
Putnam notes
The “evening” process

There are numerous proofs known of the Arithmetic/Geometric Mean inequality
(that n

√
x1 · x2 · · ·xn ≤ x1+x2+···+xn

n whenever x1, x2,. . . ,xn are positive real
numbers). I will start by presenting my favourite, which uses a method of proof
that comes in handy for showing many inequalities of this sort.

We start with a simple lemma that includes the case n = 2.
LEMMA Suppose that a, b, c, d are nonnegative real numbers with a < c ≤

d < b and a + b = c + d. Then ab < cd.
Proof: Let A = a+b

2 = c+d
2 be the common average of the pairs {a, b} and

{c, d}. Then there are nonnegative real numbers e and f with a = A − e,
b = A + e, c = A − f , d = A + f ; further f < e < A. Now ab = A2 − e2 and
cd = A2 − f2, so we are done.

How does the A/G inequality follow from this? Letting F (x1, x2, . . . , xn) =
x1 ·x2 · · ·xn, it is clear that if x = x1+x2+···+xn

n is the average (arithmetic mean)
of the numbers, then the inequality is equivalent to saying that F (x1, x2, . . . , xn) ≤
F (x, x, . . . , x). (In fact, as we will see, the inequality is strict unless all the xj ’s
are equal to x.)

Consider the numbers x1,x2,. . . , xn laid out in order; if all of them are equal
to x, there is nothing to do. Note that if any of them is less than x, there must
be at least one greater than x and vice versa. We will show the inequality is
true by induction on the number of xj ’s that are not equal to x.

An noted, the result is obvious if this number is zero, so suppose it isn’t.
Choose xj which is different from x but as close as possible to it (i.e., |x − xj |
is the smallest positive one of the numbers |x − x1|, |x − x2|, . . . , |x − xn|).
Now choose xk on the opposite side of x from xj . So either xj < x < xk or
xk < x < xj ; also |x − xk| ≥ |x − xj |. Suppose that we are in the first case —
the other is similar. Let x′j = x and x′k = xk − (x− xj). For any i 6= j, k we let
x′i = xi.

We have xj < x′j ≤ x′k < xk and xj + xk = x′j + x′k so x′jx
′
k > xjxk by the

lemma, and this implies that F (x1, x2, . . . , xn) < F (x′1, x
′
2, . . . , x

′
n). The tuple

(x′1, x
′
2, . . . , x

′
n) has x′j = x (and maybe x′k = x, but maybe not). In any case,

by the induction hypothesis, F (x′1, x
′
2, . . . , x

′
n) ≤ F (x, x, . . . , x); it is important

to note that trading in xj and xk for x′j and x′k does not affect the average x.
This finishes the proof, including the strict inequality. The main move in

this proof is of course the replacement of the elements xj and xk by x′j and x′k,
which are closer together. When we did this, the left-hand side went up, but
because xj +xk = x′j +x′k, the right-hand side was unaltered. The induction, as
is often the case with “active” proofs like this, is really saying that the procedure
is iterative. By replacing the original xj ’s two-by-two we get closer and closer
to the the case where they are all equal to the average, and every time the
left-hand side goes up.

Exchanging xj and xk for x′j and x′k is known in some circles as an “evening
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move”, for reasons I trust are clear. (“Morning moves”, for me anyway, consist
mostly of stretching and yawning. For “Night Moves”, consult Bob Seger.)

It should be clear that very little of the fact that
F (x1, x2, . . . , xn) = x1 · x2 · · ·xn is used in the proof; we had to establish the
lemma, which was the main part of showing that F satisfies the following

DEFINITION Suppose that F : (R+)n −→ R, where R is the set of reals,
and R+ the set of positive reals. We say that F satisfies the (first) evening
condition if

1. F is symmetric — that is, for any permutation σ of the set {1, 2, . . . , n},
and any positive reals x1,x2,. . . xn, F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n));
and

2. whenever a1, a2, a3,. . . , an, a′1 and a′2 are positive real numbers such
that a1 < a′1 ≤ a′2 < a2 and a1 + a2 = a′1 + a′2, then we have that
F (a1, a2, a3, . . . , an) < F (a′1, a

′
2, a3, . . . , an).

Of course this is really a pair of conditions. In fact, the symmetry condition can
be removed, at the price of stating the second, main, condition for every two
places (not just the first two) and in both orders. In practice, many inequalities
that are invented by the Problem People (they start out as Problem Children,
I’m sure) are phrased in such a way that the relevant function F is readily
identified as symmetric.

It is not necessary that the domain of F be the set of n-tuples of positive
reals, although in most applications it is. In fact, it can be any convex subset
of Rn (necessarily symmetric if the symmetry property is to hold). There are
other variations of the definition, some of which will be discussed below.

The lemma above shows that the product function satisfies the evening con-
dition. The rest of the proof can be mimicked almost verbatim to show

PROPOSITION Suppose that F satisfies the evening condition. Then for
any tuple (x1, x2, . . . , xn) from the domain of F , if x = x1+x2+···+xn

n , we have
F (x1, x2, . . . , xn) ≤ F (x, x, . . . , x) and equality hold only if xj = x for all j.

If we weaken the inequality in the evening condition to F (a1, a2, a3, . . . , an) ≤
F (a′1, a

′
2, a3, . . . , an), we can still conclude that F (x1, x2, . . . , xn) ≤ F (x, x, . . . , x),

but we may have equality without all the xj ’s being the same.
Let’s see a couple more examples.

PROBLEM 1. Show that, for any positive real numbers x1,x2,. . . ,xn with
n ≥ 3, we have

Π1≤j<k≤n(
xj + xk

2
) ≤ (

x1 + x2 + · · ·+ xn

n
)

n(n−1)
2 ,

with equality if and only if xj = xk for all j, k.
Solution: Clearly, the function F we consider is defined by F (x1, x2, . . . , xn) =

Π1≤j<k≤n
xj+xk

2 . We show that it satisfies the evening condition. It is clearly
symmetric.
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So suppose that a1, a2, a3,. . . , an, a′1 and a′2 are positive real numbers such
that a1 < a′1 ≤ a′2 < a2 and a1 +a2 = a′1 +a′2. The factors aj +ak are the same
in both F (a1, a2, a3, . . . , an) and F (a′1, a

′
2, a3, . . . , an) in case j and k are both

greater than 2. Also the factor a1 + a2 is replaced by a′1 + a′2 which is the same
thing. What changes is that each a1 + aj is replaced by a′1 + aj and a2 + aj is
replaced by a′2 + aj for j ≥ 3.

Now (a1 + aj)(a2 + aj) = a1a2 + aj(a1 + a2 + aj) < a′1a
′
2 + aj(a′1 + a′2 +

aj) = (a′1 + aj)(a′2 + aj) for every j ≥ 3; this uses the above lemma and
a1 + a2 = a′1 + a′2. Since this is true for each j ≥ 3, we have that the product
of all the (a1 + aj)(a2 + aj)’s is strictly smaller than the product of all the
(a′1 + aj)(a′2 + aj)’s. As all the other factors on both sides of the inequality are
the same, this implies that F (a1, a2, a3, . . . , an) < F (a′1, a

′
2, a3, . . . , an).

We conclude by the “evening proposition” (sounds dirty, don’t it?), as the
right-hand side of the given inequality is of course F (x, x, . . . , x) where x is the
average.

PROBLEM 2. Show that, for any positive real numbers x1,x2,. . . ,xn with
n ≥ 4, we have Π1≤j<k<`≤n(xj+xk+x`

3 ) ≤ (x1+x2+···+xn

n )
n(n−1)(n−2)

6 , with equal-
ity if and only if xj = xk for all j, k. Generalize!

Solution: You don’t want me to have all the fun, do you?

PROBLEM 3. (A5, Putnam 1978) Show that, if 0 < xj < π for
j = 1, . . . , n and x = x1+x2+···+xn

n , then Πn
j=1

sin xj

xj
≤ ( sin x

x )n.
Solution: This problem is tailor-made for the evening process, even though

the domain is not all the tuples of positive reals. (It is convex, so as we noted
above, the proposition will still hold if can verify the evening condition. Con-
vexity is necessary so we can do the evening.)

F (x1, x2, . . . , xn) = Πn
j=1

sin xj

xj
is clearly symmetric, and the serious part of

the evening condition reduces quickly to showing that

sin x1

x1

sin x2

x2
≤ sin x′1

x′1

sin x′2
x′2

whenever 0 < x1 < x′1 ≤ x′2 < x2 < π and x1 + x2 = x′1 + x′2.
This is a bit involved, so we change notation: letting x′1 = a, x′2 = b and

x′1− x1 = x2− x′2 = c, we have 0 < c < a ≤ b < b + c < π, and we have to show
that

(∗) sin(a− c)
a− c

sin(b + c)
b + c

≤ sin a

a

sin b

b
.

We will need the fairly well-known fact that f , defined by f(x) = sin x
x for

0 < x < π is a strictly decreasing function (and limx→0+ f(x) = 1). This is not
difficult, and is left as an exercise.

We list several inequalities, each equivalent to the one preceding it, and to
(∗).

ab sin(a− c) sin(b + c) ≤ (a− c)(b + c) sin a sin b.
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ab sin(a− c) sin(b + c) ≤ ab sin a sin b− c(b + c− a) sin a sin b.

ab
cos(b + 2c− a)− cos(a + b)

2
≤ ab

cos(b− a)− cos(a + b)
2

−c(b+c−a) sin a sin b.

ab
cos(b + 2c− a)

2
≤ ab

cos(b− a)
2

− c(b + c− a) sin a sin b.

c(b + c− a) sin a sin b ≤ ab
cos(a− b)− cos(b + 2c− a)

2
.

c(b + c− a) sin a sin b ≤ ab sin c sin(b + c− a).

sin a

a

sin b

b
≤ sin c

c

sin(b + c− a)
b + c− a

.

(Note that the left-hand side of (∗) is the right-hand side of this baby, which
we still have to show.) But sin a

a ≤ sin c
c and sin b

b ≤ sin(b+c−a)
b+c−a follow from the

calculus fact cited above and 0 < c < a, 0 < b + c− a < b < π.
We have now verified the evening condition, and the solution of the problem

(including strict inequality unless all the xj ’s are the same) follows from the
proposition. I might add that just saying this would probably not be acceptable
to the Putnam People; the proposition is not exactly a standard result, and
you would have to essentially repeat the proof. I can’t be sure I have the most
efficient verification of the evening condition, but I can hardly imagine doing
this problem without it. (I tried. In fact I managed to get a proof more-or-less
directly from convexity eventually, but I don’t know if it’s any easier.)

One simple variation of the evening condition arises from reversing the order
of the inequalities. Thus, if F is a symmetric function defined on some convex
(symmetric) A ⊆ Rn, and whenever a1 < a′1 ≤ a′2 < a2 and a1+a2 = a′1+a′2 we
must have F (a1, a2, a3, . . . , an) > F (a′1, a

′
2, a3, . . . , an) we say that F satisfies

the second (or reversed) evening condition. There is no difficulty in altering
the proof above to show that in this case, if x = x1+x2+···+xn

n , we must have
F (x1, x2, . . . , xn) ≥ F (x, x, . . . , x) with equality only if all the xj ’s are the same.

For instance,

PROBLEM 4. Show that, if xj is positive for j = 1, . . . , n, then 1
n

∑n
j=1 x2

j ≥
( 1

n

∑n
j=1 xj)2.

Solution: We apply reverse evening to the function F (x1, x2, . . . , xn) =∑n
j=1 x2

j . To show that it applies, we simply need to show that x2
1 + x2

2 >

(x′1)
2 + (x′2)

2 whenever x1 < x′1 ≤ x′2 < x2 and x1 + x2 = x′1 + x′2. Letting
A = x1+x2

2 we have x1 = A − a, x2 = A + a, x′1 = A − b and x′2 = A + b with
0 ≤ b < a < A. So x2

1 + x2
2 = 2A2 + 2a2 whereas (x′1)

2 + (x′2)
2 = 2A2 + 2b2 and

we are done.
[This one can also be done as a fairly simple application of the Cauchy-

Schwartz-Buniakowsky inequality.]
Generalizing this, we have the following
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PROBLEM 5. Show that, if xj is positive for j = 1, . . . , n, then 1
n

∑n
j=1 xα

j ≥
( 1

n

∑n
j=1 xj)α for any α > 1. If, on the other hand 0 < α < 1, 1

n

∑n
j=1 xα

j ≤
( 1

n

∑n
j=1 xj)α. (In both cases, we have equality only when all the xj ’s are equal.)

I won’t do this; you should. Also, what if we have α < 0?
Another variation on the “evening” principle is suggested by the following

problem. Recall that the harmonic mean HM(x1, x2, . . . , xn) of the nonzero
real numbers x1,. . . ,xn is defined by (HM(x1, x2, . . . , xn))−1 = 1

n

∑n
j=1 x−1

j .
A by-now-standard evening arguement establishes that the harmonic mean

of any set of positive numbers is no larger than their arithmetic mean (aver-
age). But in fact the harmonic mean is always less than the geometric mean
n
√

x1 · x2 · · ·xn. The kind of evening mentioned above is of no help in proving
this, but consider

DEFINITION Suppose that F : (R+)n −→ R, where R is the set of reals,
and R+ the set of positive reals. We say that F satisfies the geometric evening
condition if

1. F is symmetric — that is, for any permutation σ of the set {1, 2, . . . , n},
and any positive reals x1,x2,. . . xn, F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n));
and

2. whenever a1, a2, a3,. . . , an, a′1 and a′2 are positive real numbers such
that a1 < a′1 ≤ a′2 < a2 and a1 · a2 = a′1 · a′2, then we have that
F (a1, a2, a3, . . . , an) < F (a′1, a

′
2, a3, . . . , an).

PROPOSITION Suppose that F satisfies the geometric evening condition.
Then for any tuple (x1, x2, . . . , xn) from the domain of F , if g = n

√
x1 · x2 · · ·xn,

we have F (x1, x2, . . . , xn) ≤ F (g, g, . . . , g) and equality hold only if xj = g for
all j.

We omit the proof, except to say that in our “evening moves” here, we
replace xj and xk with xj < g < xk by x̂j and x̂k such that xjxk = x̂j x̂k, and
at least one of x̂j and x̂k is equal to g. This does not change the geometric
mean g. The geometric evening condition, of course, assures us that each such
move we make increases the value of F at the point, until we hit F (g, g, . . . , g).

Now to show that HM(x1, x2, . . . , xn) ≤ GM(x1, x2, . . . , xn) for positive
xj ’s, we apply the geometric evening condition to F = HM . We must check
that it does apply, and we will do that in a minute, but first notice that if
g = GM(x1, x2, . . . , xn), then HM(g, g, . . . , g) = g, so that this does finish the
proof.

So suppose that a1, a2, a3,. . . ,an, a′1 and a′2 are positive, that a1a2 = a′1a
′
2,

and that a1 < a′1 ≤ a′2 < a2. We must show that HM(a1, a2, a3, . . . , an) <
HM(a′1, a

′
2, a3, . . . , an). But HM(a1, a2, a3, . . . , an) = ( 1

n

∑n
j=1 a−1

j )−1, so what
we need to show is that a−1

1 + a−1
2 > (a′1)

−1 + (a′2)
−1. Since a1a2 = a′1a

′
2, this

is the same as showing that a1 + a2 > a′1 + a′2.
This is pretty easy to do directly, but let’s use our first lemma one more

time. Suppose instead that a1 + a2 ≤ a′1 + a′2, but still a1a2 = a′1a
′
2, and
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a1 < a′1 ≤ a′2 < a2. There is a′′2 ≥ a2 such that a1 + a′′2 = a′1 + a′2 and of course
a1 < a′1 ≤ a′2 < a′′2 , so by the lemma a1a

′′
2 < a′1a

′
2. As a1a2 ≤ a1a

′′
2 we have a

contradiction.
Here we give two more examples, which use geometric evening in the opposite

direction.

PROBLEM 6 (A2, Putnam 2003) Let a1, . . . , an and b1, . . . , bn be nonegative
real numbers. Show that

(a1a2 · · · an)
1
n + (b1b2 · · · bn)

1
n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))

1
n .

To show this, we first note that if any bi = 0, the problem is trivial. (I leave
it to the reader to figure out, in this case, when equality occurs.) So suppose
that every bi > 0. Dividing both sides of the inequality by (b1b2 · · · bn)

1
n and

letting xi = ai

bi
for each i, we get the equivalent inequality

(x1x2 · · ·xn)
1
n + 1 ≤ ((x1 + 1)(x2 + 1) · · · (xn + 1))

1
n ,

with each xi nonnegative.
Letting F (x̄) be the right-hand side of this inequality, we note that F (x̄) is

symmetric. We show that if x1 < x2 and we replace x1 and x2 by x′1 and x′2
such that x1 < x′1 ≤ x′2 < x2 and x1x2 = x′1x

′
2 to get x̄′ = (x′1, x

′
2, x3, . . . , xn),

then we have F (x̄) > F (x̄′).
[So each evening move leaves the left-hand side unchanged, and reduces the

right-hand side until all the xi’s are equal to the geometric mean.]
But clearly, it is enough to show that (x1 + 1)(x2 + 1) > (x′1 + 1)(x′2 + 1)

or equivalently that x1 + x2 > x′1 + x′2, given that x1 < x′1 ≤ x′2 < x2 and
x1x2 = x′1x

′
2. This is a well-known result, but I will sketch how to derive it

from our very first lemma. (A direct proof in the style of our first lemma’s is
also quite simple.)

So suppose that 0 ≤ x1 < x′1 ≤ x′2 < x2 and x1 + x2 ≤ x′1 + x′2. Choose
x′′2 such that x1 + x2 = x′1 + x′′2 . We either have x1 < x′1 ≤ x′′2 < x2 or
x1 < x′′2 ≤ x′1 < x2; either way, the lemma applies to show us that x1x2 < x′1x

′′
2 .

But this is ≤ x′1x
′
2, contradicting the other assumption.

PROBLEM 8 (B2, Putnam 1981) Suppose that 1 ≤ r ≤ s ≤ t ≤ 4. Find the
minimum possible value of

(r − 1)2 + (
s

r
− 1)2 + (

t

s
− 1)2 + (

4
t
− 1)2.

This one generalizes like crazy; the fact that there are four terms, that the
numbers are bounded by 4, that the constant subtracted is 1 — all basically
irrelevant. (Of course, if you change any of these things, you will alter the
number. But you won’t touch the idea.)
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Solution: Let’s start by changing the phrasing of the problem. Let x1 = r,
x2 = s

r , x3 = t
s and x4 = 4

t . We have that x1x2x3x4 = 4, and all of the xj ’s are
between 1 and 4. We want to minimize

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 + (x4 − 1)2

given these constraints.
[Two comments, before proceeding. It goes against the grain — for most

people — to change a problem with 3 free variables into one with 4. In fact,
if the problem were originally stated the way I just did, a lot of folks would
immediately replace x4 by 4

x1x2x3
. Sometimes this is a good idea, but not here;

I hope you see that making the problem symmetric in the variables like this
can also be useful. Second, I imagine that the restated problem can be tackled
successfully with calculus techniques — Lagrange multipliers, say — but let’s
do it by evening. Oh, I trust you see that it is exactly the same problem.]

Anyway, with the new statement, one obvious thing to try is to let x1 =
x2 = x3 = x4 =

√
2, giving a value of 4(

√
2− 1)2. (At the other extreme, if we

set three of equal to 1 and the other equal to 4, we get the maximum possible,
which is 9. You should see that this falls out of the proof.)

What we have to check is that if we replace x1 and x2 by x′1 and x′2 so that
1 ≤ x1 < x′1 ≤ x′2 < x2 ≤ 4, and x1x2 = x′1x

′
2, then

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 + (x4 − 1)2 >

(x′1 − 1)2 + (x′2 − 1)2 + (x3 − 1)2 + (x4 − 1)2.

Now it’s easy. The difference between the left-hand-side and the right is

(x1 − 1)2 − (x′1 − 1)2 + (x2 − 1)2 − (x′2 − 1)2

= (x2 − x′2)(x2 + x′2 − 2)− (x′1 − x1)(x1 + x′1 − 2).

Clearly x2 + x′2 − 2 > x1 + x′1 − 2 > 0. But also x2 − x′2 > x′1 − x1 as
x1 + x2 > x′1 + x′2. That’s it.

The basic idea of “evening” is amenable to any number of situations. We
have seen examples of evening towards the arithmetic mean, and towards the ge-
ometric mean. I confess I have never seen an instance where one would naturally
even things toward the harmonic mean, but it’s not out of the question.
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