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More Facts about Finite Symmetry Groups

Last time we proved that a finite symmetry group cannot contain a translation or a glide reflection. We also
discovered that in any finite symmetry group, either every isometry is direct or there is an equal number of
direct and opposite isometries. Now we just need a few more facts before we can put the pieces together to
obtain Leonardo’s Theorem.

Lemma. In a finite symmetry group, every rotation must have the same centre.

Proof. Suppose that our finite symmetry group has a rotation R1 with centre O1 and a rotation R2 with centre
O2. Obviously, our goal is to prove that O1 = O2. Consider the composition R−1

2 ◦ R−1
1 ◦ R2 ◦ R1 — it must

be a direct isometry and, due to the way that rotations compose together, it must actually be a translation.1

But we already know that our group can’t contain translations which aren’t the identity — obviously this
means that the composition R−1

2 ◦ R−1
1 ◦ R2 ◦ R1 must in fact be the identity.

Therefore, we know that R−1
2 ◦ R−1

1 ◦ R2 ◦ R1(O1) = O1 from which it follows that R−1
2 ◦ R−1

1 ◦ R2(O1) = O1.
If we apply R2 to both sides, the R2 and the R−1

2 on the left hand side knock each other out and the equation
simplifies to R−1

1 ◦ R2(O1) = R2(O1). Now we apply R1 to both sides so that the R1 and the R−1
1 on the left

hand side knock each other out and the equation simplifies yet again to

R1 ◦ R2(O1) = R2(O1).

Another way to say the same thing is that R2(O1) is a fixed point of R1. However, since R1 is a rotation,
we know that it has a unique fixed point, which we have called O1. So we can deduce that R2(O1) = O1.
Another way to say the same thing is that O1 is a fixed point of R2. However, since R2 is a rotation, we know
that it has a unique fixed point, which we have called O2. So we’ve deduced that O1 = O2.

A simple consequence of the previous result is the following.

Lemma. In a finite symmetry group, every mirror of a reflection passes through the same point.

Proof. If there is only one reflection in the finite symmetry group, then there is nothing to prove. If there are
at least two mirrors, then you can compose the corresponding reflections to obtain rotations. By the previous
lemma, we know that all of these rotations have the same centre O.

Now suppose that two mirrors meet at a point P. Then the composition of the corresponding reflections is a
rotation about P. But we’ve already stated that this rotation, since it belongs to our finite symmetry group,
must have centre O. Therefore, the two mirrors must have met at O and it follows that every mirror passes
through O.

One final result that we’ll need to use is the following little lemma. We’ll leave the proof of this as an exercise
for the enthusiastic reader.

Lemma. In a finite symmetry group, the rotations are of the form I, R, R2, R3, . . . , Rn−1 for some rotation R.

1Expressions like R−1
2 ◦ R−1

1 ◦ R2 ◦ R1 which take the form a · b · a−1 · b−1 are known as commutators and are incredibly useful in
group theory and other areas of mathematics.
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The Proof of Leonardo’s Theorem

Recall that Leonardo’s theorem states that if a subset of the Euclidean plane has finitely many symmetries,
then its symmetry group must be the cyclic group Cn or the dihedral group Dn for some positive integer n.
Most of the mathematical content in the proof of Leonardo’s theorem is in the lemmas we proved above. All
we need to do now is fit the pieces of the puzzle together as follows.

Proof.

Suppose that someone gives you a finite symmetry group. By the lemma proved earlier, we know
that there are no translations nor are there glide reflections. In other words, every element of the finite
symmetry group must be a rotation or a reflection.

If there are only rotations, then the last lemma above guarantees that the finite symmetry group must
be Cn for some positive integer n. If there are only reflections as well as the identity, then the finite
symmetry group must be D1. This is because there must be an equal number of direct and opposite
isometries.

So we’re left with the case that there are both rotations and reflections, in which case there must be
equal numbers of each.2 The first lemma above states that all of the rotations must share the same
centre O while the second lemma above states that all of the mirrors of reflections must pass through O.

We know that the rotations are “evenly spaced” by the previous lemma, so the rotations must be by the
angles

0◦,
360◦

n
, 2× 360◦

n
, . . . , (n− 1)× 360◦

n
,

for some positive integer n. If the mirrors were not evenly spaced as well, then there must be two of
them which create an angle strictly less than 180◦

n . The composition of the reflections through these two
mirrors will then yield a rotation of strictly less than 360◦

n — a contradiction.

Therefore, we can conclude that the rotations are equally spaced with centre O and that the mirrors are
equally spaced and pass through O. But this just means that the finite symmetry group is dihedral.

Frieze Patterns

Let’s turn our attention now to infinite symmetry groups. Since we’ve already seen that a finite group of
symmetries can’t contain a translation, an easy way to create an infinite symmetry group is to consider a
single translation T. A symmetry group which contains T necessarily contains the infinitely many elements3

. . . , T−3, T−2, T−1, I, T, T2, T3, . . . .

Keeping this in mind, we define a frieze pattern to be a subset of the Euclidean plane whose symmetry group
contains a horizontal translation T along with

. . . , T−3, T−2, T−1, I, T, T2, T3, . . . ,

and no other translations.
2Here, we’re considering the identity as a rotation through an angle of zero.
3Here, the notation Tn stands for the composition of n copies of T, while T−n stands for the composition of n copies of T−1.
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A frieze pattern can certainly have other symmetries which aren’t translations, but there aren’t too many
possibilities for such other symmetries. Actually, it shouldn’t be too difficult to see that they can only come in
four types.

H = a reflection in a horizontal mirror

V = a reflection in a vertical mirror

R = a 180◦ rotation

G = a glide reflection along a horizontal axis

So for each frieze pattern, we can give it an HVRG symbol, depending on which of these four symmetries it
possesses. For example, a frieze pattern with symbol VRG would have symmetry group which contains a
reflection in a vertical mirror, a 180◦ rotation and a glide reflection along a horizontal axis, but not a reflection
in a horizontal mirror. If we decide to classify frieze patterns in this way, then we obtain the following result.

Theorem. There are exactly seven types of frieze pattern.

Proof. There are at most sixteen possible HVRG symbols.

none, H, V, R, G, HV, HR, HG, VR, VG, RG,

VRG, HRG, HVG, HVR, HVRG

However, the following four observations allows us to exclude some of these examples.

If you have H, then you have G.

If you have V and R, then you have G.

If you have R and G, then you have V.

If you have G and V, then you have R.

You can prove the first of these observations, for example, by composing H and T to obtain G. The other
three facts can be proved in a similar way. If you go ahead and use these observations to eliminate some of
the possibilities, then you should find that there are only seven remaining.

none, V, R, G, HG, VRG HVRG

Of course, this only shows that there are at most seven types of frieze. We still have to demonstrate that each
of these possibilities actually arises, which we accomplish in the following diagrams.

none

V

R

G

HG

VRG

HVRG
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The mathematician John Conway — who often has his own spin on certain mathematical theorems and
proofs — has coined his own set of names for the types of frieze patterns.

HOP (none)

SIDLE (V)

SPINNING HOP (R)

STEP (G)

JUMP (HG)

SPINNING SIDLE (VRG)

SPINNING JUMP (HVRG)

The following diagrams should hopefully explain Conway’s rather strange nomenclature for the frieze
patterns.
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The Crystallographic Restriction

Consider applying two translations S and T in differ-
ent directions to a point P. By taking various combi-
nations of S and T, we obtain a set of points in the
plane. Any set of points in the plane which you can
obtain in this way is called a lattice. You can think of
a lattice as an equally spaced orchard of apple trees.

Of course, the translations S and T are symmetries of the lattice, as is any combination involving S and
T. Another symmetry of the lattice is a rotation by 180◦ about one of the lattice points. However, it could
be possible that there are other rotational symmetries, although there is some restriction as to what those
rotational symmetries could be. In order to state the theorem more explicitly, let’s define the order of a
rotation R to be the smallest positive integer n such that Rn = I.

Theorem (Crystallographic Restriction). If the symmetry group of a lattice contains a rotation, then that rotation
must have order 2, 3, 4 or 6.

Proof. First, we state a simple fact, which the enthusiastic reader is encouraged to prove on their own.

Any group which contains a rotation of order n also contains a rotation by angle 360◦
n .

Let’s call a point in the plane special if it’s the centre of a rotational symmetry of the lattice of order n. Pick
any special point O and let P be the closest special point to it. By the fact stated above, a rotation by 360◦

n
about any special point must be a symmetry of the lattice. But, furthermore, any such rotation must be a
symmetry of the set of special points. So if we rotate O about P by 360◦

n , we obtain a point Q which is special.
For n ≥ 7, this point Q is closer to O than P, which contradicts our assumption. So we can deduce that there
is no rotational symmetry of the lattice of order greater than or equal to 7.

OP

Q

360◦
n

OP

Q

R

360◦
5

360◦
5

If n = 5, then we rotate P about Q by 360◦
n to obtain another special point R. However, this point R is now

closer to O than P, which contradicts our assumption. So we can deduce that there is no rotational symmetry
of the lattice of order 5. Hence, we may conclude that any rotational symmetry of the lattice must have order
2, 3, 4 or 6.

This result derives its name from the fact that it also holds for three-dimensional lattices. In that case, the
statement is important in crystallography — the study of crystals — and guarantees that any rotational
symmetry of a crystal must have order 2, 3, 4 or 6. It would be nice if the theorem also held in greater
than three dimensions, but it just isn’t true. This is because rotations in higher dimensions behave in a very
different way than in two or three dimensions.
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Wallpaper Patterns

If a subset of the Euclidean plane has a symmetry group whose translations form a lattice, then we call
that subset a wallpaper pattern. Simply put, they’re patterns that cover the whole plane and are repetitive in
two different directions. Just as we did for friezes, we can try to classify the types of wallpaper patterns —
however, the game is much harder this time. It turns out that there are exactly seventeen different types of
wallpaper patterns, although we won’t provide a proof here. We’ll merely content ourselves with knowing
how to identify them. To each wallpaper pattern, we associate an RMG symbol consisting of the following
three numbers R, M and G.

R = the maximum order of a rotational symmetry

M = the maximum number of mirrors which pass through a point

G = the maximum number of proper glide axes which pass through a point

By a proper glide axis, we mean the axis of a glide reflection which is not itself a mirror. The seventeen
possible types of wallpaper patterns are pictured below. For each wallpaper pattern, make sure that you can
find a centre of a rotational symmetry of order R, a point through which M mirrors pass, and a point through
which G proper glide axes pass.

Unfortunately, the RMG symbol doesn’t quite distinguish all seventeen wallpaper patterns — there are two
which are described by 332. So let’s call them 332A and 332B and note that they can be distinguished using
the following observation.

For the wallpaper pattern 332A, it’s possible to find a centre of rotation which doesn’t lie on a mirror.

For the wallpaper pattern 332B, every centre of rotation lies on a mirror.

100 101

110 111
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200 202

211 220

222 300

332A 332B
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400 423

442 600

664

Problems

Problem. Prove that if a symmetry group of a frieze pattern contains a reflection in a vertical mirror and a rotation by
180◦, then it must also contain a glide reflection.

Proof. If we denote the reflection in a vertical mirror by V and the rotation by 180◦ by R, then the symmetry
group of the frieze pattern must also contain R ◦V. This composition is an opposite isometry and it is easy to
see that it is either reflection in a horizontal mirror or a glide reflection along a horizontal axis. (Remember
that the centre of rotation for R does not have to lie on the mirror for V.) Since the symmetry group of a
frieze pattern contains a horizontal translation by definition, in either case, the symmetry group of the frieze
pattern must contain a glide reflection along a horizontal axis.
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So how do you know that the composition R ◦V is a reflection in a horizontal mirror or a glide reflection
along a horizontal axis? One way to see this is to consider what happens to the picture of a left footprint
walking right, above the centre of rotation of R. After applying the reflection V, this becomes a right footprint
walking left, above the centre of rotation of R. And then after applying R, this becomes a right footprint
walking right below the centre of rotation of R. The only way to start with a left footprint walking right and
end up wit ha right footprint walking right is via a reflection in a horizontal mirror or a glide reflection along
a horizontal axis.

Problem. For each wallpaper pattern pictured above, if it has symbol RMG, find on the diagram a point which is the
centre of a rotational symmetry of order R, a point where M mirrors meet, and a point where G proper glide axes meet.

Proof. For example, the diagram below shows the wallpaper pattern with RMG symbol equal to 423 with
a point which is the centre of a rotational symmetry of order 4, a point which 2 mirrors pass through, and
a point which 3 proper glide axes pass through. You can do something similar for the other wallpaper
patterns.
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Abel

Earlier we spoke about Galois, a mathematician who
proved that it was impossibile to write down a for-
mula to solve the quintic equation, before dying at
the tender age of twenty. In fact, the first person to
give a complete proof of this beat Galois by several
years. He was a Norwegian mathematician by the
name of Niels Henrik Abel and he was born in 1802
before dying in 1829, living a whole six years longer
than Galois.

Abel’s proof of the impossibility of solving the quintic
equation was not as deep and far-reaching as Galois’
proof, but was nonetheless extremely novel. Unfor-
tunately, his work was extremely difficult to read,
partly because he had to cut out all of the details to
save money on printing. His success in mathematics
gave him some finances to travel around Europe and
meet some of the more well-known mathematicians.
Unfortunately, he contracted tuberculosis while in
Paris and became quite ill. During this time, a friend
of his had found a prestigious professorship for Abel
in Berlin and wrote him a letter to tell him the good
news. Unfortunately, the letter arrived two days after
Abel died.

The early death of this extremely talented mathemati-
cian cut short a career of extraordinary brilliance and
promise. Abel had managed to clear some of the
prevailing obscurities of mathematics and paved the
way for several new fields. His complete works were
edited and eventually published by the Norwegian
government. The adjective “abelian” is derived from
Abel’s name and is so commonplace in mathematics
that mathematicians don’t even bother to capitalise it
any more.

Abel is still a relatively big deal in Norway — there
have been stamps, banknotes and coins bearing his
portrait; there is a crater on the Moon named after
him; and there is the prestigious Abel prize for math-
ematicians, presented by the King of Norway and
worth about a million dollars in prize money.
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