Today we covered Subsections 3.3.2 and 3.3.3 in the textbook.

Examples

- Show that the diagonals of a rhombus $O X Y Z$ are perpendicular to each other.

Remember that a rhombus is a shape with four equal side lengths. A rhombus is always has opposite sides which are parallel. We want to show that $X Z$ is perpendicular to $O Y$ and, of course, we're going to use the dot product to do it.

$$
\begin{aligned}
\overrightarrow{X Z} \cdot \overrightarrow{O Y} & =(Z-X) \cdot Y=(Z-X) \cdot(Z+X) \\
& =Z \cdot Z-X \cdot X=\|Z\|^{2}-\|X\|^{2}=0
\end{aligned}
$$

- Determine when two lines $\ell, \ell^{\prime} \subseteq \mathbb{R}^{2}$ given by the equations $\ell: y=Q x+b$ and $\ell^{\prime}: y=Q^{\prime} x+b^{\prime}$ are parallel and when they are perpendicular.
The corresponding parametric equations are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ b\end{array}\right]+t\left[\begin{array}{l}1 \\ Q\end{array}\right]$ and $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ b^{\prime}\end{array}\right]+t\left[\begin{array}{c}1 \\ Q^{\prime}\end{array}\right]$. This means that the direction vectors are $\left[\begin{array}{l}1 \\ Q\end{array}\right]$ and $\left[\begin{array}{c}1 \\ Q^{\prime}\end{array}\right]$.
So $\ell\left\|\ell^{\prime} \Leftrightarrow\left[\begin{array}{l}1 \\ Q\end{array}\right]\right\|\left[\begin{array}{c}1 \\ Q^{\prime}\end{array}\right] \Leftrightarrow\left[\begin{array}{l}1 \\ Q\end{array}\right]=s\left[\begin{array}{l}1 \\ Q^{\prime}\end{array}\right]$ for some real number s. But this can only happen if $s=1$, in which case $Q=Q^{\prime}$.
We also have $\ell \perp \ell^{\prime} \Leftrightarrow\left[\begin{array}{l}1 \\ Q\end{array}\right] \perp\left[\begin{array}{c}1 \\ Q^{\prime}\end{array}\right] \Leftrightarrow\left[\begin{array}{l}1 \\ Q\end{array}\right] \cdot\left[\begin{array}{c}1 \\ Q^{\prime}\end{array}\right]=0 \Leftrightarrow 1+Q Q^{\prime}=0 \Leftrightarrow Q Q^{\prime}=-1$.

Remark: In \mathbb{R}^{3} (and also in \mathbb{R}^{n} for $n>3$) a line cannot be given by 1 equation. This is why we use the parametric equation to describe a line. Note that one linear equation in \mathbb{R}^{3} produces a plane.

Planes

Example

Let $N=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$ and let $\pi=\left\{X \in \mathbb{R}^{3}: X \cdot N=0\right\}$. Prove that π is a linear subspace of \mathbb{R}^{3}.
To check that π is a subspace of \mathbb{R}^{3}, there are only three simply things to check.

- $O \cdot N=0 \Rightarrow O \in \pi$
- $X \in \pi$ and $Y \in \pi \Rightarrow X \cdot N=0$ and $Y \cdot N=0 \Rightarrow(X+Y) \cdot N=X \cdot N+Y \cdot N=0 \Rightarrow X+Y \in \pi$
. $X \in \pi$ and $t \in \mathbb{R} \Rightarrow(t X) \cdot N=t(X \cdot N)=t O=O \Rightarrow t X \in \pi$

Example

How do you find the equation of the plane π which is perpendicular to $N=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$ and passes through $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$? Note that π won't actually be a linear subspace of \mathbb{R}^{3} any more.

Geometrically, $X \in \pi$ if and only if $X-X_{0} \perp N$. So π is the set

$$
\begin{aligned}
& \left\{X \in \mathbb{R}^{3}:\left(X-X_{0}\right) \cdot N=0\right\} \\
= & \left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3}:\left[\begin{array}{l}
x-1 \\
y-0 \\
z-2
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]=0\right\} \\
= & \left\{[x, y, z]^{T} \in \mathbb{R}^{3}: 1(x-1)-2 y+3(z-2)=0\right\} .
\end{aligned}
$$

So in the end, we can write the equation for π as $x-2 y+3 z=7$.

Definition

A non-zero vector perpendicular to a plane is called a normal vector for the plane.

Theorem

If the plane π in \mathbb{R}^{3} is perpendicular to $N=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and contains the point $X_{0}=\left[\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right]$, then the equation which describes the points $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ lying on π is $\left(X-X_{0}\right) \cdot N=0$. This can be written as

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \quad \text { or } \quad a x+b y+c z=k
$$

for some real number k.

Example

Check whether or not the two planes

$$
\begin{aligned}
& \pi_{1}: z=2 x-3 y+1 \\
& \pi_{2}: z=2 x+y-4
\end{aligned}
$$

are parallel.
Write the equations as $2 x-3 y-z=-1$ and $2 x+y-z=4$. Then you can tell just by looking at the equations that the normal vectors are $\left[\begin{array}{c}2 \\ -3 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. The fact that these two vectors aren't parallel to each other tells us that the two planes cannot be parallel.

Corollary

The two planes described by the equations

$$
\begin{aligned}
& z=a x+b y+c \\
& z=a^{\prime} x+b^{\prime} y+c^{\prime}
\end{aligned}
$$

are parallel if and only if $a=a^{\prime}$ and $b=b^{\prime}$.

Note that the parametric equation of a plane $\pi: 2 x+3 y-2 z=1$ can be easily obtained by taking $x=s$, $y=t$ and solving for $z=\frac{1}{2}(2 x+3 y-1)=\frac{1}{2}(2 s+3 t-1)$. This gives us

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
s \\
t \\
s+\frac{3}{2} t-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{2}
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
\frac{3}{2}
\end{array}\right] .
$$

There are two parameters s and t here and this is great, because a plane is a two dimensional object.

Examples

- Find a normal vector of $\pi: 7 x-4 y+8 z=14$.

You can immediately see a normal vector by looking at the equation - the answer is $\left[\begin{array}{c}7 \\ -4 \\ 8\end{array}\right]$.

- Find the equation of the plane which passes through $X_{0}=\left[\begin{array}{c}4 \\ 0 \\ -1\end{array}\right]$ and is parallel to the plane given by the equation $3 x-2 y+z=0$.

The plane π which solves the question must have the equation $3 x-2 y+z=k$ for some real number k. Since we need $X_{0} \in \pi$, just plug in the coordinates of X_{0} into this equation to determine what k must be.

$$
3 \cdot 4-2 \cdot 0+1 \cdot(-1)=k
$$

But this just means that $k=11$, so the answer is $\pi: 3 x-2 y+z=11$.

- Is the line $\ell:\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1-t \\ 2 t \\ 3+2 t\end{array}\right]$ contained in the plane $\pi: 4 x+2 y=5$? Are they parallel to each other? It's easy to see that ℓ isn't contained in π since $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ lies on the line ℓ while it doesn't lie on the plane π. If ℓ is parallel to π, then a direction vector for ℓ will be perpendicular to a normal vector for π. (You should think carefully about why this is true - it should be obvious if you can visualize what is going on.) A direction vector for ℓ is $\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]$ while a normal vector for π is $\left[\begin{array}{l}4 \\ 2 \\ 0\end{array}\right]$. And these two are perpendicular to each other because

$$
\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]=(-1) \cdot 4+2 \cdot 2+2 \cdot 0=0
$$

It follows that the line ℓ and the plane π are parallel to each other.

