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How to Win at Tic-Tac-Toe

1 More Than Child’s Play

Tic-Tac-Toe as a Tree

Undoubtedly one of the most popular pencil and paper games in the world is tic-tac-toe,
also commonly known as noughts and crosses. The game has a longstanding history in many
cultures across the globe. It has been posited that it may even have been played under the
name of “terni lapilli” in Ancient Rome, where examples of the tic-tac-toe grid have been
found etched in stone throughout the empire. No doubt almost every reader will have played
a game of tic-tac-toe, perhaps as a child subjected to a less than exhilarating class at school.
And no doubt just as many will be well aware of the fact that if both players adopt their
optimal strategy, then neither player can force a win.

Most tic-tac-toe enthusiasts will come to the conclusion that the game ends in a theoretical
draw through intuition and experience — but how does one prove such a fact? A naive
brute force approach is to treat the game of tic-tac-toe as a tree. More precisely, consider a
graph with a root vertex corresponding to the empty tic-tac-toe board, with adjacent edges
connecting it to all of the possible states of the game after one move, which are in turn
connected to vertices corresponding to all of the possible states of the game after two moves,
and so on. Since every game must end after at most nine moves, the graph constructed in
this way does not contain any cycles and is therefore a tree. The edges of the tree correspond
to all of the possible moves while the vertices correspond to all of the possible states of the
game. Furthermore, the vertices of degree one correspond to completed games, so they can
be labelled with an O, X or D depending on whether they correspond to a win for O, a win
for X, or a draw, respectively. A large number of two player games of no chance can be
considered as a tree in this way. These games are the realm of combinatorial game theory,
an area of mathematics with an extensive, though growing, theory.

Now determining whether X has a winning strategy or O has a winning strategy or whether
the game is a theoretical draw can be found by a method known as tree-pruning. In this
process, branches are repeatedly deleted from the tree until it has been pruned all the way
back to the root. The first pruning of the tic-tac-toe tree removes all moves in which a
player can win but does not. The second pruning removes those branches in which a player
could have blocked those wins, but did not. To comprehend just how brutish this brute force
approach actually is, consider the fact that the tic-tac-toe tree contains 255,168 vertices of
degree one, corresponding to all of the different possible tic-tac-toe games that can be played.
Of course, this number can be significantly reduced by taking into account the symmetry
of the board. For example, rather than considering all nine edges from the root vertex
corresponding to the nine squares in which the first move can be, we need only consider the
three edges corresponding to a move in the corner, edge or centre. Despite this reduction,
it seems unlikely that anyone would want to perform the full analysis by hand. And this is
just for tic-tac-toe — imagine the size of a tree for a game as complicated as Nim, or chess,
for that matter!
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Show that there exist 255,168 possible tic-tac-toe games, where the symmetry of the
board has not been taken into account.

Games to Beat your Friends With

Since the optimal strategy is so well-known, a tic-tac-toe duel between intelligent players
will almost certainly involve them playing out an unavoidable draw. Thus, tic-tac-toe is a
solved game and, like a solved maths problem, we can sweep it under the proverbial rug and
turn our attention to other more interesting pastimes. The competitive reader may like to
challenge a formidable opponent at the following three pencil and paper games.

Jam: The diagram below shows a map of towns and roads, represented by points and line
segments, respectively. Two players take turns to select a road and a road may not be chosen
if it has already been used. The first player to take all of the roads passing through a town
wins. If all roads have been selected without one of the players winning, then the game is
declared a draw.

Magic Fifteen: Two players take turns to select an integer from 1 to 9. An integer may
not be chosen if it has already been used and a player wins once they have chosen three
distinct numbers which add to 15. If all of the nine numbers have been selected without one
of the players winning, then the game is declared a draw.

Count Foxy Words: Two players take turns to select one of the following words.

COUNT FOXY WORDS AND STAY AWAKE USING LIVELY WIT

A word may not be chosen if it has already been used and a player wins once they have
chosen all of the words which contain a given letter. If all of the words have been selected
without one of the players winning, then the game is declared a draw.

The astute reader may have noticed a remarkable similarity between the three aforemen-
tioned games. They all require two players to alternately select an object from a set of size
nine with the aim being to obtain one of eight possible three-element sets. Sound familiar?
Of course it does, since all of these games are simply tic-tac-toe in disguise — the game’s the
same by any name! These are presented in Winning Ways for Your Mathematical Plays [1]
where the authors bet that you can fool your friends, at least for a short while, by playing
these three variations on the tic-tac-toe theme. The diagram below reveals the isomorphisms
which demonstrate the equivalence.
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2 How to Get N in a Row

Stealing Strategies and Pairing Strategies

For those who find the 3×3 board too restrictive, let us turn our attention to a game played
in the wide open spaces of the infinite square grid. This tic-tac-toe variant is known as
N -in-a-row and involves two players alternately marking cells of the board. The aim of the
game, as the name suggests, is to mark N cells in a row, either horizontally, vertically or
diagonally. The primary objective in analyzing N -in-a-row is to determine for each value of
N whether the first player has a winning strategy, the second player has a winning strategy,
or both players can prevent the other from winning, thus rendering the game a draw. It
seems difficult to imagine that the second player can possibly have the advantage after
beginning the game one move behind. For how can having an extra occupied square on the
board possibly hurt the first player’s chances of winning? Indeed, this intuition is correct
and we can prove that a winning strategy for the second player does not exist by a clever
argument known as strategy stealing. We will later see that strategy stealing applies to
many tic-tac-toe variations.

Theorem: The second player does not have a winning strategy for N -in-a-row.

Proof. Let us suppose that the second player has a winning strategy. But now the first
player can win by making his or her first move at random and thereafter adopting the
second player’s winning strategy. If this calls for the first player to play in an already
occupied square, he or she just makes another random move. Since having an extra square
on the board cannot possibly hurt the first player, this gives the contradiction that both
players can force a win. So we must conclude that the second player cannot have a winning
strategy, as desired. �

We have now shown that N -in-a-row is either a first player win or a theoretical draw — but
which of these cases arises for which values of N? It is a simple matter to prove that the
game of N -in-a-row is a first player win for small values of N such as 1, 2, 3 or 4. Could it
be that the first player always has a winning strategy, no matter how large N is? It surely
seems unlikely that a player could conceivably achieve, say, one million squares in a row,
but then again, the infinite square grid is large indeed. As it turns out, a simple strategy
discovered by Hales and Jewett [5] can be used to prove that 9-in-a-row is a theoretical draw,
and hence, so is N -in-a-row for all larger values of N .

Theorem: The second player can force a draw in 9-in-a-row.

Proof. In the diagram below, the squares of the infinite square grid are paired by line
segments joining their centres and the pattern repeats periodically over the entire board.
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Note that any horizontal, vertical or diagonal row of nine squares must contain both squares
of a pair — this suggests the following strategy for the second player. Wherever the first
player moves, play in the corresponding square of the pair. In this way, they can never
secure both squares of a pair, and hence, can never occupy nine squares in a row. Thus, the
second player can force a draw in 9-in-a-row by using this pairing strategy.

�

Prove that the first player has a winning strategy for N -in-a-row when N = 1, 2, 3 or 4.

8-in-a-Row is a Draw

In the April 1979 issue of The American Mathematical Monthly, Guy and Selfridge proposed
the problem of proving that 9-in-a-row is a draw, presumably expecting the pairing strategy
shown above. At that time, no significant results had been obtained for N -in-a-row for
5 ≤ N ≤ 8. Thus, they must have been both pleased and surprised to receive the following
proof from a T. G. L. Zetters of Amsterdam that 8-in-a-row is also a draw [4].

Theorem: The second player can force a draw in 8-in-a-row.

Proof. First, consider the game of Zetters played on the following board consisting of twelve
squares. As in tic-tac-toe, two players take turns to mark squares. However, the aim of the
game is to occupy all of the squares from one of the three rows of four squares, one of the
four diagonals of three squares, or one of the two columns of two squares.

The second player can always force a draw in this game with the general strategy being
to occupy squares in each of the two columns containing two squares and then playing
defensively. The details are left to the interested reader.

Returning to the game of 8-in-a-row, let us tessellate the plane with copies of the Zetters
boards as shown in the diagram below. The key aspect of this tiling is that any eight squares
in a row must occupy a winning path on one of the Zetters boards. Thus, the second player
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can adopt the drawing strategy on each of these smaller boards and prevent the first player
from achieving eight squares in a row.

�

Prove that the second player can always force a draw in the game of Zetters described
above.

Go Moku Solved

From a player’s perspective, the most interesting version of N -in-a-row is the N = 5 case.
This game has been played since the 7th century BC in Japan, where the game is known as
Go Moku and was originally played on the 19× 19 grid used for the board game Go. Since
the turn of the twentieth century, it became apparent that there was a distinct advantage
for the first player in Go Moku. Thus, extra rules and handicaps for the first player were
introduced to remove this discrepancy.

◦ The board was reduced from the traditional 19× 19 to a smaller 15× 15 grid.
◦ The first player was forbidden to make certain configurations, such as the “double

three attack”.
◦ An overline of six or more in a row was not counted as a win for either player.

Even with all of these restrictions and handicaps, many of the world’s leading Go Moku
experts continued to believe that the game was a theoretical win for the first player, to the
extent that this became a “folklore theorem”. However, it was not until 1993 when Allis,
van den Herik and Huntjens used a new technique known as threat space search along with
proof number search and hundreds of hours worth of CPU time to show that Go Moku on
a 15× 15 board without restrictions is a win for the first player. This solution to Go Moku
then yields the weaker fact that 5-in-a-row is a first player win. So there remain only two
unsolved cases of N -in-a-row.

In the game 6-in-a-row, does the first player have a winning strategy or can the second
player force a draw? How about in the game 7-in-a-row?

3 Games with Animals

Animal Tic-Tac-Toe

Almost thirty years ago, the famous graph theorist Frank Harary introduced another vari-
ation of tic-tac-toe to be played on an infinite square grid. Players take turns to mark cells
of the board with the aim of creating a predetermined animal, or polyomino, as it is often
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referred to in the modern literature. We will allow any translations and rotations of the an-
imal and, if asymmetrical, also allow reflections. Once again, a strategy stealing argument
shows that the second player cannot possibly have a winning strategy so to even up the
game, let us decree that the first player wins if they can create the animal, and the second
player wins if they can prevent the first player from doing so. This game was popularized
by Martin Gardner in his column entitled Harary’s generalized ticktacktoe [2], where the
following result appears.

Prove that the first player can win animal tic-tac-toe when the chosen animal is one of
the twelve pictured below.

Winners and Losers

The strategy stealing proof used earlier for N -in-a-row can be translated verbatim to show
that the second player cannot have a winning strategy for animal tic-tac-toe either. This
observation prompted Harary to divide all animals into winners and losers depending on
whether the first player had a winning strategy or not. For example, the problem above
gives a list of twelve winners, including all of those animals of size 1, 2 or 3. The list also
includes all of the animals of size 4, apart from the 2 × 2 square, which is affectionately
known as “fatty”. As we shall see shortly, fatty is a loser which implies that every larger
animal which contains fatty is also a loser. Let us call fatty a “basic loser”, since it is a loser
which does not contain a smaller one.

Theorem: The twelve animals in the figure below are all basic losers.

Proof. Each of these twelve animals can be shown to be losers by providing a pairing strategy
with which the second player can prevent the first from creating the animal. These pairing
strategies are indicated by the five tilings of the plane by dominos below. For example, fatty
is a loser because whenever the first player moves in a square of the second “brickwork”
tiling, the second can retort with a play in the adjacent square belonging to the same
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domino. Since every position of a fatty covers one whole domino, it is impossible for the
first player to win. Furthermore, every animal properly contained within fatty appears in
the list of winners above, so fatty is a basic loser. The remaining animals can be shown to
be basic losers analogously.

�

Of the twelve animals of size five, one of them is a loser since it contains fatty, three of
them appear in the list of winners, and the remaining eight appear in the list of basic losers.
Moving up to the 35 animals of size six, we find that all but four of them contain basic losers
of lower order. Of these four, three appear in the list of basic losers and the remaining one
we will discuss a little later on. Of the 108 animals of size seven, every single one contains
a basic loser and hence, are losers themselves. It follows that every animal of size greater
than seven is also a loser since they all contain an animal of size seven.

Snaky

And what about the one animal of size six which has been left unaccounted for? Let us now
meet this exotic animal which, in the literature, goes by the name of Snaky.

It turns out that it is unknown whether the elusive animal known as Snaky is a winner
or a loser. However, the experts on the problem believe it to be a winner. Furthermore,
Harborth and Seemann [6] have shown that there is no pairing strategy available to the
second player when trying to stop the first player from creating Snaky. So it seems that
considerable insight and further consideration will be required before the following problem
is finally resolved.

Is Snaky a winner or a loser?

4 Hypercube Tic-Tac-Toe

Preliminary results

An interesting generalization of tic-tac-toe emerges when we consider the game with boards
of arbitrary size and number of dimensions. Hypercube tic-tac-toe is played on a k-dimensional
hypercube of side length n divided into nk unit hypercubes with players taking turns to mark
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one of the cells. Of course, the aim of the game is to mark a winning path of n cells whose
centres are collinear. We can see that the original game of tic-tac-toe is simply the 32 version
of hypercube tic-tac-toe. Almost needless to say, the strategy stealing arguments used ear-
lier are equally successful in proving that the second player cannot have a winning strategy.
The main problem then is to determine for each n and k whether nk hypercube tic-tac-toe
is a first player win or a theoretical draw. The following are three elementary results about
hypercube tic-tac-toe which are indicative of progress in the area.

Hypercube tic-tac-toe on the 43 board is a win for the first player.
This version of hypercube tic-tac-toe has been marketed under several names, the most
popular being Qubic. In 1980, Oren Patashnik [7] used over 1500 hours of CPU time to
prove that Qubic is a win for the first player. His program was a refinement of the tree-
pruning algorithm described earlier — for example, rather than the 64× 63× 62 = 249, 984
possible positions of the board after three moves, Patashnik’s reduced tree only considered
seven. Some of this reduction comes from the non-trivial observation that there are 192
automorphisms of the 43 tic-tac-toe board. In other words, there are 192 permutations
of the 64 cells of the board which preserve the 76 winning paths on the board. It would
be interesting to determine the number of automorphisms for other hypercube tic-tac-toe
boards.

Hypercube tic-tac-toe on the 52 board is a theoretical draw.
This particular version of hypercube tic-tac-toe can be proved to be a theoretical draw via
the pairing strategy indicated by the diagram below.

V I A A F
J B H U B
C I G C
D U H D F
J E E G V

Hypercube tic-tac-toe on the 33 board is a win for the first player.
It is a simple matter to give a constructive proof that the first player has a winning strategy
on the 33 board by first moving in the central cube. In fact, a win can be guaranteed in as few
as four moves. A more surprising fact is that this particular game of hypercube tic-tac-toe
cannot end in a draw. In other words, it is impossible to partition the 27 unit cubes into two
parts without one of the parts containing one of the winning paths, of which there are 49.
Since a draw is impossible and strategy stealing rules out a second player winning strategy,
this observation yields an existence proof that the first player has a winning strategy. This
hints at the following result from Ramsey Theory, first proved by Hales and Jewett in [5].

Theorem: For any positive integer values of n and c, there exists an integer k such that
whenever the squares of the nk tic-tac-toe board are coloured in c colours, there exists a
monochromatic winning path.

The Number of Winning Paths

As we have seen, pairing strategies provide a successful method for proving that the second
player can force a draw. However, note that no pairing strategy exists to show that the 32

version of hypercube tic-tac-toe is a draw. This is since a necessary condition for a pairing
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strategy to exist is that the number of cells is at least twice the number of winning paths.
And the number of winning paths on the 32 board is eight, while the number of cells is nine.
Thus, it is both useful as well as interesting to know how many winning paths there are on
the nk board.

Theorem: The number of winning paths on the nk hypercube is

(n + 2)k − nk

2
.

Proof. Let us represent each cell of the nk hypercube by a vector x = (x1, x2, . . . , xk), where
1 ≤ xi ≤ n for each i. A winning path consists of an ordered sequence of n such vectors
(x1,x2, . . . ,xn) where each component either runs from 1 up to n, from n down to 1, or
remains constant at one of the values 1, 2, . . . , n. Since there are n + 2 possibilities for each
of the k components, the number of winning paths is no more than (n + 2)k. However, note
that nk of these paths are constant paths, so our number is now reduced to (n + 2)k − nk.
It remains only to observe that we have overcounted by a factor of two, since each winning
path can be traversed in one of two directions.

The fact that the number of winning paths on the nk hypercube is (n+2)k−nk

2 suggests the
following “geometric proof”. Embed the nk hypercube within an (n + 2)k hypercube and
notice that each winning path can be extended in each direction to give a pair of cells lying
in the outer hypercube but not the inner one. Furthermore, every cell lying in the outer shell
corresponds to a unique winning path. Therefore, the number of winning paths is simply
half the number of cells in the outer shell — namely, (n+2)k−nk

2 . �

As discussed earlier, a necessary condition for a pairing strategy to exist is that the number
of cells is at least twice the number of winning paths. This occurs when n and k satisfy

nk ≥ (n + 2)k − nk

2nk ≥ (n + 2)k

2 ≥
(

1 +
2
n

)k

k
√

2 ≥ 1 +
2
n

n ≥ 2
k
√

2− 1
.

Results and Conjectures

The first significant results in hypercube tic-tac-toe appeared in the 1963 paper Regularity
and positional games by Hales and Jewett [5]. One of their main results was to use Hall’s
Marriage Theorem to prove that the second player can force a draw by a pairing strategy
when n ≥ 2M where M denotes the maximum number of winning paths which pass through
a square. Erdös and Selfridge managed to improve on this result by showing that the second
player can force a draw when 2k > M +L, where L is the number of winning paths, although
their strategy cannot be described by a simple pairing. More recently, Jozsef Beck has
extended the argument to show that the second player can force a draw if k = O(n2/ log n).

The following table gives results and conjectures for hypercube tic-tac-toe for small values
of n and k. An entry labelled “W” denotes a win for the first player while “D” denotes a
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theoretical draw and “?” indicates that the result is merely conjectured but not actually
proven.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
k = 1 W D D D D D D D D D
k = 2 W W D D D D D D D D
k = 3 W W W W D? D? D? D D D
k = 4 W W W W W? W? W? D? D? D?
k = 5 W W W W? W? W? W? W? W? D?
k = 6 W W W W? W? W? W? W? W? W?

These results appear in Golomb and Hales’ article on hypercube tic-tac-toe [3] as well as
the following two conjectures which seem intuitively obvious but have so far resisted proof.

(1) If the nk game is a draw, then the nk−1 game is a draw.
(2) If the nk game is a draw, then the (n + 1)k game is a draw.

Remember that a necessary condition for a pairing strategy to exist is that the number of
cells is at least twice the number of winning paths. As we have shown, this is equivalent
to n ≥

⌈
2

k√2−1

⌉
. Hales and Jewett conjectured that drawing strategies exist for the second

player whenever this inequality holds. Golomb and Hales subsequently noted the interesting
fact that there is a fairly accurate linear approximation to the expression 2

k√2−1
.

2
k
√

2− 1
= 2

ak − 1
a− 1

= 2(1 + a + a2 + · · ·+ ak−1)

≈ 2
∫ k

0

atdt = 2
ak − 1
loge a

=
2k

loge 2
,

where a = ak = k
√

2.

From this observation, it is tempting to make the conjecture that⌈
2

k
√

2− 1

⌉
=

⌊
2k

loge 2

⌋
.

In fact, a computer program can easily verify the conjecture to be true for thousands, even
millions of terms, before reaching the incredibly large value of k = 6, 847, 196, 937, when
the conjecture first fails. Furthermore, this is the only failure until we reach the second
counterexample at k = 27, 637, 329, 632. In fact, the theory of diophantine approximation
can be used to prove that these anomalies can only occur when k is the denominator of a
continued fraction convergent for 2

loge 2 . Let us now finish with a tic-tac-toe-inspired number
theory problem for which, I believe, the answer is unknown.

For how many positive integer values of k does the equation⌈
2

k
√

2− 1

⌉
=

⌊
2k

loge 2

⌋
fail to be true?
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