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If you take two squares and glue them together, then you will obtain a domino.
If you take two atoms and join them by a bond, then you will obtain a dimer.
And if you take first year linear algebra and attend a tutorial, then you will have
to compute a determinant. In this seminar, we’ll discuss some of the amazing
mathematics connecting these three objects.



Dominoes on a checkerboard

Questions

Can you tile an 8× 8 checkerboard with dominoes?

Can you tile the checkerboard if one corner square is removed?

Can you tile the checkerboard if opposite corner squares are removed?

Can you always tile the checkerboard if one white square and one black square
are removed?
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Dominoes and marriage

Question
When can you tile a subset of a checkerboard with dominoes?

×

×
×

×

×
×

Think of black squares as men and
white squares as women.

We want to marry off each man to
one of his neighbours.

We need gender balance. . . but we
also need every group of men to
have enough neighbours to marry.

It turns out that these conditions
are all you need.

Hall’s marriage theorem
In any set of men and women, it is possible to marry off each man to a woman that
he knows if and only if every group of men has enough acquaintances to marry.
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The problem of the calissons

Question
A calisson is a parallelogram made by gluing together two equilateral triangles with
side length 1. We want to tile a regular hexagon with side length n with calissons.
Must there be an equal number of calissons in each orientation?

Answer
The answer is “yes” and the proof requires no words!
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A primer on dimers
Tiling a checkerboard with dominoes or a hexagon with calissons are examples of
dimer problems. A dimer covering of a graph is a collection of edges that covers
every vertex once.
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Counting domino tilings

Question
How many ways are there to tile a checkerboard with dominoes?

n # tilings of an n × n checkerboard prime factorisation

0 1 1
2 2 21

4 36 22.32

6 6728 23.292

8 12988816 24.172.532

10 258584046368 25.2412.3732

12 53060477521960000 26.54.312.532.7012

14 112202208776036178000000 27.310.56.192.294.612

16 2444888770250892795802079170816 28.1012.58492.99292.166612

Surprisingly — or maybe unsurprisingly if you read the title of this seminar — you
need to know what a determinant is to calculate the answer.
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Discovering determinants

The determinant of an n × n matrix
M is the signed volume of the
n-dimensional parallelepiped spanned
by the row vectors of M .

0
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r2 + r3

r1 + r2 + r3

The determinant of M can be calculated using the following formula.

detM =
∑
σ∈Sn

sign(σ)M1,σ(1)M2,σ(2) · · ·Mn,σ(n)

The determinant of M is equal to the product of its eigenvalues — in other
words, the numbers c for which there is a non-zero vector satisfying Mx = cx .

Example

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

⇒ detM =
+M11M22M33 − M11M23M32 − M12M21M33

+M12M23M31 + M13M21M32 − M13M22M31
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Kasteleyn’s method
Let S be a subset of a checkerboard.
Construct the matrix K whose rows are labelled by the black squares and whose
columns are labelled by the white squares. Let the entry corresponding to a black
square and a white square be

1 if the squares are horizontally adjacent;
i if the squares are vertically adjacent; and
0 if the squares are not adjacent.

Kasteleyn’s Theorem
The number of domino tilings of S is |detK |.

Example
Let S be a 3× 4 rectangle whose squares are labelled as in the diagram below.

1 1 2 2

3 3 4 4

5 5 6 6 K =



1 0 i 0 0 0
1 1 0 i 0 0
i 0 1 1 i 0
0 i 0 1 0 i
0 0 i 0 1 0
0 0 0 i 1 1


|detK | = 11
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Why does Kasteleyn’s method work?

Example

In the determinant calculation, the permutation σ is trying to “marry” black
square 1 to white square σ(1), black square 2 to white square σ(2), and so on.

detK =
∑
σ∈S6

sign(σ) K1,σ(1)K2,σ(2) · · ·K6,σ(6)

If this is possible, then we get a non-zero contribution and if this is impossible,
then we get a zero contribution.

detK =
∑

tilings

sign(σ) K1,σ(1)K2,σ(2) · · ·K6,σ(6)

We need to check that sign(σ) i# vertical dominoes is the same for every tiling
and this is handled by some careful accounting.

detK =
∑

tilings

sign(σ) i# vertical dominoes

Kasteleyn’s method can count dimer coverings on any planar graph. You just need
to be clever about the choice of “weight” attached to each edge.
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Kasteleyn’s method at work

Theorem (Fisher–Temperley and Kasteleyn, 1961)
The number of domino tilings of an m × n checkerboard is

√
|4|, where

4 =

m∏
j=1

n∏
k=1

(
2 cos

jπ
m + 1

+ 2i cos
kπ

n + 1

)
.

Proof
Check that the eigenvalues of M =

[
0 K

KT 0

]
are given by the equation

2 cos
jπ

m + 1
+ 2i cos

kπ
n + 1

, for 1 ≤ j ≤ m and 1 ≤ k ≤ n .

Example
Consider the calculation for the regular 8× 8 checkerboard.(

2 cos π
9 + 2i cos π

9

) (
2 cos π

9 + 2i cos 2π
9

)
· · ·

(
2 cos π

9 + 2i cos 8π
9

)(
2 cos 2π

9 + 2i cos π
9

) (
2 cos 2π

9 + 2i cos 2π
9

)
· · ·

(
2 cos 2π

9 + 2i cos 8π
9

)
.
.
.

.

.

.
.
.
.(

2 cos 8π
9 + 2i cos π

9

) (
2 cos 8π

9 + 2i cos 2π
9

)
· · ·

(
2 cos 8π

9 + 2i cos 8π
9

)
= 129888162
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Partitions
A partition of n is a way to

write it as a sum of positive integers where order doesn’t matter; or

a way to push n square boxes into the corner of a 2-D room.

19 = 6 + 5 + 3 + 2 + 1 + 1 + 1 ←→

Theorem
The number of partitions of n is the coefficient of xn in

∞∏
k=1

1
1−x k .

Proof
Write each term in the product as a geometric series and expand out the brackets.

(1 + x1 + x2 + x3 + x4 + · · · ) ×
(1 + x2 + x4 + x6 + x8 + · · · ) ×
(1 + x3 + x6 + x9 + x12 + · · · ) ×
(1 + x4 + x8 + x12 + x16 + · · · ) × · · ·
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Plane partitions

A plane partition of n is a way to push n cubic boxes into the corner of a 3-D room.

1
2
3
5

2
2
4 2 1 1

←→

Theorem (MacMahon, 1916)

The number of plane partitions of n is the coefficient of xn in
∞∏

k=1

1
(1−x k )k

.

The number of plane partitions which fit inside an a × b × c box is

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

.

You can prove this using determinants via the “Gessel–Viennot trick”.
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Aztec diamonds

The Aztec diamond AZ (n) is the nth term in the following sequence of shapes.

Question
How many ways are there to tile an Aztec diamond with dominoes?

Answer (Elkies–Kuperberg–Larsen–Propp, 1992)
The number of ways to tile the Aztec diamond AZ (n) is 2n(n+1)/2.
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From Aztec diamonds to arctic circles
Colour the domino tiling of the Aztec diamond AZ (n) according to

whether the dominoes are horizontal or vertical; and

whether the left/upper square of the domino lands on a black or white square.

Arctic circle theorem (Jockusch–Propp–Shor, 1998)
In a tiling of the Aztec diamond, the ordered region is called frozen while the
disordered region is called liquid. The frozen–liquid boundary of almost all domino
tilings of the Aztec diamond AZ (n) approaches a circle, as n approaches infinity.
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Limit shapes

Theorem (Cohn–Kenyon–Propp, 2001)
Take a polygon which can be tiled with dominoes or calissons and consider tilings
where the size of the tiles approaches zero. In the limit, a frozen–liquid boundary
occurs and this limit shape is an algebraic curve — in other words, it can be
described by a polynomial equation in two variables.

One of the main ideas is to consider
a tiling as a “random surface”.

In 2007, Kenyon and Okounkov
described the limit shape for these
random surfaces using ideas from
mathematical physics.
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Thanks

If you would like more information, you can

find the slides at http://www.ms.unimelb.edu.au/~nndo

email me at normdo@gmail.com

speak to me at the front of the lecture theatre

http://www.ms.unimelb.edu.au/~nndo
normdo@gmail.com

