Here are some basic problems for you to try.

- 1. Consider the sequence of positive integers defined by $a_0 = 0$, $a_1 = 1$, and for every positive integer n, a_{n+1} is the smallest positive integer larger than a_n such that no three distinct terms in the set $\{a_0, a_1, \ldots, a_{n+1}\}$ form an arithmetic progression. What is the value of a_{2009} ?
- 2. How many functions $f : \mathbb{N}_+ \to \mathbb{N}_+$ are there which satisfy the equation f(f(x)) = 3x? What happens if we change the domain and codomain to \mathbb{Q}_+ ? What happens if we change the domain and codomain to \mathbb{R}_+ ?
- 3. A function $f : \mathbb{N}_+ \to \mathbb{N}_+$ is defined by f(1) = 1, f(3) = 3, and for every positive integer *n*,
 - f(2n) = n;
 - f(4n+1) = 2f(2n+1) f(n); and
 - f(4n+3) = 3f(2n+1) 2f(n).

Determine the number of positive integers less than or equal to 2009 for which f(n) = n.