
Putnam notes//The harmonic series

Almost the first divergent series (other than something like
∑∞

n=1 n) that every-
body sees is the harmonic series

∑∞
n=1

1
n . Occasionally, we see problems that

are based on the proof of this fact, so we will show something slightly more
general; a simple variation on this has appeared on the Putnam.

PROBLEM 1. Suppose that
∑∞

n=1 an is a series of positive terms, and that
an ≤ a2n−1 + a2n for all n. Show that

∑∞
n=1 an diverges.

Of course the harmonic series satisfies this condition. Solution: We show
that, for any m ≥ 1

∑2m

n=1 an ≥ a1 + ma2. This will do it, of course (by

the Archimedean property of the reals). Actually, we see that
∑2m+1

n=2m+1 an =∑2m

k=2m−1+1(a2k−1 + a2k) ≥ ∑2m

k=2m−1+1 ak for any m ≥ 1. If we assume as an
induction hypothesis that this latter is ≥ a2, we get that each of the partial sums
from n = 2m + 1 to 2m+1 is ≥ a2. Since

∑2m

n=1 an = a1 + a2 +
∑22

n=21+1 an +
∑23

n=22+1 an + · · ·+ ∑2m

n=2m−1+1 an, this is at least a1 + ma2, as promised.
A slight variation, left to you:
PROBLEM 2. Suppose that

∑∞
n=1 an is a series of positive terms, and that

an ≤ a3n−2 + a3n−1 + a3n for all n. Show that
∑∞

n=1 an diverges.
More frequently, we see problems which use the result. These can come

unexpectedly. For instance,
PROBLEM 3. (B3, Putnam 1985) Let f : N ×N −→ N be a function that

takes each pair of positive integers to a positive integer. Suppose that f is onto
and 8-to-one; that is, for each positive integer m, there are exactly 8 pairs (j, k)
such that f(j, k) = m. show that there is a pair (j, k) such that f(j, k) > jk.

This is a slight paraphrase, but exactly the same question. Hard to see how
the harmonic series comes in, isn’t it? But just watch. Incidentally, as we will
see there are two red herring in this problem; the number 8 and the specification
that f is strictly 8-to-1.

Solution: Choose N such that
∑N

n=1
1
n > 8. For each 1 ≤ j ≤ N , and k ≤

N !
j , if we want to have f(j, k) ≤ jk, we must have f(j, k) ≤ N ! obviously. If this

were possible, we would have
∑N

n=1
N !
n > 8(N !) pairs (j, k) with f(j, k) ≤ N !

But this is impossible if each value of f occurs not more than 8 times. (Each
m ≤ N ! can only occur 8 times, giving a total of 8(N !) values to dole out to all
those pairs.)

Or, how about
PROBLEM 4. (Putnam ?) For any integer n ≥ 3, we let Dn be the de-

terminant of the (n − 2) × (n − 2) matrix which has the entries 3, 4, . . . , n on
the diagonal (in that order) and all other entries 1. Does the sequence Dn

(n−1)!

converge?
Solution: As is probably no surprise in this context, Dn is in fact (n−1)![1+

1
2 + · · ·+ 1

n−1 ], so the answer is no.
To calculate Dn, we start row-reducing the matrix. If we label the kth row

Rk and let R∗k = Rk−Rk+1 for each 1 ≤ k ≤ n−3, the resulting matrix has the
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same determinant as the original. R∗k has all but two entries zero; the diagonal
entry drops to k+1, and just to the right of that, we have −(k+2). The bottom
row Rn−2 has not, as yet, changed.

Ex gratia, for n = 6, the original matrix is




3 1 1 1
1 4 1 1
1 1 5 1
1 1 1 6


 and after these

row operations, it becomes




2 −3 0 0
0 3 −4 0
0 0 4 −5
1 1 1 6


.

This is not yet upper triangular, but we row-reduce it further to system-
atically eliminate those 1’s on the bottom row. To get rid of the first one, we
replace Rn−2 by Rn−2,1 = Rn−2− 1

2R∗1. The 1 in the bottom left corner becomes
a zero, the 1 next to it becomes 1 + 3

2 = 3( 1
2 + 1

3 ). The rest of the 1’s and the
n on the diagonal are left untouched so far.

Next replace Rn−2,1 by Rn−2,2 = Rn−2,1 − ( 1
2 + 1

3 )R∗2. The first two entries
in this row are zeroes, the third is now 4( 1

2 + 1
3 + 1

4 ). In the case above, we get

first




2 −3 0 0
0 3 −4 0
0 0 4 −5
0 3( 1

2 + 1
3 ) 1 6


 and then




2 −3 0 0
0 3 −4 0
0 0 4 −5
0 0 4( 1

2 + 1
3 + 1

4 ) 6


.

We proceed like this (inductively, natch) for each k ≤ n − 4; if we have
Rn−2,k−1 we replace it by Rn−2,k = Rn−2,k−1 − ( 1

2 + 1
3 + · · ·+ 1

k+1 )R∗k. What
occurs when we do this is that we replace the first nonzero entry of Rn−2,k−1

by zero, and the next 1 gets replaced by 1 + (k + 2)( 1
2 + 1

3 + · · · + 1
k+1 ) =

(k + 2)( 1
2 + 1

3 + · · ·+ 1
k+2 ).

Rn−2,n−4 will be all zeroes, except its two right-most elements will be (n−
2)( 1

2 + 1
3 · · · + 1

n−2 ) and n. Our last matrix above is this tage for n = 6. One
more row operation, setting Rn−2,n−3 = Rn−2,n−4 − ( 1

2 + 1
3 + · · ·+ 1

n−2 )R∗n−3,
gives us an upper-triangular matrix, with entries 2,3,. . . ,n − 2 and — in the
corner — n + (n − 1)( 1

2 + 1
3 + · · · + 1

n−2 ) = (n − 1)(1 + 1
2 + · · · + 1

n−1 ). The

4× 4 case is




2 −3 0 0
0 3 −4 0
0 0 4 −5
0 0 0 5(1 + 1

2 + 1
3 + 1

4 + 1
5 )


. Clearly, this matrix has

determinant (n−1)!(1+ 1
2 +· · ·+ 1

n−1 ); but our row operation shave not changed
the value of the determinant.

As noted above, once we have Dn the problem becomes trivial — given that
you know the harmonic series diverges.

Actually, I don’t remember exactly whether the problem on the Putnam
asked about the sequence Dn

(n−1)! or about Dn

n! / The latter sequence does converge,
to 0 in fact, because it is 1

n (1 + 1
2 + · · ·+ 1

n−1 ) < 1+ln n
n . An easy application of
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l’Hôpital’s rule now finishes this problem.
One of the dangers of a problem like this is keeping track of the exact num-

bers (e.g., it’s easy to think that Dn = n!(1 + 1
2 + · · ·+ 1

n ) or some such thing).
This is partly why I carried the example along.
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