
1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

Warming Up with Parallel Lines

Now that we’ve decided to leave Euclid’s Elements behind us, let’s embark on a much less-detailed, though
far more exciting, geometric journey. We’ll warm up with a fact about parallel lines — Euclid proved it, but
we’ll assume it.

Proposition. If a line meets two parallel lines and you label one angle x as shown in the diagram below, then you can
label all eight angles as shown.

x
x

180◦ − x
180◦ − x

x
x

180◦ − x
180◦ − x

Basic Facts about Triangles

Now it’s time for some basic facts about triangles, facts which you should know like the back of your hand
and be able to use when solving geometry problems.

The angles in a triangle add up to 180◦.

If a triangle ABC satisfies AB = AC, then ∠ABC = ∠ACB. On the other hand, if a triangle ABC
satisfies ∠ABC = ∠ACB, then AB = AC. If this is true, then we say that the triangle is isosceles, a word
which comes from the Greek words “iso”, meaning same, and “skelos”, meaning leg.

The area of a triangle is given by 1
2 × b× h, where b denotes the length of the base and h denotes the

height of the triangle.

You might be wondering why we care so much about triangles. One reason is because a triangle is the
simplest shape which encloses a region that you can draw using only straight line segments. Such shapes
— of which triangles, quadrilaterals and pentagons are examples — are usually called polygons. In fact, we
can consider triangles to be the “fundamental things” which we can glue together to build any polygon. For
example, if you wanted to know what the sum of the angles are in a quadrilateral, then you could simply
draw one of its diagonals to split it up into two smaller triangles. Each triangle on its own has angles which
add to 180◦ so together, their angles add to 360◦. Since the angles of the individual triangles account for all of
the angles in the quadrilateral, we have shown that every quadrilateral has angles which add to 360◦. This
trick doesn’t just work for quadrilaterals though, as we will now see.

Proposition. In a polygon with n sides, the angles add to (n− 2)× 180◦.

Proof. We already saw that a quadrilateral can be cut along a diagonal into two triangles. If you draw a
pentagon, you will notice that it can be cut along diagonals into three triangles. And if you draw a hexagon,
you will notice that it can be cut along diagonals into four triangles. In general, a polygon with n sides can be
cut along diagonals into n− 2 triangles. This is not a particularly easy fact to prove, so we’ll just take it for
granted.
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

The figure above shows what you might get if you try this at home. Of course, each triangle on its own has
angles which add to 180◦ so together, their angles add to (n− 2)× 180◦. Since the angles of the individual
triangles account for all of the angles in the polygon, we now know that every polygon with n sides has
angles which add to (n− 2)× 180◦.

Congruence and Similarity

Congruence and similarity are two of the most important notions in geometry. We say that two shapes are
congruent if it is possible to pick one of them up and place it precisely on top of the other one. On the other
hand, we say that two shapes are similar if it is possible to pick one of them up, enlarge or shrink it by a
certain factor, and then place it precisely on top of the other one. If the triangles ABC and XYZ are congruent,
then we write this using the shorthand ABC ∼= XYZ and if they are similar, then we write this using the
shorthand ABC ∼ XYZ. When we use this notation, we always mean that the first vertex from one triangle
corresponds to the first vertex from the other, the second vertex from one triangle corresponds to the second
vertex from the other, and the third vertex from one triangle corresponds to the third vertex from the other.

There are four simple rules to determine whether or not two triangles are congruent. Each one comes with a
catchy TLA1 which should hopefully be self-explanatory.

SSS (side-side-side)
If ABC and XYZ are two triangles such that AB = XY, BC = YZ and CA = ZX, then the two triangles
are congruent.

SAS (side-angle-side)
If ABC and XYZ are two triangles such that AB = XY, BC = YZ and ∠ABC = ∠XYZ, then the two
triangles are congruent.

ASA (angle-side-angle)
If ABC and XYZ are two triangles such that ∠ABC = ∠XYZ, ∠ACB = ∠XZY and BC = YZ, then the
two triangles are congruent.

RHS (right-hypotenuse-side)
If ABC and XYZ are two triangles such that AB = XY, BC = YZ and ∠BAC = ∠YXZ = 90◦, then the
two triangles are congruent.

You have to be really careful with SAS, because the equal angles must be enclosed by the two pairs of equal
sides for the rule to work. In other words, the fictitious rule SSA (side-side-angle) cannot be used to show
that two triangles are congruent.

1Three Letter Acronym
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

To see this, we should be able to find two triangles ABC and XYZ such that AB = XY, BC = YZ and
∠BCA = ∠YZX such that the two triangles are not congruent. The following diagram should convince you
that such pairs of triangles certainly do exist.

A

B C

X

Y Z

There are also three simple rules to determine whether or not two triangles are similar. Each one comes with
a catchy TLA which once again should hopefully be self-explanatory.

AAA (angle-angle-angle)
If ABC and XYZ are two triangles such that ∠ABC = ∠XYZ, ∠BCA = ∠YZX and ∠CAB = ∠ZXY,
then the two triangles are similar. In fact, since we know that the angles in a triangle add to 180◦, we
only need to know two of these equations and we get the third one for free.

PPP (proportion-proportion-proportion)
If ABC and XYZ are two triangles such that the fractions AB

XY = BC
YZ = CA

ZX are equal, then the two
triangles are similar.

PAP (proportion-angle-proportion)
If ABC and XYZ are two triangles such that the fractions AB

XY = BC
YZ are equal and ∠ABC = ∠XYZ,

then the two triangles are similar.

Once again, you have to be really careful with PAP, because the angle must be enclosed by the two propor-
tional sides for the rule to work. In other words, the fictitious rule PPA (proportion-proportion-angle) cannot
be used to show that two triangles are similar. Let’s now apply our newfound knowledge about congruence
and similarity to prove the following simple, but extremely useful, theorem.

Theorem (Midpoint Theorem). Let ABC be a triangle where the midpoints of the sides BC, CA, AB are X, Y, Z,
respectively. Then the four triangles AZY, ZBX, YXC and XYZ are all congruent to each other and similar to triangle
ABC.

A B

C

XY

Z
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

Proof. First, let’s prove that triangle ABC is similar to triangle AZY. It’s clear that ∠CAB = ∠YAZ because
they actually coincide. We also have the equal fractions AB

AZ = AC
AY = 2, so PAP tells us precisely that triangle

ABC is similar to triangle AZY and is twice the size.

An entirely similar argument — no pun intended — can be used to prove that triangle ABC is similar to
triangles ZBX and YXC and is twice the size. So what we have deduced is that the triangles AZY, ZBX and
YXC are all congruent to each other. In particular, we have the three equations XY = AZ, YZ = YZ and
ZX = AY which together imply that triangle XYZ is congruent to triangle AZY by SSS.

Pythagoras’ Theorem (Reprise)

We’ve already seen Euclid’s proof of Pythagoras’ Theorem — let’s reword the theorem a little differently now
and consider a much slicker proof.

Theorem (Pythagoras’ Theorem). Consider a right-angled triangle with side lengths a, b, c where c is the length of
the hypotenuse. Then a2 + b2 = c2.

Proof. The entire proof is captured by the two diagrams below. On the left, we see a square of side length
a + b. We’ve removed four right-angled triangles, each with side lengths a, b, c and the remaining shaded
regions clearly have a combined area of a2 + b2.

a

a

a

a

b

b

b

b

a

a

a

a

b

b

b

b

On the right, we also see a square of side length a + b. We’ve once again removed four right-angled triangles,
each with side lengths a, b, c, but in a slightly different way. The remaining shaded region clearly has area c2

and it follows that a2 + b2 = c2.

Theorem (Converse of Pythagoras’ Theorem). Consider a triangle with side lengths a, b, c where a2 + b2 = c2.
Then the triangle is right-angled and the hypotenuse has length c.

Proof. Construct a right-angled triangle whose legs have lengths a and b, and let its hypotenuse have length d.
We can now invoke Pythagoras’ theorem since we proved it just a little bit earlier. It tells us that a2 + b2 = d2.
But put this piece of information together with our assumption that a2 + b2 = c2 and you have the equation
c2 = d2. This implies that c = d.

Therefore, the triangle with side lengths a, b, c that we were given possesses exactly the same side lengths
as the right-angled triangle that we have constructed. Because of SSS, this means that the two triangles are,
in fact, congruent. So the given triangle with side lengths a, b, c is indeed right-angled, as we intended to
prove.
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

Basic Facts about Circles

We now know lots about triangles, so let’s move on to circles — we start with some basic facts.

A circle is the set of points which are the same
distance r from some centre O. You should al-
ready know by now that r is called the radius of
the circle and O is called the centre of the circle.

A chord is a line segment which joins two points
on a circle.

An arc of a circle is the part of the circumference
cut off by a chord.

A diameter is a chord which passes through the
centre of the circle. Note that its length is twice
the radius.

diameter

chord

arc

This is all we need to know about circles in order to prove some pretty cool results, like the following.

Proposition. The diameter of a circle subtends an angle of 90◦. In other words, if AB is the diameter of a circle and C
is a point on the circle, then ∠ACB = 90◦.

Proof. Let O be the centre of the circle. The beauty of considering the centre is that we have the three equal
radii OA = OB = OC. Equal lengths, for obvious reasons, often lead to isosceles triangles, and our diagram
happens to have two of them. There is the isosceles triangle OAC which means that we can label the equal
angles ∠OAC = ∠OCA = x. There’s also the isosceles triangle OBC, which means that we can label the
equal angles ∠OBC = ∠OCB = y. Labelling equal angles like this is an extremely common and extremely
useful trick.

A B

C

O

x y

x y

Now it’s time for some angle chasing.2 In particular, let’s consider the sum of the angles in triangle ABC.

∠BAC + ∠ACB + ∠CBA = 180◦

2Angle chasing is the art of chasing angles. As Wikipedia puts it, the term is “used to describe a geometrical proof that involves
finding relationships between the various angles in a diagram”.
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

We can replace all of these confusing angles with x’s and y’s in the following way.

x + (x + y) + y = 180◦

This equation is, of course, the same thing as 2(x + y) = 180◦ or, equivalently, x + y = 90◦. All we have to do
now is recognise that ∠ACB = x + y so we have proven that ∠ACB = 90◦.

Proposition. The angle subtended by a chord at the centre is twice the angle subtended at the circumference, on the
same side. In other words, if AB is a chord of a circle with centre O and C is a point on the circle on the same side of AB
as O, then ∠AOB = 2∠ACB.

Proof. The beauty of considering the centre is that we have the three equal radii OA = OB = OC. Equal
lengths, for obvious reasons, often lead to isosceles triangles, and our diagram happens to have three of them.
There is the isosceles triangle OAB which means that we can label the equal angles ∠OAB = ∠OBA = x.
There’s also the isosceles triangle OBC, which means that we can label the equal angles ∠OBC = ∠OCB = y.
And there’s also the isosceles triangle OCA, which means that we can label the equal angles ∠OCA =
∠OAC = z. Labelling equal angles like this is an extremely common and extremely useful trick.

A B

C

O

x x

y

y
z

z
180◦ − 2x

Now it’s time for some angle chasing. In particular, let’s consider the sum of the angles in triangle ABC.

∠BAC + ∠ACB + ∠CBA = 180◦

We can replace all of these confusing angles with x’s, y’s and z’s in the following way.

(x + z) + (z + y) + (y + x) = 180◦

This equation is, of course, the same thing as 2(x + y + z) = 180◦. Let’s keep this equation in the back of
our minds while we try and remember what it is exactly that we’re trying to do. We want to prove that
∠AOB = 2×∠ACB. Using the angle sum in triangle OAB, we can write ∠AOB = 180◦ − 2x. We can also
write ∠ACB = y + z. So what we’re actually aiming for is the following equation.

180◦ − 2x = 2(y + z)

But after rearranging, this is just the same thing as 2(x + y + z) = 180◦, which we already proved.
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1. EUCLIDEAN GEOMETRY 1.2. Triangles and Circles

Hopefully, you’ve managed to spot the similarity between these two proofs. They’re both indicative of the
general strategies that we’ll be using to solve tougher geometry problems. More specifically, I guess what
we’ve used here is the old “find isosceles triangles–label equal angles–sum up the angles in a triangle–work
out what you’re trying to prove–then prove it” trick.

I should probably mention that some of the proofs I’ve provided are a little incomplete. In particular, if you
check the previous proof very carefully, you’ll notice that it only works when O lies inside triangle ABC. It
could be possible that O lies on or even outside triangle ABC. However, the proofs in these other cases are
quite similar, so I’ll leave it as a fun exercise for you to find them.

The Hockey Theorem

Suppose that a hockey coach wanted to see which player on their team had the best shot. They could line
all the players parallel to the goal and ask them to shoot to see who scores and who misses. But this would
certainly be unfair to the players on the ends who have to shoot further and have a smaller angle to aim for.
The coach could try and fix the problem by placing everyone on a circle whose centre coincides with the
middle of the goal. Of course, this means that everyone is the same distance from the goal now, but some
players have a much greater angle to aim at than others. In fact, due to the frictionless nature of the sport,
distance is no problem when shooting at a hockey goal. What we would rather test is the accuracy of each
player. So it makes sense to place everyone somewhere where they all have the same angle to aim at. In that
case, where should we put all the players? The following proposition tells us the answer — they should all
stand on the arc of a circle whose end points are the goal posts.

goal goal goal

Proposition (Hockey Theorem). Angles subtended by a chord on the same side are equal. In other words, if
A, B, C, D are points on a circle with C and D lying on the same side of the chord AB, then ∠ACB = ∠ADB.

Proof. The proof to this is delightfully simple — we start by letting O be the centre of the circle. We
have already proved that ∠AOB = 2∠ACB and also that ∠AOB = 2∠ADB. So it must be the case that
∠ACB = ∠ADB.

A B

C

D

O

x

x

2x
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Cyclic Quadrilaterals

If I give you one point and ask you to draw a circle through it, then that’s a pretty easy thing to do, right?
I could make life slightly more difficult for you by giving you two points and asking you to draw a circle
through both of them. And even if I give you three points and ask you to draw a circle through all of them,
then you could almost always do it, as long as they don’t lie on a line. To see this, consider a massive circle, so
massive that all three points that I give you lie inside it. Now start shrinking the circle. Sooner or later, your
circle has to hit one of the points. Now keep that point on the circle, but keep shrinking the circle. Sooner or
later, your circle has to hit another of the points. We are now in the happy situation of having the circle pass
through two of the given points. Now we either shrink or expand our circle, while keeping it in contact with
these two points, until it finally passes through the third given point. Hopefully, this should convince you
that there is actually only one circle which passes through any three points, as long as they don’t lie on a line.

So now I’m going to make life particularly difficult for you by giving you four points and asking you to draw
a circle through all of them. The shrink/expand trick we used above shows that there is a unique circle which
passes through three of them. So to be able to accomplish the task, the fourth point must already lie on this
circle. The probability that I was nice enough to actually give you four points where this is true is incredibly
small. What I’m trying to get at here is that if I give you a random quadrilateral, then it is extremely rare for a
circle to pass through all four of its vertices. So if a circle does pass through all four of its vertices, then the
quadrilateral must be very special indeed — so special that we should give it a special name. In fact, we refer
to such a quadrilateral as a cyclic quadrilateral. We’re now going to prove a very important fact about cyclic
quadrilaterals.

Proposition. The opposite angles in a cyclic quadrilateral add up to 180◦. In other words, if ABCD is a cyclic
quadrilateral, then ∠ABC + ∠CDA = 180◦ and ∠BCD + ∠DAB = 180◦.

Proof. If we draw in the diagonals AC and BD, the hockey theorem tells us that there are equal angles
galore. For example, we can label ∠ACB = ∠ADB = w, ∠BDC = ∠BAC = x, ∠CAD = ∠CBD = y and
∠DBA = ∠DCA = z. You can go crazy labelling equal angles like this whenever there’s a cyclic quadrilateral
somewhere in your diagram.

A B

C

D

x z
y

w
z

xw

y

Now we’re going to play a similar trick to one we played before — we’re going to add up all of the angles in
the quadrilateral and the answer should be 360◦.

∠DAB + ∠ABC + ∠BCD + ∠CDA = 360◦
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We can replace all of these confusing angles with w’s, x’s, y’s and z’s in the following way.

(x + y) + (y + z) + (z + w) + (w + x) = 360◦

This equation is, of course, the same thing as 2(w + x + y + z) = 360◦ or, equivalently, w + x + y + z = 180◦.
All we have to do now is recognise that ∠ABC = y + z and ∠CDA = w + x, so that

∠ABC + ∠CDA = (y + z) + (w + x) = 180◦.

You could also have chosen to recognise that ∠BCD = z + w and ∠DAB = x + y, so that

∠BCD + ∠DAB = (z + w) + (x + y) = 180◦.

How to Find a Cyclic Quadrilateral

Something we’re going to learn is that it’s incredibly useful to keep your eyes open for cyclic quadrilaterals
when solving problems in Euclidean geometry. If the problem happens to mention a circle which has four
points on it, then of course, those four points form a cyclic quadrilateral. But quite often, cyclic quadrilaterals
can be hidden somewhere in your diagram, even when there are no circles involved. In those cases, you
would probably use one of the two facts below to prove that the quadrilateral is cyclic.

We proved earlier that the opposite angles in a cyclic quadrilateral add up to 180◦. One thing you might be
wondering is whether the converse is true — in other words, if someone gives you a quadrilateral where the
opposite angles add up to 180◦, then is it necessarily true that the quadrilateral must have been cyclic? The
following proposition tells you that the converse certainly is true.

Proposition. If the opposite angles in a quadrilateral add up to 180◦, then the quadrilateral is cyclic.

Another thing we proved earlier was the hockey theorem — that if A, B, C, D are points on a circle with
C and D lying on the same side of the chord AB, then ∠ACB = ∠ADB. And another thing you might be
wondering is whether the converse is true — in other words, if someone gives you a quadrilateral ABCD
where ∠ACB = ∠ADB, then is it necessarily true that the quadrilateral must have been cyclic? The following
proposition tells you that the converse certainly is true, once again.

Proposition. If ABCD is a convex quadrilateral such that ∠ACB = ∠ADB, then the quadrilateral is cyclic.

A particularly useful case occurs when you are given four points A, B, C, D such that ∠ABC = ∠CDA = 90◦.
If ABCD is a convex quadrilateral, then we can use the first proposition above to deduce that it must actually
be a cyclic quadrilateral. On the other hand, if ABCD is a convex quadrilateral, then we can use the second
proposition above to deduce that it must actually be a cyclic quadrilateral. So either way, the four points
A, B, C, D lie on a circle. This means that when right angles appear, you can often expect cyclic quadrilaterals
to appear as well.

You can solve many many geometry problems by searching for cyclic quadrilaterals and using what you
know about them. The beauty of cyclic quadrilaterals is that if you find one pair of equal angles, then you get
three more for free. This is because if you find that ∠ACB = ∠ADB, then the quadrilateral ABCD is cyclic,
in which case we can apply the hockey theorem to also obtain the equal angles

∠BDC = ∠BAC, ∠CAD = ∠CBD, and ∠ABD = ∠ACD.
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Tangents

A tangent is a line which touches a circle at precisely
one point. Given a point outside a circle, you can
draw two tangents, thereby creating a diagram which
looks very much like an ice cream cone.

Theorem (Ice Cream Cone Theorem). The picture
of the ice cream cone on the right is symmetric so that
AP = AQ and the line OA bisects the angle PAQ. A

P Q

O

The proof of the ice cream cone theorem is a very simple application of congruent triangles combined with
the fact that the radius drawn from the centre of a circle to a point on its circumference is perpendicular to
the tangent at that point. The following is another extremely useful fact about tangents.

Theorem (Alternate Segment Theorem). Suppose that AT is a chord of a circle and that PQ is a line tangent to the
circle at T. If B lies on the circle, on the opposite side of the chord AT from P, then ∠ABT = ∠ATP.

T

A

B

P Q

Proof. The hockey theorem guarantees that, as long as C lies on the circle, on the same side of AT as B,
then ∠ACT = ∠ABT. So the trick here is to choose a particular point C on the circle and prove that
∠ACT = ∠ATP. One nice way to choose the location of the point C is so that TC is a diameter of the circle.

T

O

A

B

C

P Q

x
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Choosing C in this way is great because we’ve introduced two right angles into the diagram. We have
∠CAT = 90◦, because it’s an angle subtended by the diameter TC and we also have ∠PTO = 90◦, because
it’s an angle created by a radius and a tangent at the point T.

So if we label ∠ATP = x, then we have ∠OTA = 90◦ − x. Now use the fact that the angles in triangle CAT
add to 180◦ and you find that ∠ACT = x. However, we already mentioned that ∠ABT = ∠ACT = x by the
hockey theorem, so we can now conclude that ∠ABT = ∠ATP.

It turns out that the converse of the alternate segment theorem is also true — but I’ll let you try to write down
exactly what it states.

Problems

Many geometry problems can be solved by angle chasing. This means labelling some — but not too many —
well-chosen angles in your diagram and using what you know to determine other ones. Here are some very
common ways to relate different angles in your diagram.

If two angles are next door to each other, then they add up to 180◦.

Parallel lines give you equal angles and angles which add up to 180◦.

The angles in a triangle add up to 180◦.

Congruent or similar triangles give you equal corresponding angles.

In any cyclic quadrilateral, the opposite angles add up to 180◦.

In any cyclic quadrilateral, you can apply the hockey theorem to give you four pairs of equal angles.

Apart from these tips, possibly one of the most useful things I can tell you is to always draw a very accurate,
very large diagram, preferably in multiple colours. Below are two example problems and their solutions. You
should try to read the solutions carefully to make sure that you understand them and then reread them until
you think you can reconstruct the proofs on your own.

Problem. Two circles intersect at P and Q. A line through P meets the circles C1 and C2 at A and B, respectively. Let
Y be the midpoint of AB and suppose that the line QY meets the circles C1 and C2 at X and Z, respectively. Prove that
triangle XYA is congruent to triangle ZYB.

A

BP

Q

X

Y

Z

x

C1 C2
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Proof. The first thing to notice is that the two triangles have the angles ∠XYA = ∠ZYB as well as the sides
AY = BY in common. So to prove that they’re congruent, we could try to use either ASA or SAS. It turns out
that the first choice is better for this problem, since the circles in the diagram will give us equal angles.

So let’s label ∠YAX = x and note that the problem is completely solved if we can only show that ∠YBZ = x
as well. Since the angle ∠YAX = ∠PAX is subtended by the chord PX, we can use the hockey theorem to
deduce that ∠PQX = ∠PAX = x. And since the angle PQZ = ∠PQX is subtended by the chord PZ, we
can use the hockey theorem again to deduce that ∠PBZ = ∠PQZ = x. However, ∠PBZ = ∠YBZ so we’ve
proved that ∠YBZ = x and the problem is solved.

Problem. Consider a semicircle with diameter AB. Suppose that D is a point such that AB = AD and AD intersects
the semicircle at the point E. Let F be the point on the chord AE such that DE = EF and extend BF to meet the
semicircle at the point C. Prove that ∠BAE = 2∠EAC.

A B

D

E

F
C

Proof. A good start would be to label ∠EAC = x and aim to prove that ∠BAE = 2x. Given that there is a
circle — or at least half of one — there is probably a cyclic quadrilateral lurking about. Hopefully, you can see
that ABEC is a cyclic quadrilateral, so we can apply the hockey theorem to deduce that ∠EBC = ∠EAC = x
as well.

Note that AB is a diameter and there is a certain fact that we know about diameters — namely, they subtend
angles of 90◦. This means that ∠AEB = ∠ACB = 90◦. Since ∠EBC = x, considering the angle sum in
triangle EFB yields the fact that ∠EFB = 90◦ − x.

Now if you’ve drawn a nice accurate picture, then you’ll see that the two triangles FEB and DEB look
suspiciously congruent. These suspicions can be confirmed by observing that that FE = ED, EB = EB,
∠FEB = ∠DEB = 90◦ and using SAS. One consequence of this is the fact that ∠EDB = ∠EFB = 90◦ − x.

One piece of information we haven’t used yet is the fact that AB = AD or, in other words, that triangle
ABD is isosceles. The equal side lengths imply that there are equal angles in the diagram — namely,
∠ABD = ∠ADB = ∠EDB = 90◦ − x.

Now we note that we have labelled two of the angles in triangle ABD, so we can definitely determine what
the third angle is.

∠BAD = 180◦ −∠ABD−∠ADB = 180◦ − (90◦ − x)− (90◦ − x) = 2x

However, this tells us that ∠BAE = 2x as well, exactly what we set out to prove.
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Pythagoras

Pythagoras was a Greek mathematician who lived
even before Euclid was born — from around 570 BC
to around 475 BC. Even though we know and love
him for his theorem about right-angled triangles, it
was essentially known before Pythagoras arrived on
the scene and he never even managed to prove it. Ac-
tually, Pythagoras was not a great mathematician at
all, but was the first person to call himself a philoso-
pher — a word which in ancient Greek literally means
a lover of wisdom.

Pythagoras founded a religious cult whose members
believed that everything was related to mathematics
and that numbers were the ultimate reality. Pythago-
ras himself was pretty serious about this belief, as
you can tell from the following story. When his fellow
cult member Hippasus of Metapontum managed to
prove that the number

√
2 was irrational — a rather

ingenious and important mathematical feat which
didn’t sit well with the Pythagorean philosophy —
Pythagoras supposedly could not accept the result
and sentenced Hippasus to death by drowning.

The Pythagorean cult also adhered to various rules,
some mildly practical but most simply bizarre — the
following are examples.

Never eat beans.

Don’t pick up something that has fallen.

Don’t walk on highways.

When you get out of bed, take the sheets and
roll them all together.

Apart from these facts, there isn’t a great deal which is
known about Pythagoras because no written work of
his has survived to this day. It’s commonly believed
that many of the accomplishments attributed to him
were simply accomplishments of people who were in
his cult.
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