
Fields Institute Workshop on Algebraic Varieties

LATTICE POINTS IN MODULI SPACES
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There appear to be only two essentially distinct ways to understand intersection
numbers on moduli spaces of curves. The algebraic geometric techniques of local-
ization and degeneration lead to relations with Hurwitz numbers while the hyper-
bolic geometric approach leads to relations with symplectic volumes. In this talk,
we’ll consider polynomials defined by Norbury which bridge the gap between these
two pictures. These polynomials count lattice points in moduli spaces of curves and
well see that some of their coefficients store interesting information.
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Moduli spaces of curves

Moduli spaces of curves

Mg,n =


genus g smooth algebraic curves with distinct
points labelled from 1 up to n

ff

Deligne–Mumford compactification of moduli spaces of curves

Mg,n =


genus g stable algebraic curves with distinct
smooth points labelled from 1 up to n

ff
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We need 2g − 2 + n > 0, in which case dimCMg,n = 3g − 3 + n.
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Ribbon graphs

Definition

A ribbon graph of type (g, n) is a graph such that

every vertex has degree at least three;

there is a cyclic ordering of the half-edges at every vertex; and

the thickening of the graph is a genus g connected surface with
boundary components labelled from 1 up to n.

A metric ribbon graph is a ribbon graph with a positive real number assigned
to every edge. The metric endows each boundary with a length.

Example (A ribbon graph with genus 1 and 1 boundary)

1 1
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A cell decomposition for moduli spaces of curves

Example (Ribbon graphs with genus 0 and 3 boundaries)

1 2
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2 3
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3 1
2 1
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Theorem (Harer, Mumford, Penner, Thurston)

Let MRGg,n(b) be the space of metric ribbon graphs of type (g, n) with
boundary lengths given by b = (b1, b2, . . . , bn). Also, let RGg,n be the set of
ribbon graphs of type (g, n). Then for all b ∈ Rn

+, we have

Mg,n ∼= MRGg,n(b) ∼=
[

Γ∈RGg,n

PΓ(b).

The set PΓ(b) consists of metric ribbon graphs in MRGg,n(b) whose
underlying ribbon graph is Γ — this is a polytope of dimension E(Γ)− n.
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A stratification for moduli spaces of curves

Points representing stable curves of given topology and labeling form strata.

Example (The stratification forM0,5)

Points inM0,5 represent curves of the following types.

M0,5 M0,4 × M0,3 M0,3 × M0,3 × M0,3

1 labelling 10 labellings 15 labellings

This lets us expressM0,5 as a disjoint union of strata, each one a product of
uncompactified moduli spaces of curves.

M0,5 =M0,5 ∪

24 [
10 copies

M0,4 ×M0,3

35 ∪
24 [

15 copies

M0,3 ×M0,3 ×M0,3

35
One consequence is the following Euler characteristic calculation.

χ(M0,5) = χ(M0,5) + 10χ(M0,4) · χ(M0,3) + 15χ(M0,3) · χ(M0,3) · χ(M0,3)
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Intersection theory on moduli spaces of curves

Mg,n+1

Mg,n

π

π : Mg,n+1 →Mg,n forgets
the point labelled n+ 1

the fibre over a point in Mg,n is
the curve associated to that point

For k = 1, 2, . . . , n, define ψk = c1 [σ∗kL] ∈ H2(Mg,n; Q).
For |α| = 3g − 3 + n, Witten considers the psi-class intersection number

〈τα1τα2 · · · ταn 〉 =

Z
Mg,n

ψ
α1
1 ψ

α2
2 · · ·ψ

αn
n ∈ Q.

From these intersection numbers, you can conjecturally compute the
tautological ring ofMg,n — that is, all classes you can easily think of.
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Witten’s conjecture

Witten’s conjecture

If we define the generating function

F (t0, t1, t2, . . .) =
X

d

∞Y
k=0

tdk
k

dk !
〈τ d0

0 τ
d1
1 τ

d2
2 · · · 〉,

then ∂2F
∂t2

0
satisfies the KdV hierarchy. More explicitly, F satisfies the following

partial differential equation for every non-negative integer n.

(2n + 1)
∂3F
∂tn∂t2

0
=

„
∂2F

∂tn−1∂t0

«„
∂3F
∂t3

0

«
+ 2

„
∂3F

∂tn−1∂t2
0

«„
∂2F
∂t2

0

«
+

1
4

∂5F
∂tn−1∂t4

0

Using Witten’s conjecture, you can calculate every psi-class intersection
number from the base case 〈τ 3

0 〉 = 1 and the string equation.

〈τ0τα1τα2 · · · ταn 〉 =
nX

k=1

〈τα1 · · · ταk−1 · · · ταn 〉
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Kontsevich’s proof

Kontsevich used the combinatorial description of the moduli space and a
volume calculation to prove the following result.

Theorem (Kontsevich’s combinatorial formula)

If TRGg,n denotes the set of trivalent ribbon graphs of type (g, n), then

X
|α|=3g−3+n

〈τα1τα2 · · · ταn 〉
nY

k=1

(2αk − 1)!!

s2αk +1
k

=
X

Γ∈TRGg,n

22g−2+n

|Aut Γ|
Y

e∈E(Γ)

1
s`(e) + sr(e)

.

The ribbon graph enumeration on the RHS arises as a Hermitian matrix
integral — this gives the desired connection to the KdV hierarchy.
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Okounkov and Pandharipande’s proof

For µ = (µ1, µ2, . . . , µn), let Hg,µ be the number of genus g branched
covers of P1 with branching profile µ over∞ and simple branching over
r = 2g − 2 + |µ|+ n given points — this is a Hurwitz number.

Using the Gromov–Witten theory of P1 and virtual localization, Okounkov
and Pandharipande prove the ELSV formula.

Hg,µ =
r !

|Aut µ|

nY
k=1

µ
µk
k

µk !

Z
Mg,n

1− λ1 + λ2 − · · · ± λg

(1− µ1ψ1)(1− µ2ψ2) · · · (1− µnψn)

Hurwitz numbers can also be formulated as the enumeration of certain
maps on surfaces or certain factorizations in the symmetric group.

The asymptotics of the map enumeration for Hg,µ combined with the
ELSV formula give Kontsevich’s combinatorial formula.
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Mirzakhani’s proof

Define Vg,n(L) to be the Weil–Petersson volume of the moduli space of
genus g hyperbolic surfaces with n geodesic boundaries of lengths
L = (L1, L2, . . . , Ln).

Mirzakhani used symplectic reduction to prove that Vg,n(L) equals

X
|α|+m=3g−3+n

(2π2)m R
Mg,n

ψ
α1
1 ψ

α2
2 · · ·ψ

αn
n κm

1

2|α|α1!α2! · · ·αn!m!
L2α1

1 L2α2
2 · · · L2αn

n .

She then used hyperbolic geometry to prove the following recursion,
where S = {2, 3, . . . , n}.

2
∂

∂L1
L1Vg,n(L1, LS) =

Z ∞
0

Z ∞
0

xy H(x + y , L1) Vg−1,n+1(x , y , LS) dx dy

+
X

g1+g2=g
ItJ=S

Z ∞
0

Z ∞
0

xy H(x + y , L1) Vg1,|I|+1(x , LI) Vg2,|J|+1(y , LJ ) dx dy

+
nX

k=2

Z ∞
0

x [H(x , L1 + Lk ) + H(x , L1 − Lk )] Vg,n−1(x , LS\{k}) dx
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More proofs of Witten’s conjecture

There are now several proofs of Witten’s conjecture — but they generally fall
into one of two categories.

VOLUMES OF MODULI SPACES HURWITZ NUMBERS

Kontsevich

Mirzakhani

Okounkov and Pandharipande

Kim and Liu

Kazarian and Lando

Idea

Count lattice points in moduli spaces of curves

This gives a discrete version of Kontsevich and Mirzakhani’s volume
calculations.

This gives a combinatorial problem which has a similar flavor to the
enumeration of Hurwitz numbers.
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Lattice points in moduli spaces of curves

Recall the cell decomposition

Mg,n ∼= MRGg,n(b) ∼=
[

Γ∈RGg,n

PΓ(b).

If b ∈ Nn, then PΓ(b) ⊆ RE(Γ) is an integral polytope and we can count
lattice points inside it.

Definition

Ng,n(b) =
X

Γ∈RGg,n

# lattice points in PΓ(b)

|Aut Γ|

In other words, Ng,n(b) counts metric ribbon graphs of type (g, n) with
integer edge lengths and boundary lengths given by b = (b1, b2, . . . , bn).

Equivalently, Ng,n(b) counts ribbon graphs of type (g, n) which are now
allowed to have vertices of degree at least two.
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A recursive formula for counting lattice points

Theorem

We have the following recursion for Ng,n, where S = {1, 2, . . . , n}.

(b1 + b2 + · · ·+ bn) Ng,n (bS) =
X
{i,j}⊆S

p+q=bi +bj

pq Ng,n−1(p, bS\{i,j})

+
X
i∈S

p+q+r=bi

pqr

2664Ng−1,n+1(p, q, bS\{i}) +
X

g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p, bI)Ng2,|J|+1(q, bJ )

3775

This is a symmetrized discrete version of Mirzakhani’s recursion.
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Lattice point polynomials

We could use Ehrhart’s theorem to deduce that Ng,n is piecewise
quasi-polynomial. . . but the recursive formula lets us say more.

Theorem

The lattice point count Ng,n(b1, b2, . . . , bn) is a degree 6g − 6 + 2n even
quasi-polynomial which depends on the parity of b1, b2, . . . , bn.

There exist even polynomials N(k)
g,n for k = 0, 1, 2, . . . , n such that

Ng,n(b1, b2, . . . , bn) = N(k)
g,n(b1, b2, . . . , bn)

whenever b1, b2, . . . , bk are odd and bk+1, bk+2, . . . , bn are even.

By the handshaking lemma, we know that N(k)
g,n(b1, b2, . . . , bn) = 0

whenever b1 + b2 + · · ·+ bn is odd.
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Examples of lattice point polynomials

g n k N(k)
g,n(b1, b2, . . . , bn)

0 3 0 or 2 1

1 1 0 1
48 (b2

1 − 4)

0 4 0 or 4 1
4 (b2

1 + b2
2 + b2

3 + b2
4 − 4)

0 4 2 1
4 (b2

1 + b2
2 + b2

3 + b2
4 − 2)
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1 − 4)(b2
1 − 16)(b2

1 − 36)(5b2
1 − 32)
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225.36.52.7 (5b4
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Q5
k=1(b2

1 − 4k2)
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Coefficients of lattice point polynomials

Theorem

If |α| = 3g − 3 + n, then the coefficient of the top degree monomial
b2α1

1 b2α2
2 · · · b2αn

n in N(k)
g,n(b1, b2, . . . , bn) for all even k is

〈τα1τα2 · · · ταn 〉
25g−6+2nα1!α2! · · ·αn!

.

The quasi-polynomial Ng,n satisfies Ng,n(0, 0, . . . , 0) = χ(Mg,n).

Proof.

The lattice point count Ng,n approximates the volume of the moduli
space up to a constant factor. Kontsevich and Mirzakhani tell us that this
volume stores psi-class intersection numbers onMg,n.
Consider the following meromorphic function and calculate its value at
infinity in two distinct ways.

Rg,n(z) =
∞X

b1,b2,...,bn=1

Ng,n(b1, b2, . . . , bn) zb1+b2+···+bn
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Eynard–Orantin invariants

Eynard–Orantin invariants are where matrix integrals meet enumerative
geometry.

INPUT: A Riemann surface C with two meromorphic functions x and y ,
where the ramification points of x have multiplicty two.

OUTPUT: A meromorphic multilinear form ωg,n(z1, z2, . . . , zn) on C for
each pair of non-negative integers (g, n).

RULE: Start with ω0,1 = 0 and ω0,2 = Bergman kernel on C and then use
the following recursion.

ωg,n(z1, zS) =
X

m

Res
z→am

Km(z1, z)

2664ωg−1,n+1(z, z, zS) +
X

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI )ωg2,|J|+1(z, zJ )

3775
ωg,0 =

X
m

Res
z→am

„Z
y dx

«
ωg,1(z)

2g − 2

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES



Eynard–Orantin invariants

Eynard–Orantin invariants are where matrix integrals meet enumerative
geometry.

INPUT: A Riemann surface C with two meromorphic functions x and y ,
where the ramification points of x have multiplicty two.

OUTPUT: A meromorphic multilinear form ωg,n(z1, z2, . . . , zn) on C for
each pair of non-negative integers (g, n).

RULE: Start with ω0,1 = 0 and ω0,2 = Bergman kernel on C and then use
the following recursion.

ωg,n(z1, zS) =
X

m

Res
z→am

Km(z1, z)

2664ωg−1,n+1(z, z, zS) +
X

g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI )ωg2,|J|+1(z, zJ )

3775
ωg,0 =

X
m

Res
z→am

„Z
y dx

«
ωg,1(z)

2g − 2

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES



Lattice point polynomials and Eynard–Orantin invariants

Theorem

The Eynard–Orantin invariants of the spectral curve xy − y2 = 1 are given by

ωg,n(z1, z2, . . . , zn) =
∞X

b1,b2,...,bn=1

Ng,n(b1, b2, . . . , bn)
nY

k=1

bk zbk−1
k dzk .

This shouldn’t be surprising, since the recursions for the lattice point
polynomials and the Eynard–Orantin invariants look similar.

Corollary

The Eynard–Orantin invariants of the spectral curve xy − y2 = 1 satisfy
ωg,0 = χ(Mg,0).
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Lattice points in compactified moduli spaces of curves

Idea

Try to count the number of lattice points Ng,n in the Deligne–Mumford
compactification of the moduli space of curvesMg,n.

Example (Calculation of N0,5)

M0,5 M0,4 × M0,3 M0,3 × M0,3 × M0,3

1 labelling 10 labellings 15 labellings

N0,5(b1, b2, b3, b4, b5) = N0,5(b1, b2, b3, b4, b5)

+
X

10 terms

N0,4(bi , bj , bk , 0) · N0,3(b`, bm, 0)

+
X

15 terms

N0,3(bi , bj , 0) · N0,3(bk , 0, 0) · N0,3(b`, bm, 0)
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Compactified lattice point polynomials

Theorem

The lattice point count Ng,n(b1, b2, . . . , bn) is a degree 6g − 6 + 2n even
quasi-polynomial which depends on the parity of b1, b2, . . . , bn.

If |α| = 3g − 3 + n, then the coefficient of the top degree monomial
b2α1

1 b2α2
2 · · · b2αn

n in N
(k)
g,n(b1, b2, . . . , bn) for all even k is

〈τα1τα2 · · · ταn 〉
25g−6+2nα1!α2! · · ·αn!

.

The quasi-polynomial Ng,n satisfies Ng,n(0, 0, . . . , 0) = χ(Mg,n).

Proof.

Use the algebra of quasi-polynomials.

The only contribution to the top degree of Ng,n comes from Ng,n.

This follows from the stratification ofMg,n, the definition of Ng,n and the
fact that Ng,n(0, 0, . . . , 0) = χ(Mg,n).
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Examples of compactified lattice point polynomials

g n k N
k
g,n(b1, b2, . . . , bn)

0 3 0 or 2 1

1 1 0 1
48 (b2

1 + 20)

0 4 0 or 4 1
4 (b2

1 + b2
2 + b2

3 + b2
4 + 8)

0 4 2 1
4 (b2

1 + b2
2 + b2

3 + b2
4 + 2)

1 2 0 1
384 (b4

1 + b4
2 + 2b2

1b2
2 + 48b2

1 + 48b2
2 + 192)

1 2 2 1
384 (b4

1 + b4
2 + 2b2

1b2
2 + 48b2

1 + 48b2
2 + 84)

Claim

The compactified lattice point polynomials Ng,n seem to be the right things to
look at (as opposed to Ng,n).
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Questions

Are the coefficients of Ng,n always positive?

We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of Ng,n?

The quasi-polynomials Ng,n seem to have a Hirzebruch–Riemann–Roch
flavor — so perhaps the coefficients store dimensions of spaces of
sections.

Do the compactified lattice point polynomials Ng,n appear as the
Eynard–Orantin invariants for some spectral curve?

We conjecture (and hope) that the answer is “yes”.

The quasi-polynomials Ng,n count certain factorizations in the symmetric
group. What are the consequences of this viewpoint?

This should provide a link to characters of the symmetric group,
τ -functions of integrable hierarchies and more.

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES



Questions

Are the coefficients of Ng,n always positive?

We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of Ng,n?

The quasi-polynomials Ng,n seem to have a Hirzebruch–Riemann–Roch
flavor — so perhaps the coefficients store dimensions of spaces of
sections.

Do the compactified lattice point polynomials Ng,n appear as the
Eynard–Orantin invariants for some spectral curve?

We conjecture (and hope) that the answer is “yes”.

The quasi-polynomials Ng,n count certain factorizations in the symmetric
group. What are the consequences of this viewpoint?

This should provide a link to characters of the symmetric group,
τ -functions of integrable hierarchies and more.

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES



Questions

Are the coefficients of Ng,n always positive?

We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of Ng,n?

The quasi-polynomials Ng,n seem to have a Hirzebruch–Riemann–Roch
flavor — so perhaps the coefficients store dimensions of spaces of
sections.

Do the compactified lattice point polynomials Ng,n appear as the
Eynard–Orantin invariants for some spectral curve?

We conjecture (and hope) that the answer is “yes”.

The quasi-polynomials Ng,n count certain factorizations in the symmetric
group. What are the consequences of this viewpoint?

This should provide a link to characters of the symmetric group,
τ -functions of integrable hierarchies and more.

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES



Questions

Are the coefficients of Ng,n always positive?

We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of Ng,n?

The quasi-polynomials Ng,n seem to have a Hirzebruch–Riemann–Roch
flavor — so perhaps the coefficients store dimensions of spaces of
sections.

Do the compactified lattice point polynomials Ng,n appear as the
Eynard–Orantin invariants for some spectral curve?

We conjecture (and hope) that the answer is “yes”.

The quasi-polynomials Ng,n count certain factorizations in the symmetric
group. What are the consequences of this viewpoint?

This should provide a link to characters of the symmetric group,
τ -functions of integrable hierarchies and more.

Norman Do — McGill University LATTICE POINTS IN MODULI SPACES OF CURVES


