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Topological recursion on the Bessel curve

Norman Do and Paul Norbury

The Witten–Kontsevich theorem states that a certain generating function for intersection numbers on

the moduli space of stable curves is a tau-function for the KdV integrable hierarchy. This generating

function can be recovered via the topological recursion applied to the Airy curve x = 1
2 y2. In this paper,

we consider the topological recursion applied to the irregular spectral curve xy2 = 1
2 , which we call the

Bessel curve. We prove that the associated partition function is also a KdV tau-function, which satisfies

Virasoro constraints, a cut-and-join type recursion, and a quantum curve equation. Together, the Airy

and Bessel curves govern the local behaviour of all spectral curves with simple branch points.
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1 Introduction

The topological recursion of Chekhov, Eynard and Orantin takes as input the data of a spectral curve, es-

sentially a Riemann surface C equipped with two meromorphic functions and a bidifferential satisfying

some mild assumptions [13, 26]. From this information, it produces so-called correlation differentials

ωg,n on C for integers g ≥ 0 and n ≥ 1. Although topological recursion was originally inspired by the

loop equations in the theory of matrix models, it has over the last decade found widespread applications

to various problems across mathematics and physics. For example, it is known to govern the enumera-

tion of maps on surfaces [3, 18, 19, 21, 22, 31, 35], various flavours of Hurwitz problems [9, 11, 16, 17, 24],

the Gromov–Witten theory of P1 [23, 36] and toric Calabi–Yau threefolds [10, 25, 28]. There are also con-

jectural relations to quantum invariants of knots [6, 15]. Much of the power of the topological recursion

lies in its universality — in other words, its wide applicability across broad classes of problems — and

its ability to reveal commonality among such problems.

One common feature of the problems governed by topological recursion is that their associated correla-

tion differentials often possess the same local behaviour. In particular, the fact that their spectral curves

generically resemble x = 1
2 y2 locally lifts to a statement concerning the correlation differentials. The

invariants ωg,n of the Airy curve x = 1
2 y2 are total derivatives of the following generating functions for

intersection numbers of Chern classes of the tautological line bundles Li on the moduli space of stable

curves Mg,n [27].

Kg,n(z1, . . . , zn) =
1

22g−2+n ∑
|d|=3g−3+n

∫

Mg,n

c1(L1)
d1 · · · c1(Ln)

dn

n

∏
i=1

(2di − 1)!!

z
2di+1
i
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The usual assumption on spectral curves is that the zeroes of dx are simple and away from the zeroes of

dy. (Higher order zeros of dx can often be handled via the global topological recursion of Bouchard and

Eynard [8].) However, an implicit assumption that appears in the literature is that y has no pole at a zero

of dx, in which case we say that the spectral curve is regular. In previous work [20], the authors consider

irregular spectral curves, in which poles of y may coincide with a zero of dx. If the pole has order greater

than one, then that particular branch point makes no contribution to the correlation differentials and can

be removed from the spectral curve. On the other hand, when the pole is simple, non-trivial correlation

differentials arise. We note that irregular spectral curves do arise “in nature”, for example in matrix

models with hard edge behaviour [2] and the enumeration of dessins d’enfant [20, 31].

The previous discussion leads us naturally to consider the Bessel curve, defined by the meromorphic

functions1

x(z) =
1

2
z2 and y(z) =

1

z
.

For 2g− 2+ n > 0, the correlation differentials produced by the topological recursion have an expansion

ωg,n(z1, . . . , zn) =
∞

∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
n

∏
i=1

µi dzi

z
µi+1
i

.

From these expansion coefficients, we define the Bessel partition function

Z(p1, p2, . . . ; h̄) = exp

[
∞

∑
g=1

∞

∑
n=1

∞

∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
h̄2g−2+n

n!
pµ1 · · · pµn

]

and its associated wave function via the so-called principal specialisation

ψ(z, h̄) = Z(p1, p2, . . . ; h̄)|pi=z−i .

The main theme and motivation behind this paper is that statements concerning the Airy curve and

its relation to the Kontsevich–Witten KdV tau-function have analogues in the case of the Bessel curve.

In particular, topological recursion applied to the Bessel curve is fundamentally related to the Brézin–

Gross–Witten (BGW) tau-function for the KdV hierarchy. This is to be expected, since an irregular curve

represents so-called hard edge behaviour in matrix models — see for example the Laguerre model in [12],

which is related to the BGW tau-function again via matrix model techniques in [34]. The modest contri-

bution of this paper is a direct proof of the relationship between the BGW tau-function and topological

recursion applied to the Bessel curve. We make this connection via deriving Virasoro constraints for the

partition function arising from the topological recursion and comparing these to Virasoro constraints

for the BGW tau-function [1, 2, 34]. Alexandrov has recently proven Virasoro constraints, a cut-and-

join equation and a quantum curve for for the BGW tau-function using matrix model methods and a

beautiful description of the point in the Sato Grassmannian determined by the tau-function [1]. Once

the link between topological recursion and the BGW tau-function is established in Theorem 4, further

properties of the partition function arising from topological recursion — Virasoro constraints, a cut-and-

join equation and a quantum curve — are equivalent to those of Alexandrov. The topological recursion

viewpoint helps to explain these properties—the Virasoro constraints are fundamental to topological

recursion particularly via Kazarian’s treatment [31]; the cut-and-join equation is essentially another way

to express topological recursion—see Theorem 5; and the quantum curve is expected to be related via

a WKB expansion to topological recursion. Topological recursion helps to explain the properties above,

but it does not explain the relationship with KdV.

Acknowledgements. The authors would like to thank Alexander Alexandrov for numerous discussions.

2 Topological recursion on the Bessel curve

2.1 Topological recursion

We briefly recall the construction of the correlation differentials for a rational spectral curve via topo-

logical recursion. A statement of the topological recursion in greater generality — for example, in the

1The name Bessel curve is derived from its quantum curve, which is given by a modified Bessel equation — see Section 4.
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case of higher genus spectral curves, locally-defined spectral curves, or spectral curves with non-simple

branch points — can be found elsewhere in the literature [8, 23, 26].

Input. A rational spectral curves consists of the data of two meromorphic functions x and y on

CP1. We assume that each zero of dx is simple and does not coincide with a zero of dy. The

topological recursion defines symmetric meromorphic multidifferentials ωg,n on (CP1)n for g ≥ 0

and n ≥ 1.2 We refer to these as correlation differentials.

Base cases. The base cases for the topological recursion are given by

ω0,1(z1) = −y(z1) dx(z1) and ω0,2(z1, z2) =
dz1 ⊗ dz2

(z1 − z2)2
.

Recursion. The correlation differentials ωg,n for 2g − 2 + n > 0 are defined recursively via the

following equation.

ωg,n(z1, zS) = ∑
dx(α)=0

Res
z=α

K(z1, z)

[
ωg−1,n+1(z, z, zS) +

◦

∑
g1+g2=g

I⊔J=S

ωg1,|I|+1(z, zI) ωg2,|J|+1(z, zJ)

]

Here, we use the notation S = {2, 3, . . . , n} and zI = {zi1 , zi2, . . . , zik
} for I = {i1, i2, . . . , ik}. The

outer summation is over the zeroes of dx, which we refer to as branch points. The function z 7→ z

denotes the meromorphic involution defined locally at the branch point α satisfying x(z) = x(z)

and z 6= z. The symbol ◦ over the inner summation means that we exclude any term that involves

ω0,1. Finally, the recursion kernel is given by

K(z1, z) = −

∫ z
∞

ω0,2(z1, · )

[y(z)− y(z)]dx(z)
.

In previous work, the authors considered the local behaviour of spectral curves and their correlation

differentials, and classified branch points into the following three types [20].

Regular. We say that a branch point is regular if y(z) is analytic there. In this case, there is a

pole of ωg,n of order 6g − 4 + 2n at the branch point, for 2g − 2 + n > 0. Note that some of the

previous literature on the topological recursion implicitly assumes that the spectral curves under

consideration only have regular branch points.

Irregular. We say that a branch point is irregular if y(z) has a simple pole there. In this case, there

is a pole of ωg,n of order 2g at the branch point, for 2g − 2 + n > 0.

Removable. We say that a branch point is removable if y(z) has a higher order pole there. In

this case, the recursion kernel has a zero at the branch point and there is no contribution to the

correlation differentials coming from the residue at the branch point.

At a regular branch point, a spectral curve locally resembles the Airy curve, which is given by

x(z) =
1

2
z2 and y(z) = z.

This property lifts to the fact that the correlation differentials for an arbitrary spectral curve expanded

at a regular branch point behave asymptotically like the correlation differentials for the Airy curve [27].

Similarly, the correlation differentials for an irregular spectral curve expanded at an irregular branch

point behave asymptotically like the correlation differentials for the Bessel curve, which we examine in

detail below [20].

2By a multidifferential on Cn , we mean a meromorphic section of the line bundle π∗
1 (T∗C) ⊗ π∗

2 (T∗C) ⊗ · · · ⊗ π∗
n(T∗C) on the

Cartesian product Cn, where πi : Cn → C denotes projection onto the ith factor. We often drop the symbol ⊗ when writing

multidifferentials.
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2.2 The Bessel curve

Define the Bessel curve to be the rational spectral curve endowed with the meromorphic functions

x(z) =
1

2
z2 and y(z) =

1

z
.

The base cases of the topological recursion are given by

ω0,1(z1) = −y(z1) dx(z1) = −dz1 and ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
.

The spectral curve has only one branch point, which occurs at z = 0, and the local involution there is

simply z = −z. Thus, the recursion kernel can be expressed as

K(z1, z) = −

∫ z
∞

ω0,2(z1, · )

[y(z)− y(z)]dx(z)
=

1

2

1

z − z1

dz1

dz
.

For 2g− 2+ n > 0 and positive integers µ1, . . . , µn, define the number Ug,n(µ1, . . . , µn) via the expansion

ωg,n(z1, . . . , zn) =
∞

∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
n

∏
i=1

µi dzi

z
µi+1
i

.

Note that such an expansion must exist, since ωg,n is meromorphic with a pole only at the branch point

zi = 0. By convention, we define U0,1(µ1) = 0 and U0,2(µ1, µ2) = 0.

Proposition 1. For 2g − 2 + n > 0 and S = {2, 3, . . . , n},

µ1 Ug,n(µ1,µS) =
n

∑
k=2

(µ1 + µk − 1)Ug,n−1(µ1 + µk − 1,µS\{k}) (1)

+
1

2 ∑
α+β=µ1−1

α,β odd

αβ

[
Ug−1,n+1(α, β,µS) + ∑

g1+g2=g

I⊔J=S

Ug1,|I|+1(α,µI)Ug2,|J|+1(β,µJ)

]
.

Moreover, all numbers Ug,n(µ1, . . . , µn) can be calculated from the base cases U0,1(µ1) = 0, U0,2(µ1, µ2) = 0

and U1,1(1) =
1
8 .

Proof. Suppose that the numbers Ũg,n(µ1, . . . , µn) are defined from the recursion above and the given

base cases. It is straightforward to show that these numbers are uniquely defined and that Ũg,n(µ1, . . . , µn) =

0 unless µ1, . . . , µn are positive odd integers that sum to 2g − 2 + n. In particular, U0,n(µ1, . . . , µn) = 0

and the generating function

Fg,n(z1, . . . , zn) = (−1)n
∞

∑
µ1,...,µn=1

Ũg,n(µ1, . . . , µn)
n

∏
i=1

z
−µi
i

is a homogeneous polynomial in 1
z1

, 1
z2

, . . . , 1
zn

that is odd in each variable. The proposition will follow

directly from the fact that ω̃g,n = ωg,n for 2g − 2 + n > 0, where the ω̃g,n are total derivatives of these

generating functions.

ω̃g,n(z1, . . . , zn) = dz1 · · ·dzn Fg,n(z1, . . . , zn)

It is straightforward to verify that ω̃1,1 = ω1,1 and ω̃0,3 = ω0,3 by direct computation. We will now

proceed to show that ω̃g,n = ωg,n by induction on 2g − 2 + n.

Start by multiplying both sides of the recursion by z
−µ1−1
1 z

−µ2
2 · · · z

−µn
n and sum over all positive integers

µ1, . . . , µn to obtain the following.

∂

∂z1
Fg,n(z1, zS) =

n

∑
k=2

zk

z2
1 − z2

k

[
∂

∂z1
Fg,n−1(z1, zS\{k})−

∂

∂zk
Fg,n−1(zS)

]

+
1

2

[
∂2

∂t1∂t2
Fg−1,n+1(t1, t2, zS)

]

t1=z1
t2=z1

+
1

2 ∑
g1+g2=g

I⊔J=S

[
∂

∂z1
Fg1,|I|+1(z1, zI)

] [
∂

∂z1
Fg2,|J|+1(z1, zJ)

]

4



Now apply ∂
∂z2

· · · ∂
∂zn

to both sides and introduce the notation Wg,n(z1, . . . , zn) =
∂

∂z1
· · · ∂

∂zn
Fg,n(z1, . . . , zn).

Wg,n(z1, zS) =
n

∑
k=2

∂

∂zk

zk

z2
1 − z2

k

[
Wg,n−1(z1, zS\{k})− Wg,n−1(zS)

]

+
1

2
Wg−1,n+1(z1, z1, zS) +

1

2 ∑
g1+g2=g

I⊔J=S

Wg1 ,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ)

Note that the fact that Fg,n is odd in each variable implies that ω̃g,n is as well. So after multiplying both

sides of the previous equation by dz1 · · ·dzn, we obtain the following.

ω̃g,n(z1, zS) =
n

∑
k=2

[
dzk

z2
1 + z2

k

(z2
1 − z2

k)
2

ω̃g,n−1(z1, zS\{k})− dz1
∂

∂zk

zk

z2
1 − z2

k

ω̃g,n−1(zS)

]

−
1

2 dz1
ω̃g−1,n+1(z1, z1, zS)−

1

2 dz1
∑

g1+g2=g

I⊔J=S

ω̃g1,|I|+1(z1, zI) ω̃g2,|J|+1(z1, zJ)

Now use the fact that a meromorphic 1-form on CP1 is equal to the sum of its principal parts, which

may be stated as

ω̃(z1) = ∑
α

Res
z=α

dz1

z1 − z
ω̃(z),

where the sum is over the poles of ω̃(z). Applying this to our situation yields the following, where we

have removed terms from the right hand side that do not contribute to the residue at z = 0.

ω̃g,n(z1, zS) = Res
z=0

1

2

1

z − z1

dz1

dz

[
− 2

n

∑
k=2

dz dzk

z2 + z2
k

(z2 − z2
k)

2
ω̃g,n−1(z, zS\{k})

+ ω̃g−1,n+1(z, z, zS) + ∑
g1+g2=g

I⊔J=S

ω̃g1,|I|+1(z, zI) ω̃g2,|J|+1(z, zJ)

]

We may rewrite this in the following way, using ω0,2(z1, z2) =
dz1 dz2

(z1−z2)2 .

ω̃g,n(z1, zS) = Res
z=0

1

2

1

z − z1

dz1

dz

[
n

∑
k=2

(
ω0,2(z, zk)ω̃g,n−1(z, zS\{k}) + ω0,2(z, zk)ω̃g,n−1(z, zS\{k})

)

+ ω̃g−1,n+1(z, z, zS) + ∑
g1+g2=g

I⊔J=S

ω̃g1,|I|+1(z, zI) ω̃g2,|J|+1(z, zJ)

]

By the inductive hypothesis, we may replace each occurrence of ω̃ on the right hand side of the equation

with the corresponding ω. Furthermore, we may absorb the first summation into the second to obtain

the following.

ω̃g,n(z1, zS) = Res
z=0

1

2

1

z − z1

dz1

dz

[
ωg−1,n+1(z, z, zS) +

◦

∑
g1+g2=g

I⊔J=S

ωg1,|I|+1(z, zI) ωg2,|J|+1(z, zJ)

]

Since this precisely agrees with the topological recursion, we have shown by induction that ω̃g,n = ωg,n

for all 2g − 2 + n > 0. Hence, Ũg,n(µ1, . . . , µn) = Ug,n(µ1, . . . , µn) and the proposition follows.

The correlation differentials produced by the topological recursion satisfy string and dilaton equations,

which relate ωg,n+1 and ωg,n [26].
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Corollary 2. In the case of the Bessel curve, the string and dilaton equations both reduce to the equation

Ug,n+1(1, µ1, . . . , µn) = (2g − 2 + n)Ug,n(µ1, . . . , µn).

Proposition 1 provides an effective way to calculate the numbers Ug,n(µ1, . . . , µn). The only non-zero

Ug,n(µ1, . . . , µn) in genus up to 4 are given by the following formulas. Observe that the appearance of

factorials in each case is due to Corollary 2.

U1,n(1, 1, 1, . . . , 1) =
1

23
(n − 1)! U4,n(7, 1, 1, 1, . . . , 1) =

175

219
(n + 5)!

U2,n(3, 1, 1, . . . , 1) =
3

28
(n + 1)! U4,n(5, 3, 1, 1, . . . , 1) =

575

7 · 219
(n + 5)!

U3,n(5, 1, 1, . . . , 1) =
15

213
(n + 3)! U4,n(3, 3, 3, 1, . . . , 1) =

2407

105 · 218
(n + 5)!

U3,n(3, 3, 1, . . . , 1) =
21

5 · 212
(n + 3)!

3 Integrability for the Bessel partition function

3.1 Virasoro constraints

A wide variety of enumerative problems that are governed by the topological recursion have an associ-

ated partition function Z that satisfies

Virasoro constraints, in the sense that Z is annihilated by a sequence of differential operators that

obey the Virasoro commutation relation;

an integrable hierarchy, such as the Korteweg–de Vries (KdV), Kadomtsev–Petviashvili (KP), or

Toda hierarchies; and

an evolution equation of the form ∂Z
∂s = MZ for some operator M independent of s.

In particular, this theme has been enunciated by Kazarian and Zograf in the context of enumeration of

dessins d’enfant and ribbon graphs [31].

Define the Bessel partition function

Z(p1, p2, . . . ; h̄) = exp

[
∞

∑
g=1

∞

∑
n=1

∞

∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
h̄2g−2+n

n!
pµ1 · · · pµn

]
,

which is an element of Q[[h̄, p1, p2, . . .]]. Note that negative powers of h̄ do not arise in Z. For each

non-negative integer m, define the differential operator

Lm = −
m + 1

2

h̄

∂

∂p2m+1
+ ∑

i odd

(m + i
2 )pi

∂

∂p2m+i
+ ∑

i+j=2m

i,j odd

ij

4

∂2

∂pi∂pj
+

1

16
δm,0. (2)

It is straightforward to verify that the operators L0, L1, L2, . . . form a representation of half of the Witt

algebra, or equivalently, half of the Virasoro algebra with central charge 0. In other words, they obey the

Virasoro commutation relations

[Lm, Ln] = (m − n)Lm+n, for m, n ≥ 0.

Theorem 3. For each non-negative integer m, we have LmZ = 0.

Proof. Write Z = exp(F) so that 2LmZ = 0 is equivalent to

−
2m + 1

h̄

∂F

∂p2m+1
+ ∑

i odd

(2m + i)pi
∂F

∂p2m+i
+

1

2 ∑
i+j=2m

i,j odd

ij

[
∂2F

∂pi∂pj
+

∂F

∂pi

∂F

∂pj

]
+

1

8
δm,0 = 0.
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Extracting the coefficient of h̄2g−3+n

n! pµ2 · · · pµn from both sides yields the equation

(2m + 1)Ug,n(2m + 1,µS) =
n

∑
k=2

(2m + µk)Ug,n−1(2m + µk,µS\{k})

+
1

2 ∑
α+β=2m

α,β odd

αβ

[
Ug−1,n+1(α, β,µS) + ∑

g1+g2=g

I⊔J=S

Ug1,|I|+1(α,µI)Ug2,|J|+1(β,µJ)

]
.

Thus, the fact that Lm annihilates the Bessel partition function Z is equivalent to the recursion of Propo-

sition 1 with µ1 = 2m + 1.

3.2 KdV integrability

Theorem 4. The partition function Z is a tau-function for the KdV hierarchy. In particular, u = Fp1 p1 satisfies

the KdV equation

ut = u · ux +
h̄2

12
uxxx, u(x, 0, 0, · · · ) =

h̄2

8(1 − x)2

for x = p1 and t = p3. It has trivial dispersionless limit lim
h̄→0

u = 0.

Proof. We will show that the Bessel partition function is in fact equal to the Brézin–Gross–Witten parti-

tion function. Indeed, the Bessel partition function is uniquely defined by the fact that it is annihilated

by the Virasoro operators of equation and the normalisation Z(0) = 1. On the other hand, the BGW

partition function is uniquely defined by the fact that is is annihilated by the Virasoro operators appear-

ing in [1, 2, 34]. Comparing the two sequences of Virasoro operators, we see that they are equal upon

setting tk = pk/k. Now we simply use the fact that the BGW partition function is a known tau-function

for the KdV integrable hierarchy. The absence of genus zero contributions to Z and leads to the property

lim
h̄→0

u = 0.

3.3 A cut-and-join evolution equation

The following result shows that the Bessel partition function satisfies an evolution equation. The opera-

tor M that appears in the statement resembles the cut-and-join operator for Hurwitz numbers [29]. This

operator was also found by Alexandrov [1].

Theorem 5. The Bessel partition function Z satisfies the equation ∂Z
∂h̄ = MZ, where

M =
1

8
p1 +

1

2 ∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+ ∑

i,j odd

(i + j − 1)pi pj
∂

∂pi+j−1
.

Proof. We give two proofs since one follows methods of Kazarian-Zograf [31] using Virasoro operators

and rather independent of topological recursion, and the other shows that the cut-and-join equation is

directly equivalent to topological recursion.

First proof. Since the differential operators L0, L1, L2, . . . of equation (2) annihilate the Bessel partition

function, so does the following infinite linear combination.

∞

∑
m=0

2p2m+1Lm = −
∞

∑
m=0

p2m+1
2m + 1

h̄

∂

∂p2m+1
+

∞

∑
m=0

p2m+1 ∑
i odd

(i + 2m)pi
∂

∂pi+2m

+
1

2

∞

∑
m=0

p2m+1 ∑
i+j=2m

i,j odd

ij
∂2

∂pi∂pj
+

1

8

∞

∑
m=0

p2m+1δm,0

= −
∞

∑
m=0

p2m+1
2m + 1

h̄

∂

∂p2m+1
+ M

7



Now we simply use the fact that for each monomial appearing in Z, the exponent of h̄ records the

weighted degree in p1, p2, . . ., where pi has weight i. (This follows from the observation that Ug,n(µ1, . . . , µn)

is non-zero only when µ1 + · · ·+ µn = 2g − 2 + n, stated in the proof of Proposition 1). It follows that

∞

∑
m=0

p2m+1
2m + 1

h̄

∂Z

∂p2m+1
=

∂Z

∂h̄
.

Second proof. For Z = exp F the cut-and-join equation ∂Z
∂h̄ = MZ is equivalent to the equation

∂F

∂h̄
=

1

8
p1F +

1

2 ∑
i,j odd

ijpi+j+1

(
∂2

∂pi∂pj
F +

∂

∂pi
F

∂

∂pj
F

)
+ ∑

i,j odd

(i + j − 1)pipj
∂

∂pi+j−1
F

which is equivalent to topological recursion via (1).

Corollary 6. The Bessel partition function can be expressed as

Z(p1, p2, . . . ; h̄) = exp(h̄M) · 1 =
∞

∑
k=0

h̄k

k!
Mk · 1.

This gives an effective way to calculate Z. We present here the Bessel partition function Z and corre-

sponding free energy F = log(Z) up to terms of order h̄6.

Z(p; h̄) = 1 +
1

23
p1h̄ +

9

27
p2

1h̄2 +
( 3

27
p3 +

51

210
p3

1

)
h̄3 +

( 75

210
p3 p1 +

1275

215
p4

1

)
h̄4

+
( 45

210
p5 +

2475

214
p3p2

1 +
8415

218
p5

1

)
h̄5 +

(1845

213
p5 p1 +

2025

215
p2

3 +
33825

217
p3p3

1 +
115005

222
p6

1

)
h̄6 + · · ·

F(p; h̄) =
1

8
p1h̄ +

1

16
p2

1h̄2 +
( 3

128
p3 +

1

24
p3

1

)
h̄3 +

( 9

128
p3 p1 +

1

32
p4

1

)
h̄4

+
( 45

1024
p5 +

9

64
p3 p2

1 +
1

40
p5

1

)
h̄5 +

( 1

48
p6

1 +
15

64
p3 p3

1 +
63

1024
p2

3 +
225

1024
p5p1

)
h̄6 + · · ·

Remark 7. The operator

M =
1

8
p1 +

1

2 ∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+ ∑

i,j odd

(i + j − 1)pipj
∂

∂pi+j−1

is not an element of the Lie algebra ĝl(∞). If it were, then since 1 is a tau-function of the KP hierarchy and the

action of ĜL(∞) maps KP tau-functions to KP tau-functions, then Corollary 6 could be used to give another proof

that that Z is a KP tau-function. Since Z is a function only of pi for i odd, one could then deduce that it is a KdV

tau-function. One can prove that M /∈ ĝl(∞) using the fact that p1 is a KP tau-function while exp(h̄M) · p1 is

not a KP tau-function, which can be observed from the expansion in h̄.

4 The quantum curve

Consider the wave function ψ(z, h̄) formed from the following so-called principal specialisation of the

partition function.

ψ(z, h̄) = Z(p1, p2, . . . ; h̄)|pi=z−i

= exp

[
∞

∑
g=1

∞

∑
n=1

∞

∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
h̄2g−2+n

n!
z−(µ1+···+µn)

]

= 1 +
1

8

h̄

z
+

9

128

h̄2

z2
+

75

1024

h̄3

z3
+

3675

3268

h̄4

z4
+

59535

262144

h̄5

z5
+

2401245

4194304

h̄6

z6
+

57972915

33554432

h̄7

z7
+ · · ·

ψ0(z, h̄) = exp(z/h̄)z−1/2ψ(z, h̄)

8



Theorem 8. The wave function ψ(z, h̄) satisfies the differential equation

1

2
z2 d2

dz2
ψ + h̄−1z2 d

dz
ψ +

1

8
ψ = 0.

Equivalently, the modified wave function ψ0(z, h̄) satisfies the differential equation

[
h̄2z2 d2

dz2
+ h̄2z

d

dz
− z2

]
ψ0(z, h̄) = 0.

Proof. Start with the evolution equation

(
1

8
p1 +

1

2 ∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+ ∑

i,j odd

(i + j − 1)pi pj
∂

∂pi+j−1
−

∂

∂h̄

)
Z(p1, p2, . . . ; h̄) = 0

Consider taking the principal specialisation of this equation.

[(
1

8
p1 +

1

2 ∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+ ∑

i,j odd

(i + j − 1)pipj
∂

∂pi+j−1
−

∂

∂h̄

)
pµ1 · · · pµn h̄|µ|

]

=

[(
1

8
z−1 +

1

2 ∑
k 6=ℓ

µkµℓz
−1 +

1

2

n

∑
k=1

(µ2
k + µk)z

−1 − |µ|h̄−1

)
pµ1 · · · pµn h̄|µ|

]

=

[(
1

8
z−1 +

1

2
|µ|2z−1 +

1

2
|µ|z−1 − |µ|h̄−1

)
z−|µ|h̄|µ|

]

=

[(
1

8
z−1 +

1

2

d

dz
z

d

dz
−

1

2

d

dz
+ h̄−1z

d

dz

)
z−|µ|h̄|µ|

]

=

[(
1

8
z−1 +

1

2

d

dz
+

1

2
z

d2

dz2
−

1

2

d

dz
+ h̄−1z

d

dz

)
z−|µ|h̄|µ|

]

=

[(
1

8
z−1 +

1

2
z

d2

dz2
+ h̄−1z

d

dz

)
z−|µ|h̄|µ|

]

It follows that [
1

2
z2 d2

dz2
+ h̄−1z2 d

dz
+

1

8

]
ψ(z, h) = 0.

Corollary 9.

ψ(z, h̄) =
∞

∑
d=0

(2d)!2

32dd!3
h̄d

zd
=

∞

∑
d=0

(2d − 1)!!2

8dd!

(
h̄

z

)d

Proof. Put ψ(z, h̄) = ∑
∞
d=0 ad

h̄d

zd , so we have

0 =

[
1

2
z2 d2

dz2
+ h̄−1z2 d

dz
+

1

8

] ∞

∑
d=0

ad
h̄d

zd
=

∞

∑
d=0

[
1

2
d(d + 1)ad

h̄d

zd
− dad

h̄d−1

zd−1
+

1

8
ad

h̄d

zd

]

=
∞

∑
d=0

[
1

2
d(d + 1)ad − (d + 1)ad+1 +

1

8
ad

]
h̄d

zd

Thus
1

2
d(d + 1)ad − (d + 1)ad+1 +

1

8
ad = 0 ⇒ ad+1 =

1
2 d(d + 1) + 1

8

d + 1
ad =

1

8

(2d + 1)2

d + 1
ad,

hence ad =
d

∏
i=1

ai

ai−1
=

d

∏
i=1

1

8

(2i − 1)2

i
=

1

8d

(2d − 1)!!2

d!
.
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From the viewpoint of Gukov–Sułkowski, we should define the wave function thus:

ψ0(z, h̄) = exp(z/h̄)z−1/2ψ(z, h̄).

Then from the differential equation above, we obtain

[
h̄2z2 d2

dz2
+ h̄2z

d

dz
− z2

]
ψ0(z, h̄) = 0.

In terms of the operators x̂ = x = 1
2 z2 and ŷ = h̄ d

dx = h̄
z

d
dz , we can write this as

[2ŷx̂ŷ − 1]ψ0(z, h̄) = 0.

This is the quantum curve equation and its semi-classical limit is 2xy2 − 1 = 0, from which we recover

the spectral curve. This quantum curve was also obtained by Alexandrov in [1], and by Bouchard and

Eynard [7] where its relation to topological recursion was proven as a consequence of a much more

general theorem for a large class of rational spectral curves.

Note that the differential equation above is the modified Bessel’s equation (after setting h = 1) with

parameter 0. Hence, ψ0(z, h̄) = K0(z/h̄) is the modified Bessel function. The name Bessel curve derives

from this.

ψ0(z, h̄) = exp(h̄−1S0(z) + S1(z) + h̄S2(z) + h̄2S3(z) + ...) (3)

For k > 1, this is conjecturally given by

Sk(z) = ∑
2g−1+n=k

1

n!

∫ z

∞

∫ z

∞
...
∫ z

∞
ω

g
n(z1, ..., zn) (4)

where ω
g
n(z1, ..., zn) are multidifferentials for each g ≥ 0, n > 0 recursively defined on the curve x = 1

2 z2,

y = 1/z via topological recursion. This conjecture is addressed by Gukov and Sułkowski in [30] together

with the related issue of constructing P̂(x̂, ŷ) algorithmically from the wave function.

∫ z

∞

∫ z

∞
...
∫ z

∞
ω

g
n(z1, ..., zn) = ∑

µ

(−1)nUg(µ1, . . . , µn)
n

∏
i=1

z
−µi
i

∣∣∣
zi=z

= ∑
µ

(−1)nUg(µ1, . . . , µn)z
2−2g−n

since ∑ µi = 2g − 2 + n. Hence

∑
k>1

h̄k−1Sk(z) = ∑
g,n,µ

(−1)n

n!
Ug(µ1, . . . , µn)

(
h̄

z

)2g−2+n

= log Z|{pi=z−i,s=−h̄}

Now d
dx S0(z) = −y hence S0(z) = −z and S1(z) = − 1

2 log dx
dz = − 1

2 log z so

ψ0(z, h̄) = exp(h̄−1S0(z) + S1(z)) · Z|{pi=z−i,s=−h̄} = e−z/h̄z−
1
2 · Z|{pi=z−i,s=−h̄}

and this gives agrees with the asymptotic expansion of the modified Bessel function ψ0 = K0.
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