
2. SYMMETRY IN GEOMETRY 2.1. Isometries

What is Symmetry?

You probably have an intuitive idea of what symme-
try means and can recognise it in various guises. For
example, you can hopefully see that the letters N, O

and M are symmetric, while the letter R is not. But
probably, you can’t define in a mathematically pre-
cise way what it means to be symmetric — this is
something we’re going to address.

Symmetry occurs very often in nature, a particular
example being in the human body, as demonstrated
by Leonardo da Vinci’s drawing of the Vitruvian Man
on the right.1 The symmetry in the picture arises
since it looks essentially the same when we flip it
over. A particularly important observation about the
drawing is that the distance from the Vitruvian Man’s
left index finger to his left elbow is the same as the
distance from his right index finger to his right elbow.
Similarly, the distance from the Vitruvian Man’s left
knee to his left eye is the same as the distance from
his right knee to his right eye. We could go on and
on writing down statements like this, but the point
I’m trying to get at is that our intuitive notion of sym-
metry — at least in geometry — is somehow tied up
with the notion of distance.

What is an Isometry?

The flip in the previous discussion was a particular function which took points in the picture to other points
in the picture. In particular, it did this in such a way that two points which were a certain distance apart
would get mapped to two points which were the same distance apart. This motivates us to consider functions
f which map points in the plane to points in the plane such that the distance from f (P) to f (Q) is the same
as the distance from P to Q for any choice of points P and Q. Any function which satisfies this property is
called an isometry. This comes from the ancient Greek words “isos”, meaning equal, and “metron”, meaning
measure.

Example. The best way to get a feeling for what an isometry looks like is to consider some examples.

Identity : The identity is the function which simply takes a point P in the plane to the same point P. In
other words, it does nothing, so hopefully you can see that it’s an example of an isometry — in fact, the
simplest example of an isometry. We’ll sometimes denote the identity map by I.

Translation : A translation is a function which takes every point in the plane and slides it in a certain
direction by a certain distance. In other words, if f is a translation such that f (A) = B and f (X) = Y,
then the quadrilateral ABYX will always be a parallelogram. This means that if you want to specify a

1Leonardo da Vinci was very interested in symmetry and later on we’re going to see a theorem which bears his name.
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translation, then you only have to specify a point A and the point f (A) = B. We’ll sometimes denote
the translation which takes the point A to the point B by TAB.

A

B

X

Y

f

f

Rotation : A rotation is a function which takes the whole plane and turns it about a certain point O
through a certain angle a. In other words, if f is a rotation such that f (A) = B, then the centre of
rotation O and the angle of rotation a satisfy OA = OB and ∠AOB = a. This means that if you want to
specify a rotation, then you only have to specify the centre of rotation and the angle of rotation. We’ll
sometimes denote the rotation about the point O through an angle a by RO,a.

O A

B

a

Reflection : A reflection is a function which takes the whole plane and flips it over a certain line ` which
we also refer to as a mirror. It’s important to observe that if a reflection maps the point A to the point B,
then ` will be the perpendicular bisector of the line segment AB. This means that if you want to specify
a rotation, then you only have to specify the mirror. We’ll sometimes denote the reflection through the
line ` by M`.

A

B

`

Suppose that P and Q are two points in the plane which are distance d apart from each other. If we apply an
isometry to both points, then the result will be two points which are still distance d apart from each other.
If we apply another isometry to the resulting points, then the new result will be two points which are still
distance d apart from each other. The application of two or more isometries in a row is called composition of
isometries. From what we’ve just said, you can see that the composition of two or more isometries will always
be an isometry. This means that we can compose the examples we’ve listed above in an attempt to discover
new isometries.
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Interesting Facts about Isometries

One of our guiding questions will be to determine what sorts of isometries there are. For example, is it true
that the examples we discussed earlier — identity, translation, rotation and reflection — account for every
single possible isometry? Before we answer this question, we need to prove some basic facts.

Proposition. If f is an isometry such that f (A) = A′, f (B) = B′, f (C) = C′, then triangles ABC and A′B′C′ are
congruent.

A

B C

A′

B′ C′

Proof. By the very definition of an isometry, we have the equal lengths AB = A′B′, BC = B′C′ and CA = CA′.
So it follows by SSS that the triangle ABC and the triangle A′B′C′ are congruent.

What if I give you two triangles ABC and A′B′C′ and ask you whether you can find an isometry such that
f (A) = A′, f (B) = B′ and f (C) = C′? The previous proposition says that you couldn’t possibly be able to
do this unless the triangles ABC and A′B′C′ are congruent. So if we suppose that they actually are congruent,
then can you definitely find an isometry satisfying the conditions? If so, then how many can you find exactly?
The next proposition states that you can always find one and only one.

Theorem. If triangles ABC and A′B′C′ are congruent, then there is a unique isometry such that f (A) = A′,
f (B) = B′ and f (C) = C′.

Proof. To show that there is at least one such isometry, we can construct it explicitly. First, we translate triangle
ABC until A lines up with A′. Then we rotate triangle ABC around the point A until B lines up with B′. Now
if C and C′ don’t already line up, then we reflect through the line AB so that they do. Since the composition
of these two or three isometries is also an isometry, we have constructed an isometry satisfying the conditions
of the problem. Note that we need triangles ABC and A′B′C′ to be congruent so that everything lines up
exactly as we have described.

Now we need to show that there is at most one such isometry. Take any point P in the plane — we will show
that there is only one possible point P′ for f (P). This is because the definition of an isometry forces the point
P′ to satisfy the conditions A′P′ = AP, B′P′ = BP, and C′P′ = CP.

Another way to say this is that P′ has to

lie on the circle with centre A′ and radius AP;

lie on the circle with centre B′ and radius BP; and

lie on the circle with centre C′ and radius CP.

3



2. SYMMETRY IN GEOMETRY 2.1. Isometries

A

B C

P

A′

B′ C′

P′

Q′

But hopefully you can see that the latter two circles can only meet at two points which we’ve labelled P′ and
Q′, while the first circle can only pass through one of these two. And this single point where the three circles
meet is the only possible location for the point f (P). So we have shown that for every point P in the plane,
there is only one possible location for the point f (P). This means that there is at most one isometry f such
that f (A) = A′, f (B) = B′ and f (C) = C′.

Since we’ve proven that there is at least one isometry satisfying the given conditions as well as the fact that
there is at most one isometry satisfying the given conditions, we can put these two statements together to
deduce that there’s a unique isometry satisfying the given conditions.

One very important consequence of this theorem is the fact that two isometries f and g must be the same if
they satisfy f (A) = g(A), f (B) = g(B) and f (C) = g(C) for some triangle ABC.

Composition of Isometries

We’ve already mentioned that you can take isometry f followed by an isometry g and that the result is
another isometry called the composition of f and g. It’s going to be very useful to have some notation for this
idea. So let’s denote the result of “doing f followed by doing g” as g ◦ f . Yes, that’s right — even though we
do f first and g second, we write the result with g to the left of f .2

P
f−→ f (P)

g−→ g( f (P)) = g ◦ f (P)
2The reason for this is because in function notation, we would normally write the result of doing f followed by doing g to a point P

as g( f (P)) — note that even though we do f first and g second, we write the result with g to the left of f .
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As our first application of composition, I’m going to introduce a new isometry which didn’t appear in our
original list of examples. It’s the isometry which you get when you do a reflection in a line ` followed by a
translation parallel to `. Using our earlier notation, we could write such a function as TAB ◦M`, where AB is
a line segment parallel to `. An isometry which takes this form is called a glide reflection and we’ll sometimes
denote it by GAB. The process of repeatedly applying a glide reflection is something you’ve no doubt all
done before when walking along the beach. Each successive footprint that you leave in the sand is a glide
reflection applied to the previous footprint.

Since you can compose different isometries, a natural question to ask is what the result is. For example, the
fact below follows immediately from the definition of a translation and doesn’t really need a proof.

Proposition. The composition of a translation with another translation is always a translation.3 In fact, we have the
rather obvious formula TBC ◦ TAB = TAC.

To write down a similar fact concerning the composition of two reflections is a more difficult matter — but
we can still do it.

Proposition. Let Mk denote a reflection in the line k and M` denote a reflection in the line `. Then the composition
M` ◦Mk of a reflection in k followed by a reflection in ` is

the identity if k and ` are the same line;

a translation if k and ` are parallel lines — the direction of translation is perpendicular to k and ` while the
distance of translation is twice the distance between k and `; or

a rotation if the two lines meet — the centre of rotation is the intersection of k and ` while the angle of rotation is
twice the angle from k to `.

Proof.

This one’s obvious because if you reflect twice through the same line, you end up where you started.

In the following diagram, you can see that the result of applying M` ◦Mk to P is to move it by a distance
of 2a + 2b, where a + b is the distance between k and `. Furthermore, the direction of translation is
perpendicular to both k and `.

k `

P Mk(P) M` ◦ Mk(P)

a a b b

3You might think that we haven’t accounted for the fact that the composition of two translations could possibly be the identity.
However, you can and should consider the identity as a translation which moves every point by zero distance.
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In the following diagram, you can see that the result of applying M` ◦Mk to P is to rotate by an angle
2a + 2b, where a + b is the angle from k to `. Furthermore, the centre of rotation is the intersection of k
and `.

k

`

P

Mk(P)M` ◦ Mk(P)

a
ab b

Although we’ve demonstrated these facts for only one particular point P, the argument would have worked
for several different choices of P. By the theorem we proved earlier, we only need to demonstrate these facts
for three points which form a triangle to know that they hold for all points.

We’ll also state a couple more results concerning composition of isometries. We won’t provide the proofs,
since they aren’t particularly interesting and they use ideas very similar to those in the previous proof.
However, you should definitely draw a few diagrams to convince yourself that they are true.

Proposition. Let R1 be a rotation by angle a1 and R2 be a rotation by angle a2. Then the composition R2 ◦ R1 is

a rotation by angle a1 + a2 if a1 + a2 6= 360◦; or

a translation if a1 + a2 = 360◦.

Proposition. A reflection followed by a translation is a reflection or a glide reflection. A reflection followed by a
rotation is a reflection or a glide reflection.

Classification of Isometries

Since the composition of two isometries is again an isometry, you can try to build every possible isometry
out of some simple building blocks.4 The next result tells us that we can take the reflections as our building
blocks.

Proposition. Every isometry is the composition of at most three reflections.

Proof. Consider any isometry f , any triangle ABC, and let f (A) = A′, f (B) = B′ and f (C) = C′. All we
need to prove is that it takes at most three reflections to send A to A′, B to B′ and C to C′. We simply reflect
in the perpendicular bisector of AA′ so that A ends up coinciding with A′. Now we simply reflect in the
perpendicular bisector of BB′ so that B ends up coinciding with B′. The congruence of triangles ABC and
A′B′C′ ensures that A still coincides with A′. Now either the two triangles coincide and the job took two
reflections, or we need one more reflection through A′B′ to finish off the job, so that C coincides with C′.

4This reeks of the reductionist approach that we used to begin our journey into Euclidean geometry.
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Theorem. Every isometry is a translation, a reflection, a rotation or a glide reflection.

Proof. We just proved that every isometry is the product of at most three reflections, so the proof can be
divided into the following cases.

The only isometry which is the product of zero reflections is, of course, the identity isometry. As usual,
we can think of the identity isometry as a translation which moves every point by zero distance.

The only isometries which are the product of one reflection are, of course, reflections themselves.

The proposition which we proved above tells us that the product of two reflections is the identity, a
translation or a rotation.

Now let’s consider the product of three reflections as a reflection followed by the product of two
reflections. Thus, the product of three reflections can be the product of a reflection and the identity, the
product of a reflection and a translation, or the product of a reflection and a rotation. In the first case
we obtain a reflection, in the second case we obtain a reflection or a glide reflection, and in the third
case we obtain a reflection or a glide reflection.

So what you can hopefully see is that products of up to three reflections always result in a translation, a
reflection, a rotation or a glide reflection. Furthermore, since every isometry is the composition of at most
three reflections, this accounts for all possible isometries.

Problems

Problem. Let ABC be a triangle with the vertices labelled clockwise such that AC = BC and ∠ACB = 90◦. Let MAB

be the reflection in the line AB, MAC be the reflection in the line AC, and R be the rotation by 90◦ counterclockwise
around B. Identify the composition R ◦MAB ◦MAC.

Proof. The idea is to use the theorem we proved earlier which states that

if triangles ABC and A′B′C′ are congruent, then there is a unique isometry such that f (A) = A′,
f (B) = B′ and f (C) = C′.

What this means is that we can solve problems like
this one using the following simple strategy. Find
three points which form a triangle and see where the
composition of isometries takes them. Next, it’s time
to guess what the isometry is. If your guess is cor-
rect for the three vertices of the triangle, then it must
be correct. And this is because the theorem above
guarantees that if you know what an isometry does
to three corners of a triangle, then you know what the
isometry does to every point in the plane.

A

B

C
P

Q

R S

The diagram above shows triangle ABC drawn on a grid of squares. Since we want to choose three points
which form a triangle, we may as well choose the points A, B and C.

It’s easy to check that MAC(A) = A, MAB(A) = A and R(A) = P.
In other words, R ◦MAB ◦MAC(A) = P.
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It’s easy to check that MAC(B) = Q, MAB(Q) = R and R(R) = Q.
In other words, R ◦MAB ◦MAC(B) = Q.

It’s easy to check that MAC(C) = C, MAB(C) = S and R(S) = C.
In other words, R ◦MAB ◦MAC(C) = C.

So can you think of an isometry which takes A to P, B to Q and C to C? If you think hard enough, you
should realise that it’s just a rotation by 180◦ around C. So we’ve managed to deduce that the composition
R ◦MAB ◦MAC is a rotation by 180◦ around C.

Problem. Let ABCD be a rectangle with the vertices labelled counterclockwise such that BC = 2AB. Let

MAB be the reflection in the line AB;

RB be the counterclockwise rotation by 90◦ about B;

TDB be the translation which takes D to B; and

GCD be the glide reflection in the line CD which takes C to D.

Identify the composition MAB ◦ RB ◦ TDB ◦ GCD.

Proof. The diagram below shows rectangle ABCD drawn on a grid of squares. Since we want to choose three
points which form a triangle, we may as well choose the points A, B and C.

It’s easy to check that GCD(A) = E, TDB(E) = D, RB(D) = F and MAB(F) = G.
In other words, MAB ◦ RB ◦ TDB ◦ GCD(A) = G.

It’s easy to check that GCD(B) = H, TDB(H) = C, RB(C) = I, and MAB(I) = I.
In other words, MAB ◦ RB ◦ TDB ◦ GCD(B) = I.

It’s easy to check that GCD(C) = D, TDB(D) = B, RB(B) = B, and MAB(B) = B.
In other words, MAB ◦ RB ◦ TDB ◦ GCD(C) = B.

A

B C

D

EF G

H

I

O

So can you think of an isometry which takes A to G, B to I and C to B? If you think hard enough, you should
realise that it’s a rotation, although you might not be sure of where the centre lies. However, we can use the
fact that if a rotation takes X to Y, then the centre of rotation must lie on the perpendicular bisector of XY. In
particular, the centre of the rotation that we’re interested in must lie on the perpendicular bisector of AG as
well as the perpendicular bisector of BI. And there’s only one point which does that — namely, the point O
labelled in the diagram above. It’s now easy to deduce that the composition must be a rotation about O by
∠AOG = 90◦ in the clockwise direction.
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Archimedes

Archimedes of Syracuse was a Greek mathematician
who is widely held to be the greatest mathematician
of antiquity and one of the greatest of all time. Liv-
ing from about 287 BC to 212 BC, his thoughts on
mathematics were far ahead of his time. He used a
technique called the method of exhaustion to calcu-
late areas under parabolas and give a very accurate
approximation of the number π. He also applied this
technique to prove that a sphere which fits perfectly
inside a cylinder has two-thirds of its surface area as
well as two-thirds of its volume. He regarded this as
the greatest of his mathematical achievements and
asked for a diagram of a sphere inside a cylinder to
be placed on his tombstone. Archimedes’ method of
exhaustion was a precursor to the modern day dif-
ferential and integral calculus which was discovered
nearly two thousand years later.

It’s quite common for a mathematician to be multi-
talented and Archimedes was certainly no exception.
He is also renowned as a physicist, engineer, inventor,
and astronomer. Among his great discoveries and
inventions are the foundations of hydrostatics, the
explanation of the principle of the lever, machines to
be used in siege warfare, and many many more. He is
the one who is said to have cried “Eureka!” and ran
through the streets of Syracuse naked upon discov-
ering the principle of buoyancy while in the bathtub.
Another story about Archimedes is that his servants
needed to take him against his will to the baths. And
while they bathed him and anointed him with oils,
he would be drawing diagrams on his body with the
oils, such was his enthusiasm for geometry.

The mathematical writings of Archimedes were not
particularly well known throughout antiquity. How-
ever, the few copies which survived through to the
Middle Ages became an influential source of ideas for
scientists. Amazingly, previously unknown works of
Archimedes were discovered in 1906. These writings,
now known as the Archimedes Palimpsest, provide
new insights into how he obtained mathematical re-
sults. We are quite lucky to have them because this
copy of his writings had been made in the tenth cen-

tury AD and the pages subsequently erased, folded
in half, and reused for a Christian text. Fortunately,
the erasure was incomplete and we can now read
Archimedes’ work after scientific and scholarly work
over the past ten years involving digital image pro-
cessing using ultraviolet, infrared and X-ray technol-
ogy.

Although Archimedes had built many machines of
war to keep the Romans out, they finally managed to
capture his home town of Syracuse. Apparently, one
Roman soldier happened to find him hard at work
on a geometry problem. Archimedes was so trans-
fixed that he never noticed the soldier nor even the
fact that the city had been taken. When Archimedes
refused to follow the soldier until he had finished
solving the problem, the soldier decided to run his
sword through him, despite orders to keep him alive.
And that was the end of Archimedes.
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