
3. POLYHEDRA, GRAPHS AND SURFACES 3.2. Platonic Solids and Beyond

Classifying the Platonic Solids

A Platonic solid is a convex polyhedron whose faces are all congruent regular polygons, with the same number
of faces meeting at each vertex. In some sense, these are the most regular and most symmetric polyhedra that
you can find. Our goal now will be to classify the Platonic solids — in other words, hunt them all down.

Theorem (Classification of Platonic solids). There are exactly five Platonic solids.

Proof. The following geometric argument is very similar to the one given by Euclid in the Elements.

Let’s say that the regular polygons have n sides and that d of them meet at every vertex. It should be
clear that to form a vertex, you need d ≥ 3.

Because the Platonic solids are convex by definition, at each vertex of the solid, the sum of the angles
formed by the faces meeting there must be less than 360◦. If the sum was equal to 360◦, then the faces
which meet at the vertex would all lie in the same plane and there wouldn’t be a vertex at all. And if
the sum was more than 360◦, then it would be impossible for the vertex to be convex. By this reasoning,
the angle in the regular polygon with n sides must be less than 360◦ ÷ 3 = 120◦.

Note that a regular hexagon has angles of 120◦ so that a regular polygon with more than six sides has
angles which are greater than 120◦. Therefore, we only need to consider the cases when n is equal to 3,
4 or 5.

– When n = 3, we have faces which are equilateral triangles, all of whose angles are 60◦. Using the
fact that the sum of the angles formed by the faces at a vertex must be less than 360◦, we obtain
that d must be equal to 3, 4 or 5.

– When n = 4, we have faces which are squares, all of whose angles are 90◦. Using the fact that the
sum of the angles formed by the faces at a vertex must be less than 360◦, we obtain that d must be
equal to 3.

– When n = 5, we have faces which are regular pentagons, all of whose angles are 108◦. Using the
fact that the sum of the angles formed by the faces at a vertex must be less than 360◦, we obtain
that d must be equal to 3.

So, in summary, we know that there are only five possibilities for the pair of integers (n, d) — namely,
(3, 3), (3, 4), (3, 5), (4, 3) and (5, 3). We will simply state the fact here that for each of these possibilities,
there is exactly one Platonic solid. To see that there is at least one Platonic solid corresponding to a pair
(n, d), all you need to do is construct it out of regular polygons with n sides, with d of them meeting at
every vertex. On the other hand, to see that there is at most one Platonic solid corresponding to a pair
(n, d) is a more difficult matter, but should seem believable. This is because if you start to glue together
regular polygons with n sides, with d of them meeting at every vertex, then you don’t have any choice
in what the resulting shape will look like.

Constructing the Platonic Solids

Of course, if you want to build a Platonic solid — the one corresponding to (n, d) = (5, 3), for example —
then it helps to know how many vertices, edges and faces are required. So let’s have a look at how you can
determine these numbers. If you want to work out the three unknown quantities V, E and F, then it makes
sense to look for three relations that these numbers obey. One relation will come from using the handshaking
lemma, another will come from using the handshaking lemma on the dual, and another is given to us by
Euler’s formula.
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Since three faces meet at every vertex, we know that every vertex in the polyhedron must have degree
three. The handshaking lemma asserts that the sum of the degrees is equal to twice the number of
edges, so we have the equation 3V = 2E or equivalently, V = 2

3 E. This means that if we know the
value of E, then we also know the value of V.

Since every face is a pentagon, we know that every vertex in the dual must have degree five. The
handshaking lemma on the dual asserts that the sum of the numbers of edges around each face is equal
to twice the number of edges, so we have the equation 5F = 2E or equivalently, F = 2

5 E. This means
that if we know the value of E, then we also know the value of F.

Now we can use Euler’s formula V − E + F = 2 and substitute for V and F. If you do this properly,
you should obtain

2
3

E− E +
2
5

E = 2 ⇒ E = 30.

From this, we can easily deduce that V = 2
3 E = 20 and F = 2

5 E = 12.

You can and should use this method to determine the number of vertices, edges and faces for each of the
Platonic solids and, if you do so, you’ll end up with a table like the following.

polyhedron n d V E F

tetrahedron 3 3 4 6 4
cube 4 3 8 12 6

octahedron 3 4 6 12 8
dodecahedron 5 3 20 30 12
icosahedron 3 5 12 30 20

The following diagram shows the five Platonic solids — they are called the tetrahedron, the hexahedron, the
octahedron, the dodecahedron and the icosahedron.1 The first three are easier to imagine, because they are
simply the triangular pyramid, the cube, and the shape obtained from gluing two square pyramids together.

1These names come from the ancient Greek and simply mean four faces, six faces, eight faces, twelve faces and twenty faces,
respectively. Of course, we almost always refer to the hexahedron more affectionately as the cube.
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Those of you who are fans of role-playing games such as Dungeons & Dragons — you know who you are —
may be able to visualise these more easily. This is because such games involve d4’s, d6’s, d8’s, d12’s and
d20’s, where a dn is simply an n-sided die. Another way to visualise a polyhedron is via a net, a figure which
you can cut out of cardboard and then fold to create the polyhedron. The following diagram shows nets for
all of the Platonic solids.

Platonic Solids in Nature

The aesthetic beauty and symmetry of the Platonic solids have made them a favourite subject of geometers for
thousands of years. They are named for the ancient Greek philosopher Plato who thought that the classical
elements — earth, water, air, fire and ether — might be constructed from Platonic solids. In the sixteenth
century, the German astronomer Johannes Kepler attempted to find a relation between the five known planets
at that time — excluding Earth — and the five Platonic solids. In the end, Kepler’s original idea had to
be abandoned, but out of his research came the realization that the orbits of planets are not circles and the
discovery of Kepler’s laws of planetary motion.

Each of the five Platonic solids occurs regularly in
nature, in one form or another. The tetrahedron, cube,
and octahedron all occur in crystals, as does a slightly
warped version of the dodecahedron. In the early
twentieth century, it was observed that certain species
of amoeba known as radiolaria possessed skeletons
shaped like Platonic solids — the picture on the right
gives an icosahedral example. Also, the outer protein
shells of many viruses form regular polyhedra — for
example, the HIV virus is enclosed in an icosahedron.
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Scientists have also discovered new types of carbon molecule, known as fullerenes, which have very symmet-
ric polyhedral shapes. The most common is C60, which has the shape of a soccer ball, though there are others
which possess the shape of Platonic solids.

Symmetries of Platonic Solids

It’s definitely worth mentioning that the whole symmetry game we played for subsets of the Euclidean
plane can also be played for subsets of Euclidean space. We can define three-dimensional isometries and
symmetries of figures in space in an entirely analogous way, although some details are slightly more difficult.
For example, the result that any isometry in the plane is a product of three reflections becomes the result that
any isometry in space is a product of four reflections. Furthermore, there are more types of isometry than just
translation, rotation, reflection and glide reflection — they are called twists and rotatory reflections — and
you can try to imagine what these might do.

There is also a three-dimensional analogue of Leonardo’s Theorem, a result which classifies all of the possible
symmetry groups in Euclidean space. Essentially, the result says something like the only symmetry groups
you can get are cyclic groups, dihedral groups, certain slightly more complicated versions of the cyclic and
dihedral groups, and symmetry groups of Platonic solids.

As an example, let me tell you about the symmetry group of the tetrahedron. An isometry has to take a
particular face of the tetrahedron to one of the four faces of the tetrahedron. And once you decide where one
of the equilateral faces ends up, there are still six possibilities, one for each element of D3. This means that the
symmetry group of the tetrahedron has 24 elements. But we just happen to know a group with 24 elements
and that group is the symmetric group S4. And if you guess that the symmetry group of the tetrahedron
is isomorphic to S4, then you’d be right. Now you should try to determine how many elements are in the
symmetry groups of the remaining four Platonic solids using the same idea.

What’s Wrong with Euler’s Formula?

We’re now going to leave Platonic solids behind and embark on a new adventure. Recall that when we
defined what a polyhedron was, we were very careful to say that it “had no holes”. One of the reasons for
doing this is because it doesn’t seem that Euler’s formula works when there are holes. For example, consider
the following geometric object which is made by gluing together polygons.

If you count the number of vertices, edges and faces, then you’ll find that V − E + F does not equal 2 at all.
Remember to be very careful if you do this, because the regions shown on the top and bottom in the diagram
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are not actually faces, since they have holes in the middle of them. All you need to do is divide these regions
into bona fide faces with the help of some extra edges.

Since Euler’s formula doesn’t work for this shape, there are two things we can do — start to cry or try to
make it work. Mathematicians would generally prefer the latter approach. To make Euler’s formula work
for more general shapes, you simply need to note that V − E + F = 0 in this particular case and, in fact,
V − E + F = 0 for any shape which has one hole through the middle of it. In fact, if you try the same thing
for shapes with g holes, you’ll eventually discover that

V − E + F = 2− 2g.

So V − E + F seems to change when you talk about very different geometric objects — for example, objects
with different numbers of holes — but seems to be the same when you talk about similar geometric objects —
for example, objects with the same number of holes. Another observation is that if we take the geometric
object pictured above and draw it so that it looks a bit curvier, then that doesn’t change the number of vertices,
edges and faces, so V − E + F doesn’t change at all. In fact, we can bend, stretch, warp, morph or deform it
and the value of V − E + F wouldn’t change.

The Earth

Suppose that you lived a really really long time ago.
Then you would probably believe, as did most peo-
ple, that the surface of the Earth is a big flat plane.
And what makes you think that? Well, it’s simply
due to the fact that everywhere you stand, you no-
tice that there’s a pretty flat piece of earth immedi-
ately surrounding your feet. And since a big flat
plane seems to have this same property, you’ve sim-
ply jumped to the conclusion that the Earth must be
big flat plane. But, as you know, this is rather fool-
ish thinking. There are many geometric objects apart
from the plane which have this property. The sphere
is just one more example, and we’re going to explore
other shapes that can arise. This idea leads us to study
things called surfaces which we’ll soon talk about.

Topology

The two stories above — one about Euler’s formula and one about the Earth — motivate us to consider
topology, which very roughly studies intrinsic fundamental properties of geometric objects and which doesn’t
care about length, size, angle, and so forth. When you study objects in mathematics, you always need to
have some notion of when two of those objects are the same. For example, in Euclidean geometry we have
congruence, in group theory we have isomorphism, in graph theory we have isomorphism, and in topology
we have the notion of homeomorphism. Intuitively speaking, two geometric objects are homeomorphic if it’s
possible to bend, stretch, warp, morph or deform one so that it becomes the other one. Note that you are not
allowed to cut and glue here.
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A more mathematically precise definition of homeomorphism is as follows. Two geometric objects are
homeomorphic if there exists a bijection — in other words, a one-to-one correspondence — from one to the
other which is continuous and has a continuous inverse. If two geometric objects A and B are homeomorphic,
then we write A ∼= B, and we call a bijection from A to B which is continuous and has a continuous inverse a
homeomorphism.2

Example. The sphere and the cube are certainly homeomorphic to each other. This is because you can take
the sphere and squash it into a box until it looks like a cube. Or, on the other hand, you could take a cube
and blow it up like a balloon until it looks like a sphere. These sorts of deformations are certainly allowed
and show that the two shapes are homeomorphic. For the same sort of reason, a disk and a square are also
homeomorphic to each other. You can probably see why topology is sometimes informally called rubber
sheet geometry.

An explicit homeomorphism in this case isn’t too difficult to describe and, if you were really keen, you could
even write down an equation for one. The idea is to stick the sphere inside of the cube and suppose that the
sphere is a light bulb with a source of light at its centre. Any point on the sphere now casts a shadow on the
cube, and this gives a map from the sphere to the cube which is a continuous bijection with a continuous
inverse.

Example. Consider an unknotted piece of string like the one shown below left and a knotted piece of a string
like the one shown below right.

Believe it or not, these two are homeomorphic to each other. Sure, you need to cut the knot open and glue the
ends together again to make the unknotted loop — but that’s only if you happen to live in three dimensions.
Topology, unlike we mere mortals, doesn’t live in any number of dimensions. Intuitively, you can deform
the unknotted loop into a knot if you make those deformations in four-dimensional space. The reason
being that lines can just move past each other in four-dimensional space without hitting. It’s just the higher
dimensional analogue of the fact that two points on the line can’t move past each other without hitting yet in
two dimensions, they can do so with ease.

If this doesn’t convince you, then you can always go back to the mathematical definition of homeomorphism.
Suppose that you wrote the numbers from 1 to 100 along the unknotted loop, in order. You could also do
the same thing around the knotted loop and convince yourself that there’s a function from one to the other
which matches up the numbers. It’s easy to see that such a function can be made to be a bijection which is
continuous and has a continuous inverse — hence, the two are homeomorphic.

2The word homeomorphism comes from the ancient Greek words meaning similar shape.
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Example. A sphere and a torus — the surface of a donut — are not homeomorphic, and this is a little difficult
to see. And that’s because if you want to show that two geometric objects are homeomorphic, then you
just go ahead and find the deformation or homeomorphism that makes them so. On the other hand, if you
want to show that two geometric objects are not homeomorphic, then you need some tricks. This should be
reminiscent of the fact that if you want to show that two groups are isomorphic, then you just go ahead and
find the isomorphism but if you want to show that two geometric objects are not isomorphic, then you need
some tricks. We’re going to learn some of these tricks later on.

Problems

Problem. Show that at any party, there are always at least two people with exactly the same number of friends at the
party.

Proof. For this problem, we need to assume that if A is friends with B, then B is friends with A.3 The problem
can obviously be translated into graph theoretic terms as follows.

Show that in any graph — without loops or multiple edges — there are always two vertices with
the same degree.

Just to be concrete, let’s suppose that we’re dealing with a graph which has seven vertices. The degree of a
vertex in such a graph can only be 0, 1, 2, 3, 4, 5 or 6 since there are no multiple edges or loops, by assumption.
Note that there are seven vertices in total as well as seven possibilities for their degrees. This means that if
there aren’t two vertices with the same degree, then there must be exactly one vertex with degree 0, exactly
one vertex with degree 1, exactly one vertex with degree 2, and so on, up to exactly one vertex with degree 6.
However, this situation simply cannot arise, since a graph with seven vertices can’t have a degree 0 vertex
as well as a degree 6 vertex. This is because a degree 0 vertex is connected to no others by an edge, while a
degree 6 vertex is connected to all others by an edge. In party terms, you can’t have a loner who is friends
with nobody as well as a social butterfly who is friends with everybody. This contradiction means that there
are always two vertices with the same degree. Of course, our argument can be generalised to graphs with
any number of vertices.

Problem. Does there exist a polyhedron with exactly thirteen faces, all of which are triangles?

Proof. The first thing you should do is try to draw such a polyhedron as a planar graph, keeping in mind that
the outside face has to be a triangle. You can try doing this all day, but what you’ll find is that the task is
impossible. And hopefully, you’ll also find that you can have such polyhedra with exactly ten faces or twelve
faces or fourteen faces. What this tells you is that there is something to do with oddness and evenness going
on in this problem and that suggests that we are going to use the handshaking lemma

So now let’s suppose that there does exist a polyhedron with exactly thirteen faces, all of which are triangles.
The trick here is to use the handshaking lemma on the dual graph. This asserts that the sum of the numbers
of edges around each face is equal to twice the number of edges. In our case, this means that 13× 3 is equal
to twice the number of edges or, in other words, that the number of edges must be 19 1

2 . Of course, this is
a contradiction so we can deduce that there does not exist a polyhedron with exactly thirteen faces, all of
which are triangles.

3As you probably know, such an assumption isn’t always true in the real world.
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Problem. If a planar graph with E edges divides the plane into F faces, prove that F ≤ 2E
3 .

Proof. For this problem, we need to assume — as is usual — that the graph contains no loops or multiple
edges. Note that the dual graph has F vertices and, since every face of the original graph has at least three
sides, every vertex of the dual graph has degree at least three. So the sum of the degrees of the vertices in
the dual graph is at least 3F. However, the number of edges in the dual graph is equal to E. So we can now
invoke the handshaking lemma to deduce that 2E ≥ 3F, which rearranges to give the desired result.

Problem. Consider a polyhedron all of whose faces are triangles such that four faces meet at every vertex. Determine
the number of vertices, edges and faces of the polyhedron.

Proof. If you want to work out the three unknown quantities V, E and F, then it makes sense to look for three
relations that these numbers obeys. One relation will come from using the handshaking lemma, another will
come from using the handshaking lemma on the dual, and another is given to us by Euler’s formula.

Since four faces meet at every vertex, we know that every vertex in the polyhedron must have degree
four. The handshaking lemma asserts that the sum of the degrees is equal to twice the number of edges,
so we have the equation 4V = 2E or equivalently, V = 1

2 E. This means that if we know the value of E,
then we also know the value of V.

Since every face is a triangle, we know that every vertex in the dual must have degree three. The
handshaking lemma on the dual asserts that the sum of the numbers of edges around each face is equal
to twice the number of edges, so we have the equation 3F = 2E or equivalently, F = 2

3 E. This means
that if we know the value of E, then we also know the value of F.

Now we can use Euler’s formula V − E + F = 2 and substitute for V and F. If you do this properly,
you should obtain

1
2

E− E +
2
3

E = 2 ⇒ E = 12.

From this, we can easily deduce that V = 1
2 E = 6 and F = 2

3 E = 8.

In fact, an example of such a polyhedron is given by the Platonic solid known as the octahedron.

8



3. POLYHEDRA, GRAPHS AND SURFACES 3.2. Platonic Solids and Beyond

Newton

Sir Isaac Newton was born on Christmas Day way
back in 1642 and lived a most productive eighty-four
years until his death in 1727. He was an English
mathematician who was also a great physicist, ac-
complished natural philosopher, prolific theologian
and dedicated alchemist. His Philosophiæ Naturalis
Principia Mathematica is considered to be among the
most influential books in the history of science. In
this work, Newton described how gravity works and
produced three laws of motion, which gave the most
accurate description of how the universe works for
the following three centuries until around the time
of Einstein. Famously, Newton formed his theory of
gravitation after seeing an apple fall from a tree. The
French mathematician Joseph–Louis Lagrange often
said that Newton was the greatest genius who ever
lived, and once added that he was also “the most for-
tunate, for we cannot find more than once a system
of the world to establish”.

Newton’s contributions to mathematics and science
are incredibly diverse. In mathematics, he is most
famously remembered for his discovery of calculus,
independently to the German mathematician Leibniz,
but at about the same time. According to Newton’s
friends, he had worked out his method years before
Leibniz, but published almost nothing about calculus
until 1693. Meanwhile, Leibniz began publishing his
account of calculus up to fifteen years earlier. It didn’t
take long for scientists from the Royal Society — of
which Newton was a member — to accuse Leibniz
of plagiarism. Thus began an ugly, bitter and contro-
versial dispute between Newton and Leibniz, which
marred the lives of both until the latter’s death.

Some people believe that Newton was quite modest
about his own achievements, writing that “If I have
seen a little further, it is by standing on the shoulders
of giants”. However, it is more likely that Newton
was not modest at all and that this quote was an at-

tack on the scientist Robert Hooke, who was short
and hunchbacked. Modest or not, Newton is consid-
ered by many to be the greatest scientist who ever
lived. A survey of scientists from Britain’s Royal Soci-
ety deemed that Newton has had more impact on the
history of science than Einstein.

To be a great mathematician or scientist, I think that
you have to be motivated by curiosity, which is why
I like the following quote from Newton himself: “I
do not know what I may appear to the world, but
to myself I seem to have been only like a boy play-
ing on the sea-shore, and diverting myself in now
and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”
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