b1, b2) = T (b1, b2)︸ ︷︷ ︸
traversing

+ I (b1, b2)︸ ︷︷ ︸
insular

.

Fact
For m a non-negative integer, I (2m, 0) =

(
2m
m

)
.

Proof.
There are

(
2m
m

)
ways to draw m arrows inwards and m arrows outwards.

One can draw “anticlockwise” arcs following the arrows uniquely.



Annuli — Insular arc diagrams (continued)

Corollary

From I (2m, 0) =
(

2m
m

)
, we obtain

I (2m1, 2m2) =
(

2m1

m1

)(
2m2

m2

)
,

I (2m1 + 1, 2m2 + 1) = 0,

G0,1(2m) = 1
m+1

(
2m
m

)
.

Proof.

Glue two annuli together to get I (2m1, 2m2) = I (2m1, 0) I (2m2, 0).

You can’t pair up the 2m1 + 1 points on boundary 1 with arcs.

[Przytycki, 1999] For each arc diagram enumerated by G0,1(2m),

there are m + 1 regions. Punching a hole in one of these regions

yields one of the
(

2m
m

)
arc diagrams enumerated by I (2m, 0).



Annuli — Traversing arc diagrams
Consider the case (b1, b2) = (2m1, 2m2).

There are
(

2m1

m1

)(
2m2

m2

)
ways to draw mi in/out-arrows on boundary i .

There are m1m2 ways to connect an in-arrow on boundary 1 to an

out-arrow on boundary 2 by an arc γ.

Cut along γ to obtain a disk with m1 + m2 − 1 in/out-arrows.

Punch a hole in the disk to make an annulus.

As above, draw “anticlockwise” arcs following the arrows.

Remove the hole and mark the region it used to be in.

Glue along γ to obtain an annulus divided into m1 + m2 regions.

∗

∗



Annuli — Traversing arc diagrams (continued)

We obtain a unique traversing arc diagram with a marked region, so

T (2m1, 2m2) =
m1m2

m1 + m2

(
2m1

m1

)(
2m2

m2

)
.

A similar argument leads to

T (2m1 + 1, 2m2 + 1) =
(2m1 + 1)(2m2 + 1)

m1 + m2 + 1

(
2m1

m1

)(
2m2

m2

)
.

Theorem
Putting the insular and traversing arc diagrams together yields

G0,2(2m1, 2m2) =
m1m2 + m1 + m2

m1 + m2

(
2m1

m1

)(
2m2

m2

)
G0,2(2m1 + 1, 2m2 + 1) =

(2m1 + 1)(2m2 + 1)

m1 + m2 + 1

(
2m1

m1

)(
2m2

m2

)
.



Structure theorem

Theorem (Polynomiality)

Let C (2m) = C (2m + 1) =
(

2m
m

)
. For (g , n) 6= (0, 1) or (0, 2),

Gg ,n(b1, . . . , bn) = C (b1) · · ·C (bn)× Ĝg ,n(b1, . . . , bn),

where Ĝg ,n is a symmetric quasi-polynomial of degree 3g − 3 + 2n.

Example

g n parity Ĝg ,n(b1, . . . , bn)

0 1 (0) 1/(m1 + 1)

0 2 (0, 0) (m1m2 + m1 + m2)/(m1 + m2)

0 2 (1, 1) (2m1 + 1)(2m2 + 1)/(m1 + m2 + 1)

0 3 (0, 0, 0) (m1 + 1)(m2 + 1)(m3 + 1)

0 3 (1, 1, 0) (2m1 + 1)(2m2 + 1)(m3 + 1)

1 1 (0) 1
12 (m2 + 5m + 12)



Topological recursion

Theorem
For S = {2, 3, . . . , n} and b1 > 0,

Gg ,n(b1,bS) =
∑
k∈S

bk Gg ,n−1(b1 + bk − 2,bS\{k})

+
∑

i+j=b1−2

[
Gg−1,n+1(i , j ,bS) +

∑
g1+g2=g
ItJ=S

Gg1,|I |+1(i ,bI )Gg2,|J|+1(j ,bJ)

]
.

Any Gg ,n(b) can be computed from the initial conditions Gg ,n(0) = 1.

Remark
The (g , n) case depends on

(g , n − 1),

(g − 1, n + 1), and

(g1, n1)× (g2, n2) for

{
g1 + g2 = g ,

n1 + n2 = n + 1.



Topological recursion — Sketch proof
What happens when we cut along an arc that meets boundary 1?

The arc has endpoints on distinct boundaries.

(g , n) (g , n − 1)

The arc has endpoints on boundary 1 and is “non-separating”.

(g , n) (g − 1, n + 1)

The arc has endpoints on boundary 1 and is “separating”.

(g , n) (g1, n1)× (g2, n2)

1 2



Clean arc diagrams

Call an arc diagram clean if there is no arc “parallel to the boundary” (so

that cutting along it produces a disk).

Definition
Let Ng ,n(b1, . . . , bn) be the number of clean arc diagrams on a genus g

surface with n labelled boundaries and bi points chosen on boundary i .

Example

Ng ,n(0, . . . , 0) = 1

N0,1(2m) = δm,0
N1,1(2) = 1



Clean structure theorem

Theorem
Let b̄ = b + δb,0. For (g , n) 6= (0, 1) or (0, 2) and b 6= 0,

Ng ,n(b1, . . . , bn) = b̄1 · · · b̄n × N̂g ,n(b2
1, . . . , b

2
n),

where N̂g ,n is a symmetric quasi-polynomial of degree 3g − 3 + n.

Example

g n parity N̂g ,n(b2
1, . . . , b

2
n)

0 3 (0, 0, 0) 1

0 3 (1, 1, 0) 1

0 4 (0, 0, 0, 0) 1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 2

0 4 (1, 1, 0, 0) 1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 1

2

0 4 (1, 1, 1, 1) 1
4 (b2

1 + b2
2 + b2

3 + b2
4) + 2

1 1 (0) 1
48 (b2

1 + 20)



Clean topological recursion

Theorem
For S = {2, 3, . . . , n} and (g , n) 6= (0, 1), (0, 2), (0, 3) and b1 > 0,

b1 N̂g ,n(b1,bS) =
∑
k∈S

[ ∑
i+m=b1+bk

+
∑

i+m=b1−bk

]
ī m

2
N̂g ,n−1(i ,bS\{k})

+
∑

i+j+m=b1

ī j̄ m

2

[
N̂g−1,n+1(i , j ,bS) +

stable∑
g1+g2=g
ItJ=S

N̂g1,|I |+1(i ,bI ) N̂g2,|J|+1(j ,bJ)

]

Stable means we exclude terms with (g , n) = (0, 1) or (0, 2).

Proof.
Similar in flavour to the “unclean” topological recursion.



Prototypical proof of polynomiality

Consider (g , n) = (0, 4) and let b1 be largest.

Recall that N̂0,3(b1, b2, b3) = 1 if b1 + b2 + b3 is even.

We have b1N̂0,4(b1, b2, b3, b4) =
1

2

∑
k=2,3,4

A0(b1 + bk) + A0(b1 − bk),

where A0(b) =
∑

i+m=b
m even

ī m =

{
1

12 (b3 + 8b) b even,
1

12 (b3 − b) b odd.

If b1, b2, b3, b4 are even, then

N̂0,4(b1, b2, b3, b4) =
1

24b1

[ ∑
k=2,3,4

(b1 + bk)3 + 8(b1 + bk)

+ (b1 − bk)3 + 8(b1 − bk)

]
=

1

4
(b2

1 + b2
2 + b2

3 + b2
4) + 2.



Prototypical proof of polynomiality (continued)

More generally, we need the following result.

Theorem (Brion–Vergne, 1997)

Let P be a convex lattice polytope in Rn with non-empty interior I .

Let f : Rn → R be a degree d homogeneous polynomial. Then

NP(f , k) =
∑

x∈Zn∩kP

f (x) and NI (f , k) =
∑

x∈Zn∩kI

f (x)

are polynomials of degree n + d, with NI (f , k) = (−1)n+dNP(f ,−k).

Corollary

The functions

Am(b) =
∑

p+q=b
q even

p̄ p2m q and Bm,n(b) =
∑

p+q+r=b
r even

p̄ q̄ p2mq2nr

are odd quasi-polynomials of degree 2m+ 3 and 2m+ 2n+ 5, respectively.



Clean vs. unclean
You can clean arc diagrams by removing arcs parallel to the boundary.

Conversely, any arc diagram can be created by gluing cuffs to a clean one.

Fact
There are ā

(
b

b−a
2

)
cuffs with b points on the outer boundary and a points

on the inner boundary.



Clean vs. unclean (continued)

Corollary

It follows from the previous fact that

Gg ,n(b1, . . . , bn) =
∑
ai≡bi

n∏
i=1

(
bi

bi−ai
2

)
× Ng ,n(a1, . . . , an).

Polynomiality for Ng ,n implies

Gg ,n(b1, . . . , bn) =
∑
ai≡bi

n∏
i=1

(
bi

bi−ai
2

)
×

finite∑
d1,...,dn=0

C (d1, . . . , dn)
n∏

i=1

āi (ai )
2di

=
finite∑

d1,...,dn=0

C (d1, . . . , dn)
n∏

i=1

∑
ai≡bi

(
bi

bi−ai
2

)
āi (ai )

2di

︸ ︷︷ ︸
(2mi

mi
)×quasi-polynomial in bi

.

Thus, we obtain polynomiality for Gg ,n.



Generatingfunctionology

Define the “generating functions”

ωG
g ,n(x1, . . . , xn) =

∞∑
µ1,...,µn=0

Gg ,n(µ1, . . . , µn)
n∏

i=1

x−µi−1
i dxi

ωN
g ,n(z1, . . . , zn) =

∞∑
ν1,...,νn=0

Ng ,n(ν1, . . . , νn)
n∏

i=1

zνi−1
i dzi .

Theorem

If we set xi = zi + 1
zi

, then ωG
g ,n = ωN

g ,n for (g , n) 6= (0, 1).

The multidifferential ωg ,n is meromorphic with poles at zi = −1, 0, 1.



Refinement by regions

Refine the enumeration by the number of regions r and the parameter

t = r + 2g − 2 + n − 1
2

∑
bi .

Gg ,n(b1, . . . , bn) =
∑
r

Gg ,n,r (b1, . . . , bn) =
∑
t

G t
g ,n(b1, . . . , bn)

Ng ,n(b1, . . . , bn) =
∑
r

Ng ,n,r (b1, . . . , bn) =
∑
t

N t
g ,n(b1, . . . , bn)

Example

G1,1,1(2) = G 1
1,1(2) = 1

G1,1,2(2) = G 2
1,1(2) = 2

Theorem

There is a refined topological recursion for G t
g ,n and for N t

g ,n.

There are similar quasi-polynomiality results for G t
g ,n and for N t

g ,n.



Connections

Algebraic geometry

The leading order coefficients of N̂g ,n satisfy

[xd1
1 · · · x

dn
n ] N̂g ,n(x1, . . . , xn) =

1

25g−6+2nd1! · · · dn!

∫
Mg,n

ψd1
1 · · ·ψ

dn
n .

These numbers are central in the celebrated Witten–Kontsevich theorem.

Mathematical physics

Topological recursions appear in various mathematical problems, many of

them physically inspired.

Such problems include matrix models, Hurwitz numbers, Gromov–Witten

invariants, quantum knot invariants, Chern–Simons theory, etc.



Further work: Eight more ways to count curves

Which curves to allow?

1 Arcs and non-trivial loops, where no two are parallel.

2 Arcs and non-trivial loops, where each region touches the boundary.

3 Arcs only.

What extra conditions?

X No conditions.

Y Arcs are oriented so that points around a boundary alternate in/out.

Z Arcs are oriented and regions are alternately coloured compatibly.

X Y Z

1

2

3 I

F

C

H

E

B

G

D

A



Future work: Non-crossing partitions

The number of non-crossing partitions in a disk is given by the Catalan

numbers: 1, 2, 5, 14, 42, . . ..

Question (suggested by Jang Soo Kim)

How many ways are there to partition points chosen on the boundary of a

surface with disjoint “polygons”?
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