Today we covered Subsections 3.2.1, 3.2.2, 3.3.1, 3.3.2 and some of Subsection 4.5 .1 in the textbook.

Lines and spheres

Example

Find a parametric equation - also known as a vector equation - for the line ℓ in \mathbb{R}^{3} which passes through $A=\left[\begin{array}{c}-1 \\ -2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$.
To find a point on this line, you can start at the point A and walk in the direction $\overrightarrow{A B}=B-A$ or in the opposite direction. Hence, every point on the line must be of the form $A+t(B-A)$ for some real number t. So the parametric equation that we are looking for is

$$
X=\left[\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right]+t\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1+t \\
-2+3 t \\
3+t
\end{array}\right] .
$$

You can check that when $t=0$ in the above equation, we get the point A and when $t=1$ in the above equation, we get the point B.

Note that in general, the parametric equation of a line which passes through A and B takes the form

$$
X=X_{0}+t(B-A)
$$

where X_{0} can be any point which lies on the line. In the example above, we chose $X_{0}=A$, but you could equally choose $X_{0}=B$ or any other point which lies on the line.

Definition

A non-zero vector parallel to a line is called a direction vector for this line. For example, the vector $B-A$ is a direction vector for the line which passes through A and B.

Exercise

Find a parametric equation for the line ℓ, given that $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right] \in \ell$.
Observe that the two lines given by the parametric equations

$$
\begin{aligned}
& X=X_{0}+t X_{1} \\
& X=X_{0}^{\prime}+t X_{1}^{\prime}
\end{aligned}
$$

are parallel if and only if their direction vectors are parallel. This happens if and only if $X_{1}=s X_{1}^{\prime}$ for some real number s.

Exercise

Find a line through $X_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ which is parallel to the line $\ell:\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 \\ 0\end{array}\right]+t\left[\begin{array}{c}-3 \\ 1\end{array}\right]$. Which of the points $A_{1}=\left[\begin{array}{l}7 \\ 0\end{array}\right]$ and $A_{2}=\left[\begin{array}{c}-7 \\ -1\end{array}\right]$ belong to ℓ ?

Example

Find the midpoint between the points $P=\left[\begin{array}{c}2 \\ -3 \\ 5\end{array}\right]$ and $Q=\left[\begin{array}{c}-1 \\ 7 \\ -3\end{array}\right]$.

To get to the point M, you can start at P and walk halfway along the vector $\overrightarrow{P Q}$. Hence, we have the equation
$M=P+\frac{1}{2} \overrightarrow{P Q}=P+\frac{1}{2}(Q-P)=\frac{1}{2}(P+Q)=\left[\begin{array}{c}1 / 2 \\ 2 \\ 1\end{array}\right]$.

Example

Find the equation of a sphere in \mathbb{R}^{3} with center at $\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$ and radius 2 .
A point X is on the sphere only if its distance from the centre is equal to 2 . Therefore, we can describe the sphere as the set $S=\left\{X \in \mathbb{R}^{3}:\left\|X-\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]\right\|=2\right\}$. So the equation for the sphere is $\left\|X-\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]\right\|=2$ which we can write as $\left\|\left[\begin{array}{c}x-1 \\ y+2 \\ z\end{array}\right]\right\|^{2}=4$. Recall that $\|X\|^{2}=X \cdot X$, so the equation for the sphere is

$$
(x-1)^{2}+(y+2)^{2}+z^{2}=4
$$

Fact

A sphere S in \mathbb{R}^{n} with center $C=\left[c_{1}, c_{2}, \ldots, c_{n}\right]^{T}$ and radius r has the equation

$$
\left(x_{1}-c_{1}\right)^{2}+\left(x_{2}-c_{2}\right)^{2}+\cdots+\left(x_{n}-c_{n}\right)^{2}=r^{2}
$$

Example

Draw the set $S=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}:(x-2)^{2}+(y+3)^{2}=9\right\}$. Where does the line $y=-2 x-2$ intersect it?

The equation $(x-2)^{2}+(y+3)^{2}=9$ looks exactly like the equation of a circle in \mathbb{R}^{2} - in fact, it describes the circle with centre $(2,-3)$ and radius 3 . This set is drawn in the coordinate plane on the right.

The line $y=-2 x-2$ intersects the circle at points $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ which simultaneously satisfy the following equations.

$$
\begin{gathered}
(x-2)^{2}+(y+3)^{2}=9 \\
y=-2 x-2
\end{gathered}
$$

To solve this, we substitute the second equation into the first equation to obtain

$$
(x-2)^{2}+(-2 x-2+3)^{2}=9 \Leftrightarrow\left(x^{2}-4 x+4\right)+\left(4 x^{2}-4 x+1\right)=9 \Leftrightarrow 5 x^{2}-8 x-4=0
$$

Using the quadratic equation, we obtain the solutions $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 \\ -6\end{array}\right]$ or $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 / 5 \\ -6 / 5\end{array}\right]$.

Applications of the dot product

Consider two vectors $X, Y \in \mathbb{R}^{n}$. If you consider the diagram below, you should be able to see that

$$
\cos \theta=\frac{a}{\|Y\|} \quad \text { and } \quad \sin \theta=\frac{h}{\|Y\|}
$$

Now consider the following calculations which start with Pythagoras' Theorem.

$$
\begin{aligned}
\|X-Y\|^{2} & =b^{2}+h^{2}=(\|X\|-a)^{2}+(\|Y\| \sin \theta)^{2}=(\|X\|-\|Y\| \cos \theta)^{2}+(\|Y\| \sin \theta)^{2} \\
& =\|X\|^{2}-2\|X\|\|Y\| \cos \theta+\|Y\|^{2} \cos ^{2} \theta+\|Y\|^{2} \sin ^{2} \theta \\
& =\|X\|^{2}-2\|X\|\|Y\| \cos \theta+\|Y\|^{2}
\end{aligned}
$$

We can calculate the same expression in a different way.

$$
\|X-Y\|^{2}=(X-Y) \cdot(X-Y)=X \cdot X-2 X \cdot Y+Y \cdot Y=\|X\|^{2}-2 X \cdot Y+\|Y\|^{2}
$$

Comparing these two expressions, we obtain the following result.

Theorem

For any two non-zero vectors $X, Y \in \mathbb{R}^{n}$, the angle θ between them satisfies

$$
X \cdot Y=\|X\|\|Y\| \cos \theta
$$

Corollary

Two vectors $X, Y \in \mathbb{R}^{n}$ satisfy $X \cdot Y=0$ if and only if X is perpendicular to Y. If X and Y are perpendicular, then we write $X \perp Y$.

Examples

- Find the angle between $X=\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]$ and $Y=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.

If θ is the angle between the two vectors, then we have $X \cdot Y=\|X\|\|Y\| \cos \theta$. This rearranges to give us

$$
\cos \theta=\frac{X \cdot Y}{\|X\|\|Y\|}=\frac{(-1) \cdot 2+(-2) \cdot 1+1 \cdot 1}{\sqrt{(-1)^{2}+(-2)^{2}+1^{2}} \sqrt{2^{2}+1^{2}+1^{2}}}=\frac{-3}{\sqrt{6} \sqrt{6}}=-\frac{1}{2} .
$$

So we can deduce that $\theta=120^{\circ}$. Actually, you could also say that $\theta=240^{\circ}$, but it's common to choose $0 \leq \theta<180^{\circ}$. Also, it's good to know that 120° is the same thing as $\frac{2 \pi}{3}$ radians.
One useful fact to keep in mind is that $X \cdot Y \geq 0$ if and only if θ is acute - that is, $0 \leq \theta<\frac{\pi}{2}$.

- Show that the triangle $X Y Z$ with $X=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right], Y=\left[\begin{array}{c}5 \\ -2 \\ 5\end{array}\right]$ and $Z=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ is a right-angled triangle.

We will have solved the problem if we can show that $\overrightarrow{X Y} \perp \overrightarrow{X Z}$. To do this, we use the dot product as follows.

$$
\overrightarrow{X Y} \cdot \overrightarrow{X Z}=(Y-X) \cdot(Z-X)=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]=2 \cdot(-1)+(-1) \cdot 1+3 \cdot 1=0
$$

