
1. EUCLIDEAN GEOMETRY 1.4. Geometric Gems

The Nine Point Circle

Now we come to one of the real gems of geometry, a theorem which was discovered more than two thousand
years after Euclid’s day. Remember that for every three points which do not lie on a line, there is a unique
circle which passes through them. For four points, there is very rarely going to be a circle which passes
through them all, and if there is, then those four points form a very special type of quadrilateral called a
cyclic quadrilateral. Given that it’s already quite difficult for four points to lie on a circle, then it must be
near impossible to find nine points which lie on a circle. And yet, this is precisely what the nine point circle
theorem tells us — we can find nine points which lie on a circle, associated to any particular triangle we
choose to think about.

Theorem (Nine Point Circle Theorem). Let ABC be a triangle with altitudes AD, BE, CF, medians AX, BY, CZ,
and orthocentre H. If A′, B′, C′ are the midpoints of AH, BH, CH, respectively, then the nine points A′, B′, C′, D, E, F,
X, Y, Z all lie on a circle which is — for obvious reasons — called the nine point circle of triangle ABC.
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Proof. There are midpoints galore in this problem — in fact, six of the nine points that we are interested in are
defined as midpoints. So it seems like a prime opportunity to use the midpoint theorem. Applied in triangle
ABH, we obtain that A′B′ is parallel to AB. Applied in triangle ABC, we obtain that XY is also parallel to
AB. Applied in triangle ACH, we obtain that A′Y is parallel to CH. Applied in triangle BCH, we obtain that
B′X is also parallel to CH.

In summary, XY and A′B′ are parallel to each other and to AB. Furthermore, A′Y and B′X are parallel to each
other and to CH. However, since CH is perpendicular to AB by assumption, we know that A′B′XY must be
a rectangle. The exact same argument can be used to show that B′C′YZ and C′A′ZX are also rectangles.

Now let N be the midpoint of A′X and note that this means that N is the centre of the circle passing through
the vertices of rectangle A′B′XY as well as the centre of the circle passing through the vertices of C′A′ZX,
both of which have A′X as diameters. Therefore, the six points A′, B′, C′, X, Y, Z all lie on a circle with centre
N. Six points down and three to go. . .

Since A′B′XY is a rectangle, we have ∠A′YX = 90◦. But ∠A′DX = 90◦ as well, so we know that the
quadrilateral A′XDY is cyclic. In particular, D lies on the circumcircle of triangle A′XY, which we have
already seen actually passes through the six points A′, B′, C′, X, Y, Z. The same argument shows that E and F
lie on this circle as well. So we can now conclude that the nine points A′, B′, C′, D, E, F, X, Y, Z all lie on a
circle.
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1. EUCLIDEAN GEOMETRY 1.4. Geometric Gems

The Euler Line and Other Gems

This next theorem tells us that three of the four triangle centres that we’ve already considered are very closely
related — in fact, they always lie on a line. It’s amazing that such a simple fact seems to have escaped
everybody’s notice until Euler, a pretty amazing mathematician whom we’ll encounter again later, arrived on
the scene in the eighteenth century.

Theorem. The orthocentre H, the centroid G and the circumcentre O of any triangle lie on a line known as the Euler
line. Furthermore, we have the equation HG = 2GO.
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There are many, many, many, many, many more geometric gems out there and we’ve really only scratched
the surface of Euclidean geometry. For example, there is the following fact which adds the nine point circle
centre to the list of points lying on the Euler line.

Theorem. The orthocentre H, the nine point circle centre N, the centroid G and the circumcentre O of any triangle lie
on a line known as the Euler line. Furthermore, we have the equation HN = NO.

To be honest, Euclidean geometry is not a thriving area of research mathematics. This is probably because
new theorems in Euclidean geometry have limited uses in other areas. But that doesn’t mean they aren’t
interesting, and it doesn’t mean that people aren’t discovering new geometric gems all the time. Here’s a
pair of related facts, the first which was discovered just over a century ago, while the second was discovered
about ten years ago.

Theorem.

Observe that if you take any four points A, B, C, D, then you can draw the nine point circles of the triangles
ABC, BCD, CDA and DAB. Amazingly, all four of these circles meet at a single point — let’s call this point P.

Now suppose that we consider the feet of the perpendiculars from A to the sides of triangle BCD, where you may
have to extend the sides. This will give us three points whose circumcircle we call the A-circle. Similarly, there is
a B-circle, a C-circle and a D-circle. Amazingly, all four of these circles — you guessed it — meet at a single
point, which happens to coincide precisely with the point P.

It’s amazing — or at least I think it’s amazing — that you can build this incredibly intricate world of geometry
with just pen, paper and ten little axioms.
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1. EUCLIDEAN GEOMETRY 1.4. Geometric Gems

Non-Euclidean Geometry

We’re now going to go back to where our journey began, way back to Euclid and his axioms. The common
notions are pretty much trivial statements with no real geometric content. So let’s look at the other five
axioms, which are commonly referred to as postulates.

A1. You can draw a unique line segment between any two given points.

A2. You can extend a line segment to produce a unique line.

A3. You can draw a unique circle with a given centre and a given radius.

A4. Any two right angles are equal to each other.

A5. Suppose that a line ` meets two other lines, making two interior angles on one side of ` which sum to
less than 180◦. Then the two lines, when extended indefinitely, will meet on that side of `.

It didn’t take very long at all for mathematicians to notice that one of the postulates sticks out like a sore
thumb. Can you guess which one it is? Of course you can. . . it’s the only one which takes more than one
line to write down. At a deeper level, it just seems to be conceptually so much more complicated than the
rest. So for centuries upon centuries after Euclid announced his axioms, one of the burning questions in
mathematics was whether or not the fifth axiom was needed at all, whether or not it could be proved from
the other axioms.

Many mathematicians throughout the ages tackled the problem, but to no avail. A small advance was made
by showing that you could write down the parallel postulate in the following simpler looking, but actually
equivalent, form. In fact, when Euclid’s fifth axiom is written in this way, it’s often referred to as the parallel
postulate.

A5′. Given a line and a point not on the line, there exists a unique line through the given point, parallel to
the given line.

One common approach was to to assume the opposite of the parallel postulate and keep deducing and
deducing, with the aim of finding a contradiction. If a contradiction could be found, then the opposite of
the parallel postulate was false, thereby proving that the parallel postulate was true. Unfortunately — or
possibly, fortunately — no one was successful in doing so. What they should have done is stop looking for
a contradiction, because there are none. If they had done this, then they would have realised that all the
statements that they were deducing were theorems in a new type of geometry. Since this geometry comes
from taking the opposite of one of Euclid’s axioms, it’s commonly known as non-Euclidean geometry.

There were various people who contributed to the discovery of non-Euclidean geometry, all of whom lived
around the turn of the nineteenth century. The mathematicians Bolyai and Lobachevsky probably deserve
the most credit, but their ideas are related to work by Saccheri, Gauss and various other people. Note that
there are actually two ways to change the parallel postulate so as to create a non-Euclidean geometry.

Given a line and a point not on the line, there exists no line through the given point, parallel to the given
line.

Given a line and a point not on the line, there exists more than one line through the given point, parallel
to the given line.
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Spherical Geometry

Euclidean geometry, for thousands of years, seemed to reflect the world around us and was the only geometry
studied by mathematicians. But why should mathematics follow the rules of the real world? Why can’t
you invent your own rules? And this is precisely what mathematicians decided to do. Nowadays, there are
many different types of geometry which people study. And usually, after studying these, people discovered
that they turned out to be both interesting and surprisingly useful to the real world. So what makes these
seemingly crazy-sounding theories deserve to be called geometry? Loosely speaking, you can think of a
geometry as anything where you have objects called points and lines, where points can lie on lines and lines
can intersect lines, and so on.

The simplest non-Euclidean geometry is actually rather simple. It’s spherical geometry, which is the geometry
we are used to when we talk about flying around the Earth. Take a sphere — let’s say it has radius 1 to be
definite — and consider the paths of shortest distance between two points. These are just arcs of great circles,
those circles whose centre is the centre of the sphere. We can now define the points in spherical geometry to
be the points on the unit sphere, and we also define the lines in spherical geometry to be the great circles.
We now have a new type of geometry with points and lines and angles and circles and so forth, but which
satisfies the following statement.

Given a line and a point not on the line, there exists no line through the given point, parallel to the given
line.

You can see that two lines in spherical geometry can never be parallel, because they always meet at two
points on opposite sides of the sphere.

It’s possible to prove lots of interesting theorems in spherical geometry — here’s just one interesting example.
It shows that you can calculate the area of a spherical triangle from its three angles alone, something which is
impossible to do in Euclidean geometry.

Theorem. A spherical triangle whose angles measured in radians1 are a, b, c has area a + b + c− π.

Proof. Let’s think of our sphere as an orange with radius 1 and recall that its surface area is simply 4π.
Consider what happens if you slice through the orange twice, with the knife passing through the centre of
the orange, such that the two cuts make an angle of a radians with each other. This will create two slices, on
opposite sides of the orange, whose total surface area is 2a

2π times the total surface area of the orange. So these
two slices will have surface area 2a

2π × 4π = 4a.

Now take a spherical triangle whose angles measured in radians are a, b, c. If we extend the sides, we obtain
a diagram very much like the one below, where the blue spherical triangle is the one whose area we wish
to calculate. Note that there is the same triangle, which we’ve shaded in grey, appearing on the back of the
sphere as well.

Cutting along the two lines which form the angle a will create two orange slices with area 4a. Similarly,
cutting along the two lines which form the angle b will create two orange slices with area 4b. And similarly
again, cutting along the two lines which form the angle c will create two orange slices with area 4c.

1I’m hoping that you already know how to measure angles in radians, but if not, then it’s easy to learn. All you need to know is that
π radians is the same thing as 180◦. Now you’re probably wondering why on earth someone would decide to measure angles in this
way. A better thing to wonder is why on earth someone would decide to split a straight angle into 180 parts and call each one a degree.
Radians are very natural, because if you take a slice of pizza of a given angle, then the angle measured in radians is simply the length of
the crust divided by the length of one of the cuts — in other words, the length of the arc divided by the radius of the circle. Because this
is so natural, many formulas in mathematics look a whole lot nicer when you use radians to measure angles.

4
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a b

c

Now let’s see what happens when we add up all of these areas. Most of the sphere is accounted for exactly
once, but the blue spherical triangle has been accounted for three times and the grey spherical triangle has
also been accounted for three times. So if we let A denote the area of the blue triangle, or equivalently, the
area of the grey triangle, we have the equation

4a + 4b + 4c = 4π + 4A.

Here, the number 4π represents the total surface area of the sphere with radius 1. This equation rearranges to
give the desired formula A = a + b + c− π.

One very interesting consequence of this theorem is the fact that the angles in a spherical triangle must add
to more than 180◦. This should seem intuitively true, because the sides of a spherical triangle seem to “bulge
outwards”, creating larger angles than a Euclidean triangle. This is one of the major differences between
spherical and Euclidean geometry.

Remember that one of our goals is to show that you can have a geometry in which all of Euclid’s axioms
are true except for the parallel postulate. Certainly, the parallel postulate fails to hold in spherical geometry,
but unfortunately it’s not the only one which fails. For example, it’s not true in spherical geometry that you
can draw a unique line segment between any two given points. That’s because between the north pole and
the south pole of the sphere, there are infinitely many line segments. However, knowing a bit about how
spherical geometry works will help us with hyperbolic geometry, a case where all of Euclid’s axioms do hold
except for the parallel postulate.

Hyperbolic Geometry

We now consider a type of geometry which satisfies the following statement.

Given a line and a point not on the line, there exists more than one line through the given point, parallel
to the given line.

This geometry will be far more difficult to visualise and is conceptually more removed from everyday
experience. The geometry we will talk about is called hyperbolic geometry and there are many ways to describe
it. The particular way that we’re going to use is called the Poincaré disk model.
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1. EUCLIDEAN GEOMETRY 1.4. Geometric Gems

In the Poincaré disk model, the hyperbolic plane is an open disk — let’s say it has radius 1 to be definite —
or, in other words, all of the points which are inside, but not on the circumference of, a circle. Very intuitively,
you can think of the hyperbolic plane as a circular pond of quicksand, one where it’s easy to walk around
when you’re close to the middle, but which gets infinitely difficult to travel through when you’re close to the
edge. So the effort that it takes you to get from point A to point B or equivalently, the hyperbolic distance from
point A to point B, is warped and not like the normal Euclidean distance between two points. This means
that if you were told to walk from point A to point B, you would probably take a curved path, which bends
toward the middle of the circular pond of quicksand. Anyway, it’s possible to make all of this mumbo jumbo
precise and the end result is that hyperbolic geometry works as follows.

A hyperbolic point is just a normal point inside the hyperbolic plane.

A hyperbolic line is the arc of a circle which is perpendicular to the boundary of the disk or a diameter
of the disk.

You can see some examples of hyperbolic lines drawn in the Poincaré disk model below. Remember that
lines are said to be parallel if they never meet. You should now be able to convince yourself that, given a line
in hyperbolic geometry and a point not on the line, there exists more than one line through the given point,
parallel to the given line.

Remember that in spherical geometry, the area of a triangle with angles a, b, c is simply a + b + c− π. Not
only does this mean that you can calculate the area of a triangle from its angles alone, but also that in every
spherical triangle, the angles add up to more than 180◦. Hyperbolic geometry is, in many ways, the exact
opposite of spherical geometry. For example, in every hyperbolic triangle, the angles add up to less than
180◦. This should seem intuitively true, because the sides of a hyperbolic triangle seem to “curve inwards”,
creating smaller angles than a Euclidean triangle. Furthermore, you can calculate the area of a hyperbolic
triangle from its angles alone in the following way.

Theorem. A hyperbolic triangle whose angles measured in radians are a, b, c has area π − a− b− c.

Note that there are theorems which will be the same in Euclidean, spherical or hyperbolic geometry. This is
simply because there are results which you can prove which don’t rely on the parallel postulate at all. Even
though hyperbolic geometry seems the most far removed from our everyday experience, it is, in some sense,
the most mathematically important and is used in various areas of pure mathematics and theoretical physics.
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Problems

Problem. Consider a point P on the circle which passes through the vertices of triangle ABC. Let D be the point on
BC such that PD is perpendicular to BC. Let E be the point on CA such that PE is perpendicular to CA. Let F be the
point on AB such that PF is perpendicular to CA. (You may have to extend the lines AB, BC and CA for this to be
possible.) Prove that the points D, E and F lie on a line.2

A

B CD

E

F

P

Proof. The first thing to do, as always, is to draw a large accurate diagram. With a big fat circle in the picture,
it is hard to miss the fact that the quadrilateral ABCP must be cyclic. This is a very useful piece of information
to note down because we’re going to use it later.

In general, right angles will often lead to cyclic quadrilaterals, and there are actually three of them that we
haven’t yet mentioned. One of the easiest ones to see is the quadrilateral PFAE, which is cyclic because its
opposite angles add up to 180◦.

∠PFA + ∠AEP = 90◦ + 90◦ = 180◦.

Another one which is not too difficult to spot is the quadrilateral PFBD, which is also cyclic because its
opposite angles add up to 180◦.

∠PFB + ∠BDP = 90◦ + 90◦ = 180◦

Finally, we consider quadrilateral PEDC, which is cyclic because of the hockey theorem applied to the equal
angles

∠PEC = ∠PDC = 90◦.
2The line passing through the points D, E and F is actually known as the Simson line of the point P and the triangle ABC.
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Let’s remember exactly what we’re trying to prove — namely, that the points D, E and F lie on a line. One
way to prove this would be to show that ∠PEF + ∠PED = 180◦. If we label the angle ∠PEF = x, then the
hockey theorem applied to the cyclic quadrilateral PFAE tells us that ∠PAF = x as well. The angle next door
to this must then be ∠PAB = 180◦ − x. Since the opposite angles in the cyclic quadrilateral ABCP must add
up to 180◦, this in turn yields the fact that ∠BCP = x. And now we use the fact that the opposite angles in
the cyclic quadrilateral PEDC must add up to 180◦ to tell us that

∠PED = 180◦ −∠DCP = 180◦ −∠BCP = 180◦ − x.

If you’ve labelled all of these angles on your diagram, then you will have noticed that we have now labelled
both ∠PEF and ∠PED. This is most useful, because we now have

∠PEF + ∠PED = x + (180◦ − x) = 180◦.

And this is exactly what we’re aiming to prove, because it implies that the points D, E and F lie on a line.

Problem. In the hyperbolic plane, there exist quadrilaterals all of whose angles are equal to 45◦. Sketch one example of
such a quadrilateral in the hyperbolic plane using the Poincaré disk model. What is the area of this quadrilateral?

Proof. The large circle below represents the Poincaré disk model of the hyperbolic plane. The four dotted
curves represent four hyperbolic lines. As you can see from the diagram, they form a quadrilateral all of
whose angles are equal to 45◦.

45◦45◦

45◦45◦

Now consider the following schematic diagram for the quadrilateral, where the hyperbolic lines are repre-
sented by normal straight lines. We have divided the quadrilateral into two triangles — numbered 1 and 2 —
and labelled every single angle in the diagram.
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a

b c
d
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1
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Since each angle of the quadrilateral is equal to 45◦, we have four equations that these labelled angles must
satisfy. Here, we have labelled the angles using radians rather than degrees.

a + f =
π

4
, b =

π

4
, c + d =

π

4
, e =

π

4

One of the advantages of using radians is that the area of a hyperbolic triangle is much easier to determine.
In fact, we know that the area of triangle 1 is π− a− b− c and the area of triangle 2 is π− d− e− f . Adding
up the areas of these two triangles, we deduce that the area of the quadrilateral is

(π − a− b− c) + (π − d− e− f )

= 2π − (a + b + c + d + e + f )

= 2π − (a + f )− (b)− (c + d)− (e)

= 2π − π

4
− π

4
− π

4
− π

4
= π.
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Gauss

Johann Carl Friedrich Gauss — who was born in 1777
and died in 1855 — was a German mathematician
who contributed significantly to a variety of subjects.
The book Men of Mathematics by Eric Temple Bell and
published in 1937 — which apart from the sexist ti-
tle, is a decent read — has a chapter on Gauss which
begins “Archimedes, Newton and Gauss, these three,
are in a class by themselves among the great mathe-
maticians, and it’s not for ordinary mortals to attempt
to range them in order of merit.” Hopefully this con-
vinces you that Gauss is regarded among the best
mathematicians who ever walked the earth.

Gauss was known to be a child prodigy and there
is a famous story which tells of his primary school
teacher asking the class to add up the numbers from
1 up to 100. The very young Gauss produced the
correct answer in seconds, to the astonishment of his
teacher. Presumably, his method was to pair the num-
bers 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, and so
on, obtaining fifty pairs, each with sum 101. Hence,
the answer is 50× 101 = 5050.

It seems that Gauss may have discovered the possibil-
ity of non-Euclidean geometry but, for some strange
reason, decided not to publish it. In fact, when a
younger mathematician by the name of János Bolyai
discovered non-Euclidean geometry and published
his work in 1832, Gauss wrote that “To praise it would

amount to praising myself. For the entire content of
the work. . . coincides almost exactly with my own
meditations which have occupied my mind for the
past thirty or thirty-five years.”
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