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Today, we covered Section 3.1 in the textbook.

Vector geometry in Rn

Most of our examples will be in R2 or R3, where it’s easier to visualize things.

We will identify a point X ∈ Rn with the vector which starts at the origin O and ends at the point X.
We say that such vectors with their tail at the origin are in standard position.

Addition — Geometrically, you can visualize
adding two vectors using the tip-to-tail method or
the parallelogram rule. When adding the vectors X
and Y using the tip-to-tail method, we move vec-
tor Y until its tail coincides with the tip of the vec-
tor X. The vector X + Y now points from the tail
of X to the tip of Y. The parallelogram rule keeps
the two vectors in standard position and the vec-
tor X + Y corresponds to the unique point Z such
that OXZY is a parallelogram.

O

X

Y

X + Y

Scalar multiplication — Geometrically, you can visualize the result of multiplying a positive real num-
ber t by the vector X as the vector in the same direction as X, stretched by a factor of t. If we multiply
the number −1 by the vector X, then the result is the vector in the opposite direction to X, with the
same length. It follows that the result of multiplying a negative real number −t by the vector X is the
vector in the opposite direction to X, stretched by a factor of t.

Note that the vectors O, X and tX all lie on the same line for any real number t.

In the textbook, they often use notation like ~v, ~w, ~AB, ~BC, and so on. This is fine, but we won’t use it
so much since each vector can be moved so that its tail is at the origin.

You should remember that Rn is a vector space over R — in other words, it’s an object which satisfies
the vector space axioms.

Dot product

We need a mathematical tool which can be used to do geometric things, like measure the length of a vector,
measure the angle between two vectors, decide whether two vectors are perpendicular, and so on. It turns
out that the dot product — sometimes called the scalar product — is a good choice.

Definition

Given two vectors X = [x1, x2, . . . , xn]T and Y = [y1, y2, . . . , yn]T , we define the dot product to be the real
number

X ·Y = x1y1 + x2y2 + · · ·+ xnyn =
n

∑
i=1

xiyi.

Note that the two vectors must both have the same number of coordinates — they are both from Rn.
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Example

Consider the following two examples of dot products.
3
−2
0
4

 ·


2
1
7
−1

 = 3× 2 + (−2)× 1 + 0× 7 + 4× (−1) = 0


3
−2
0
4

 ·


3
−2
0
4

 = 32 + (−2)2 + 02 + 42 = 29

It’s useful to keep in mind that the dot product is a special case of matrix multiplication, as you can see in
the following example. On the left, the two column vectors are multiplied using the dot product while on
the right, a row vector and a column vector are multiplied using standard matrix multiplication.

3
−2
0
4

 ·


2
1
7
−1

 = [3,−2, 0, 4]


2
1
7
−1


Fact

Here are some nice properties concerning the dot product. If X, Y and Z are vectors in Rn and t is a real
number, then the following equations hold.

X · (Y + Z) = X ·Y + X · Z

(tX) · Z = t(X · Z)

X ·Y = Y · X

X · X = ‖X‖2

Here, ‖X‖ denotes the length of the vector — in other words, the length of the line segment from O to X.

The first two properties are direct consequences of the fact that dot product is a special case of matrix
multiplication. The third fact should be completely obvious if you think carefully about the definition of
dot product. Let’s now try and give a proof of the fourth fact in the case of R2 and R3.

The R2 case
Using one of the right-angled triangles in the diagram below, Pythagoras’ Theorem tells us that

‖P‖2 = a2 + b2.

x

y

a

b
P

O
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On the other hand, we can calculate the dot product of P with itself to obtain

P · P = [ a
b ] · [ a

b ] = a2 + b2.

The R3 case
Using the right-angled triangle OQP in the diagram below, Pythagoras’ Theorem tells us that

‖P‖2 = ‖Q‖2 + ‖ ~QP‖2 = (a2 + b2) + ‖ ~QP‖2 = a2 + b2 + c2.

O
a

b

c

x

y

z

P

Q

On the other hand, we can calculate the dot product of P with itself to obtain

P · P =
[ a

b
c

]
·
[ a

b
c

]
= a2 + b2 + c2.

Examples

Determine X1 + X2 + X3 if X1 =
[

1
2
]
, X2 =

[ −2
−3
]

and X3 =
[ 4−3

]
. Draw a picture of the vectors

and add them using the tip-to-tail method or the
parallelogram rule.

We can easily calculate that X1 + X2 + X3 =
[ 3
−4
]
.

The picture on the right shows what this means if
you add the vectors using the parallelogram rule.

X1

X2
X3

X1 + X3

X1 + X2 + X3
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Compute B− A if A =
[ −3
−2
]

and B =
[

1
5
]
.

We can easily calculate that B − A =
[

3
8
]
. The

most interesting thing to observe here is the fact
that the vector which starts at A and ends at B is
equal to the vector B− A.

~AB = B− A

A

B

O

B − A

Compute the distance between X =

1
2
3

 and Y =

 4
−2
1

.

If we write the distance between X and Y as d(X, Y), then we have

d(X, Y) = ‖ ~XY‖ = ‖Y− X‖.

Now we calculate Y− X = [3,−4,−2]T so ‖Y− X‖2 = (Y− X) · (Y− X) = 32 + (−4)2 + (−2)2 = 29.
Hence, we can conclude that d(X, Y) =

√
29.

What is the distance d(X, Y) between the vectors X = [x1, x2, x3, x4]T and Y = [y1, y2, y3, y4]T in R4?

We’re just going to do now with letters what we did in the previous exercise with numbers.

d(X, Y)2 = ‖X−Y‖2 = (X−Y) · (X−Y) =


x1 − y1

x2 − y2

x3 − y3

x4 − y4

 ·


x1 − y1

x2 − y2

x3 − y3

x4 − y4


= (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2

Now just take the square root of both sides and you end up with

d(X, Y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2.
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