Today, we covered Section 3.1 in the textbook.

Vector geometry in \mathbb{R}^{n}

- Most of our examples will be in \mathbb{R}^{2} or \mathbb{R}^{3}, where it's easier to visualize things.
- We will identify a point $X \in \mathbb{R}^{n}$ with the vector which starts at the origin O and ends at the point X. We say that such vectors with their tail at the origin are in standard position.
- Addition - Geometrically, you can visualize adding two vectors using the tip-to-tail method or the parallelogram rule. When adding the vectors X and Y using the tip-to-tail method, we move vector Y until its tail coincides with the tip of the vector X. The vector $X+Y$ now points from the tail of X to the tip of Y. The parallelogram rule keeps the two vectors in standard position and the vector $X+Y$ corresponds to the unique point Z such
 that $O X Z Y$ is a parallelogram.
- Scalar multiplication - Geometrically, you can visualize the result of multiplying a positive real number t by the vector X as the vector in the same direction as X, stretched by a factor of t. If we multiply the number -1 by the vector X, then the result is the vector in the opposite direction to X, with the same length. It follows that the result of multiplying a negative real number $-t$ by the vector X is the vector in the opposite direction to X, stretched by a factor of t.

Note that the vectors O, X and $t X$ all lie on the same line for any real number t.

- In the textbook, they often use notation like $\vec{v}, \vec{w}, \overrightarrow{A B}, \overrightarrow{B C}$, and so on. This is fine, but we won't use it so much since each vector can be moved so that its tail is at the origin.
- You should remember that \mathbb{R}^{n} is a vector space over \mathbb{R} —in other words, it's an object which satisfies the vector space axioms.

Dot product

We need a mathematical tool which can be used to do geometric things, like measure the length of a vector, measure the angle between two vectors, decide whether two vectors are perpendicular, and so on. It turns out that the dot product - sometimes called the scalar product - is a good choice.

Definition

Given two vectors $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ and $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{T}$, we define the dot product to be the real number

$$
X \cdot Y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Note that the two vectors must both have the same number of coordinates - they are both from \mathbb{R}^{n}.

Example

Consider the following two examples of dot products.

$$
\left[\begin{array}{c}
3 \\
-2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
1 \\
7 \\
-1
\end{array}\right]=3 \times 2+(-2) \times 1+0 \times 7+4 \times(-1)=0 \quad\left[\begin{array}{c}
3 \\
-2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
-2 \\
0 \\
4
\end{array}\right]=3^{2}+(-2)^{2}+0^{2}+4^{2}=29
$$

It's useful to keep in mind that the dot product is a special case of matrix multiplication, as you can see in the following example. On the left, the two column vectors are multiplied using the dot product while on the right, a row vector and a column vector are multiplied using standard matrix multiplication.

$$
\left[\begin{array}{c}
3 \\
-2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
1 \\
7 \\
-1
\end{array}\right]=[3,-2,0,4]\left[\begin{array}{c}
2 \\
1 \\
7 \\
-1
\end{array}\right]
$$

Fact
Here are some nice properties concerning the dot product. If X, Y and Z are vectors in \mathbb{R}^{n} and t is a real number, then the following equations hold.

- $X \cdot(Y+Z)=X \cdot Y+X \cdot Z$
- $X \cdot Y=Y \cdot X$
- $(t X) \cdot Z=t(X \cdot Z)$
- $X \cdot X=\|X\|^{2}$

Here, $\|X\|$ denotes the length of the vector - in other words, the length of the line segment from O to X.
The first two properties are direct consequences of the fact that dot product is a special case of matrix multiplication. The third fact should be completely obvious if you think carefully about the definition of dot product. Let's now try and give a proof of the fourth fact in the case of \mathbb{R}^{2} and \mathbb{R}^{3}.

- The \mathbb{R}^{2} case

Using one of the right-angled triangles in the diagram below, Pythagoras' Theorem tells us that

$$
\|P\|^{2}=a^{2}+b^{2}
$$

On the other hand, we can calculate the dot product of P with itself to obtain

$$
P \cdot P=\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]=a^{2}+b^{2} .
$$

- The \mathbb{R}^{3} case

Using the right-angled triangle $O Q P$ in the diagram below, Pythagoras' Theorem tells us that

$$
\|P\|^{2}=\|Q\|^{2}+\|\overrightarrow{Q P}\|^{2}=\left(a^{2}+b^{2}\right)+\|\overrightarrow{Q P}\|^{2}=a^{2}+b^{2}+c^{2}
$$

On the other hand, we can calculate the dot product of P with itself to obtain

$$
P \cdot P=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a^{2}+b^{2}+c^{2}
$$

Examples

- Determine $X_{1}+X_{2}+X_{3}$ if $X_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], X_{2}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$ and $X_{3}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$. Draw a picture of the vectors and add them using the tip-to-tail method or the parallelogram rule.

We can easily calculate that $X_{1}+X_{2}+X_{3}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$. The picture on the right shows what this means if you add the vectors using the parallelogram rule.

- Compute $B-A$ if $A=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 5\end{array}\right]$.

We can easily calculate that $B-A=\left[\begin{array}{l}3 \\ 8\end{array}\right]$. The most interesting thing to observe here is the fact that the vector which starts at A and ends at B is equal to the vector $B-A$.

$$
\overrightarrow{A B}=B-A
$$

- Compute the distance between $X=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $Y=\left[\begin{array}{c}4 \\ -2 \\ 1\end{array}\right]$.

If we write the distance between X and Y as $d(X, Y)$, then we have

$$
d(X, Y)=\|\overrightarrow{X Y}\|=\|Y-X\|
$$

Now we calculate $Y-X=[3,-4,-2]^{T}$ so $\|Y-X\|^{2}=(Y-X) \cdot(Y-X)=3^{2}+(-4)^{2}+(-2)^{2}=29$. Hence, we can conclude that $d(X, Y)=\sqrt{29}$.

- What is the distance $d(X, Y)$ between the vectors $X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$ and $Y=\left[y_{1}, y_{2}, y_{3}, y_{4}\right]^{T}$ in \mathbb{R}^{4} ? We're just going to do now with letters what we did in the previous exercise with numbers.

$$
\begin{aligned}
d(X, Y)^{2} & =\|X-Y\|^{2}=(X-Y) \cdot(X-Y)=\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
x_{3}-y_{3} \\
x_{4}-y_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
x_{3}-y_{3} \\
x_{4}-y_{4}
\end{array}\right] \\
& =\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}+\left(x_{4}-y_{4}\right)^{2}
\end{aligned}
$$

Now just take the square root of both sides and you end up with

$$
d(X, Y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}+\left(x_{4}-y_{4}\right)^{2}}
$$

