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The Art of Tiling with Rectangles

1 Checkerboards and Dominoes

Tiling pervades the art and architecture of various ancient civilizations. Toddlers grapple
with tiling problems when they pack away their wooden blocks and home renovators en-
counter similar problems in the bathroom. However, rather than being a frivolous pastime,
mathematicians have found the art of tiling to be brimming with beautiful mathematics,
problems of fiendish difficulty, as well as important applications to the physical sciences. In
this article, we will consider some of the more surprising results from the art of tiling with
rectangles.

One of the most famous of tiling conundrums is the following, a problem which almost
every mathematician must have encountered at one time or another.

Consider the regular 8 x 8 checkerboard which has been mutilated by re-
moving two squares from opposite corners. How many ways are there to tile
the remaining board with dominoes which can cover two adjacent squares?

The answer to this problem, which may seem surprising to an unsuspecting audience, is
that it is impossible to tile the mutilated checkerboard. Prior to removing the two squares,
there is a myriad of ways to perform such a domino tiling — actually, 36042 = 12988816
ways to be precise! So why should such a trivial alteration of the board reduce this number
to zero? The argument is stunning in its simplicity and the key to the solution lies in
the seemingly unimportant colouring of the checkerboard into black and white squares. Of
course, this colouring is such that the placement of any domino on the board will cover
exactly one square of each colour. Thus, a necessary condition for the board to be tiled
by dominoes is that there are an equal number of black and white squares. However, in
mutilating our checkerboard, we have removed two squares of the same colour from a board
that previously had 32 of each. From this disparity, we are led to the conclusion that the
mutilated checkerboard cannot be tiled by dominoes, no matter how hard one might try.

From such humble beginnings, we begin our journey into the amazing world of tiling. The
above well-known problem spawns a further interesting question whose answer is not quite
so well-known.
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Which pairs of squares may be removed from the regular 8 x 8 checkerboard
so that the remaining board can be tiled with dominoes?

Of course, the previous argument implies that any such pair of squares must be of opposing
colours. But if we remove two such squares, is it always possible to tile the remaining board
with dominoes? The answer is in the affirmative and the simplest proof requires us to
consider the checkerboard as a labyrinth, as pictured above. This labyrinth is hardly the
design that might be used for a hedge maze, since it not only has no entrance and exit, but
also consists simply of a cyclic path of 64 squares. All that is required now is to note that
the removal of two squares of opposite colours divides the path now into two shorter paths,
one of which may be empty. Furthermore, these two paths are of even length, so it is a
trivial matter to tile them both.

Once a mathematician knows that they can do something, their next question will often
be, “But in how many ways?” One of the first significant results on tiling enumeration
was the following landmark theorem which was proven independently in 1961 by Fisher and
Temperley [3] and by Kastelyn [6].

Theorem: The number of tilings of a 2m x 2n checkerboard with dominoes is
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One glance at the formula should be enough to indicate just how remarkable it is. The
expression is the product of several terms, each one of which is usually irrational. And
yet, the terms conspire together, along with the factor of 4™ to yield the answer to our
enumeration problem, an integer. The interested reader may like to use this formula to verify
that the number of domino tilings of the 8 x 8 checkerboard is indeed 36042 = 12988816, as
claimed earlier.

2  Tilings and Fault Lines

Thus far, we have considered only the case of tiling with 1 x 2 rectangles, more affectionately
known as dominoes. Let us now broaden our horizons and consider the more general case
of tiling with a x b rectangles, where a and b are positive integers. Of course, we can start
by making the simplifying assumption that a and b are relatively prime, since other cases
reduce to this after the appropriate dilation. In particular, we will discuss the following
problem.

When can an m x n rectangle be tiled with a x b rectangles?
Before we state the answer, let us consider three instructive cases.

o Can you tile a 12 x 15 rectangle with 4 x 7 rectangles?
No, of course not, since the area of each tile does not divide the area of the board.
o Can you tile a 17 x 28 rectangle with 4 x 7 rectangles?
The answer is again in the negative, although for a more subtle reason. It turns
out that 4 x 7 rectangles cannot even be used to tile the first column of a 17 x 28
rectangle. For if such a tiling is possible, we must certainly be able to write the
number 17 as a sum of 4’s and 7’s. A quick check shows that this is not the case.
o Can you tile an 18 x 42 rectangle with 4 x 7 rectangles?
In actual fact, it is not possible to tile the 18 x 42 rectangle. In fact, we will prove
the stronger result that it is impossible to tile such a board with 4 x 1 rectangles.
We will rely on a colouring argument, a generalization of the earlier proof that tiling
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a mutilated checkerboard with dominoes was impossible. In that case, the crucial
feature of the natural black and white colouring of the checkerboard was the fact
that each domino covered exactly one square of each colour. In the same vain, let
us consider a colouring of our board such that every 4 x 1 rectangle placed on the
board covers exactly one square of each of four colours. This can be achieved by
“colouring” the square in the ith row and jth column with the colour i + j modulo
4. Of course, a necessary condition for a tiling to exist is that this colouring has
exactly the same number of squares of each colour. If 4 was a factor of one of the
dimensions of the rectangle, then it would be clear that this condition would be
satisfied. However, in this case, a simple count reveals an abundance of one colour
and a deficit of another, from which we can deduce that no tiling of the 18 x 42
rectangle with 4 x 1 rectangles exists.

These arguments can be generalized to prove the following theorem, which gives a com-
plete answer to our original problem.

Theorem: Let a and b be relatively prime positive integers. A tiling of an m x n
rectangle with a x b rectangles exists if and only if

o both m and n can be written as a sum of a’s and b’s; and

o either m or n is divisible by a, and either m or n is divisible by b.

Let us now turn our attention to the following beautiful tiling problem which appeared
in the All Soviet Union Mathematical Olympiad back in 1963.

A 6 x 6 checkerboard is tiled with 2 x 1 dominoes. Prove that it is possible
to cut the board into two smaller rectangles with a straight line which does
not pass through any of the dominoes.

Given a tiling, let us call a line which cuts the board into two pieces and yet does not
pass through any of the tiles a fault line. For example, the diagram below shows two tilings
of a 5 x 6 rectangle with dominoes, one which has a fault line and one which does not. This
particular problem asserts that every possible domino tiling of the 6 x 6 rectangle must have
a fault line.

In order to obtain a contradiction, let us suppose that we have a domino tiling of the
6 x 6 rectangle which has no fault line. Consider any one of the ten potential fault lines
and, without loss of generality, we may assume that it is vertical. Since our tiling has no
fault line, at least one domino must cross this vertical. However, it cannot be the only such
domino, since otherwise, an odd number of squares would remain to the left of the line.
Thus, this part of the board cannot be tiled with dominoes. So at least two dominoes must
cross the given vertical. The same argument applies for all ten potential fault lines, so at
least two dominoes must cross each of the ten potential fault lines. Since a domino may
cross at most one such line, we conclude that the tiling must involve at least 10 x 2 = 20
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dominoes. However, 20 dominoes cover an area of 40 squares, more than the area of the
board in question. This contradiction implies that no faultless tiling of the 6 x 6 board
exists.

Having solved this question, it is only natural to ask the more general question.

When can an m x n rectangle be tiled with a x b rectangles without any
fault lines?

In The Mathematical Gardner [4], a collection of essays on recreational mathematics
in honour of Martin Gardner, Ron Graham considers this exact question. Despite first
appearances, there is a natural answer to this problem as described in the following theorem.
Interestingly enough, the case of tiling a 6 x 6 rectangle with dominoes which produced such
a nice mathematics competition problem, is the only exception to the rule.

Theorem: Let a and b be relatively prime positive integers. A faultless tiling of an
m X n rectangle with a x b rectangles exists if and only if
o either m or n is divisible by a, and either m or n is divisible by b;
o each of m and n can be expressed as xa + yb in at least two ways, where x and
y are positive integers; and
o for the case where the tiles are dominoes, the rectangle is not 6 x 6.

3 Aztec Diamonds and Arctic Circles

Earlier, we witnessed an amazing formula enumerating domino tilings of a rectangular
checkerboard. More recently, further enumeration results for domino tilings have been ob-
tained for a skew chessboard, referred to in the literature as the Aztec diamond. The figure
below depicts the Aztec diamonds of orders 1, 2, 3 and 4.

It turns out that for the four Aztec diamonds pictured above, there are precisely 2, 8, 64
and 1024 domino tilings, respectively. Of course, the astute reader will have noticed that
these numbers are all perfect powers of 2. This fact is no coincidence, as verified by the
following theorem.

Theorem: The number of domino tilings of the Aztec diamond of order n is 9 ™5

In contrast to the checkerboard case, the enumeration formula for domino tilings of the
Aztec diamond is stunning in its sheer simplicity. However, do not be fooled — the answer
in no way suggests that there exists a simple proof. In fact, the result first appeared in
the literature in 1992, when Elkies et al [2] demonstrated four quite involved proofs. The
first exploits a connection between domino tilings and alternating-sign matrices, the second
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considers monotone triangles, the third uses the representation theory of GL(n), while the
last is more combinatorial and produces a generating function using a technique known as
domino shuffling. There now exist reasonably elementary combinatorial proofs, although
the constructions involved are ingeniously tricky.

However, perhaps the most amazing as-
pect of the Aztec diamond is not the num-
ber of domino tilings, but the nature of
them. For example, consider the diagram
of a particular domino tiling of the Aztec
diamond of order 64. From each corner em-
anates an area where the domino tiling is a
regular brickwork pattern. The tiles which
are part of this highly organised structure
have been shaded in the diagram and form
what is known as the arctic region. On the
other hand, the unshaded region is known
as the temperate zone, and the domino tiling
follows no set pattern there. Amazingly
enough, it has been shown that as the order
of the Aztec diamond approaches infinity, s
the boundary between the arctic region and
the temperate zone will approach a circle
for almost all of the possible domino tilings. This phenomenon is now known as the Arctic
Circle Theorem and was first proved in 1998 by the team of Jockusch, Propp and Shor [5].
A more precise statement of their result is as follows.

The Arctic Circle Theorem: Let € > 0. Then for all sufficiently large n, all but an
e fraction of the domino tilings of the Aztec diamond of order n will have a temperate
zone whose boundary stays uniformly within distance en of the inscribed circle.

4 Tiling with Similar Rectangles

Thus far, we have restricted our attention to tilings with rectangles, all of which are con-
gruent to each other. These have been extensively studied and the literature contains many
results which involve tiling with finite sets of possible tiles. However, a quite remarkable
problem arises if we broaden our horizons and consider tiles which may be of any size, but
which are all similar to each other. In particular, let us consider the following problem.
For which values of x can we tile a square with rectangles similar to the
1 x x rectangle?

It is simple enough to deduce that such a tiling is possible when 2z = 2 is a rational
number, since a square of side length pg can be tiled by rectangles of dimensions p x ¢q. It
takes a bit more consideration, however, to see that far more exotic cases can occur. For
example, consider the tiling of the square with three similar rectangles shown in the diagram
below. If we suppose that the small rectangle has dimensions 1 x x, where x > 1, then this
forces the dimensions of the medium rectangle to be « x x2. This, in turn, implies that the
large rectangle has dimensions (x + %) x (2 4+ 1). Since the whole figure fits snugly inside
a square, the value of x must satisfy the equation
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To five decimal places, the unique real root of this polynomial is 1.75488. A simple conse-
quence of the Rational Root Theorem is the fact that this particular value of x is irrational
— but what other irrational values are possible? Is it possible to use transcendental num-
bers, such as our good friends 7 and e? How about the humble /2, historically significant
as the first number proven to be irrational? Can we classify the values of z which allow such
a tiling of the square with similar rectangles? The incredible answer to this problem was
provided by Miklés Laczkovich and the late great George Szekeres [7].

Theorem: A square can be tiled by rectangles similar to the 1 x x rectangle if and
only if

o x is the root of an irreducible polynomial with integer coefficients; and

o the roots of this polynomial all have real part greater than zero.

Therefore, we can deduce from this theorem that it is not possible to tile a square with
rectangles similar to a 1 x y/2 rectangle. This is because v/2 is the root of the irreducible
polynomial z2 — 2. Since this polynomial also has the negative root —+/2, it follows from
the theorem that no such tiling exists.

On the other hand, it is possible to tile the square if we take the value of z to be (g + \/ﬁ)

for any rational number % > /2. This is because § ++/2 and % — /2 are both positive and
are roots of the following irreducible quadratic polynomial with integer coefficients.

*x* = 2pqz + (p° — 2¢°)
Here ends our brief foray into the art of tiling with rectangles. There is an abundance

of fascinating tiling problems in the literature and a good starting point for the interested
reader is the informative and entertaining article by Ardila and Stanley [1].
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