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Abstract The moduli spaces of hyperbolic surfaces of genus g with n geodesic boundary
components are naturally symplectic manifolds. Mirzakhani proved that their volumes are
polynomials in the lengths of the boundaries by computing the volumes recursively. In this
paper, we give new recursion relations between the volume polynomials.
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1 Introduction

For L = (L1, L2, . . . , Ln), a sequence of non-negative numbers, let Mg,n(L) be the moduli
space of connected oriented genus g hyperbolic surfaces withn labeled boundary components
of lengths L1, . . . , Ln. A cusp at a point naturally corresponds to a zero length boundary
component. When L = 0, that is there are n cusps, the moduli space Mg,n(0) is naturally
identified with the moduli space of conformal structures on a genus g oriented surface with n
labeled points, also known as the moduli space of curves with n labeled points. The identifica-
tion uses the fact that in any conformal class of metrics there is a unique complete hyperbolic
metric, and for every conformal automorphism there is a corresponding isometry.

On the moduli space, Mg,n(L) lives a natural symplectic form ω, defined precisely in
Sect. 2. The volume of the moduli space is

Vg,n(L) =
∫

Mg,n( L)

ω3g−3+n

(3g − 3 + n)! , (g, n) �= (1, 1).
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When (g, n) = (1, 1) we instead take half of the integral of ω, an orbifold volume,

V1,1(L1) = 1

2
·

∫

M1,1(L1)

ω = 1

48
(L2

1 + 4π2),

which fits well with recursion relations between volumes, and relations with intersection
numbers on the moduli space. Mirzakhani uses the true volume of M1,1(L1) in [1,2] and
includes an extra factor of a half in her formulae.

Theorem 1 (Mirzakhani [1]) Vg,n(L) is a polynomial in L = (L1, . . . , Ln). The coefficient
of Lα = Lα1 , . . . , Lαn lies in π6g−6+2n−|α|Q, |α| = α1 + · · · + αn.

Mirzakhani proved this using a recursion relation between volumes of moduli spaces:

∂

∂L1
(L1Vg,n(L)) = Ag,n(L)+ Bg,n(L), (1)

whereAg,n(L) consists of integral transforms ofVg−1,n+1 andVg1,n1 ×Vg2,n2 for g1+g2 = g

and n1 + n2 = n+ 1, and Bg,n(L) consists of integral transforms of Vg,n−1. We have omit-
ted the L dependence in Vg−1,n+1, Vg1,n1 × Vg2,n2 and Vg,n−1 because it requires further
explanation. See Sect. 2.2 for precise definitions of Ag,n(L) and Bg,n(L).

The main idea of this paper is to use intermediary moduli spaces to give new recursion
relations between volumes of moduli spaces. The intermediary moduli spaces consist of
hyperbolic surfaces with a cone point of a specified angle. Hyperbolic geometry is an ideal
setting for studying cone points, although a cone point does make sense more generally in
terms of a conformal structure on a Riemann surface. A cone angle of 0 corresponds to a
cusp marked point and as the cone angle goes from 0 to 2π this corresponds, in a sense, to
removing the marked point. This leads to interesting relations between the moduli spaces.
These intermediary moduli spaces are reminiscent of the moduli spaces of anti self dual
connections with cone singularities around an embedded surface in a four-manifold, used by
Kronheimer and Mrowka [3] to get relationships between intersection numbers on instanton
moduli spaces.

In [4], it is shown that one can interpret a point with cone angle in terms of an imaginary
length boundary component. Explicitly, a cone angle φ appears by substituting the length
iφ in the volume polynomial. Mirzakhani’s results, Theorem 1 and (1) use a generalized
McShane formula [5] on hyperbolic surfaces, which was adapted in [4] to allow a cone
angle φ that ends up appearing as a length iφ in such a formula, and hence in the volume
polynomial. We do not describe the generalized McShane formula in this paper, although in
Sect. 2.2 we give the underlying idea in terms of coordinates on the hyperbolic surface.

Theorem 2 For L = (L1, . . . , Ln)

Vg,n+1(L, 2πi) =
n∑
k=1

Lk∫

0

LkVg,n(L)dLk (2)

and

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L). (3)

We think of the theorem as describing the limit of the volume and its derivative when a
cone angle tends to 2π , and hence is removable, although the statement of the theorem is
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independent of this interpretation. One can make sense of n = 0 in the proof of Theorem 2
yielding the following results.

Theorem 3 When there is exactly one marked point the volume factorises

Vg,1(L) = (L2 + 4π2)Pg(L). (4)

The classical volumes of moduli spaces are encoded in Mirzakhani’s volume polynomials

Vg,0 = V ′
g,1(2πi)

2πi(2g − 2)
= Pg(2πi)

g − 1
, (5)

where the polynomial Pg(L) is defined by (4).

The recursion relations (2) and (3) give information about the volume of the moduli space
Mg,n+1(L1, . . . , Ln+1) from the volume of the single lower dimensional moduli space
Mg,n(L1, . . . , Ln). This contrasts with Mirzakhani’s relation (1) which uses many lower
dimensional moduli spaces as described above. In particular, when g = 0 or g = 1 this give
a simpler algorithm to determine Vg,n(L).

Theorem 4 The relation (2) uniquely determines V0,n+1(L1, . . . , Ln+1) from the single vol-
ume V0,n(L1, . . . , Ln). Similarly, relations (2) and (3) uniquely determine V1,n+1(L1, . . . ,

Ln+1) from V1,n(L1, . . . , Ln).

There are three approaches to the proof of Theorem 2. First, the theorem necessarily follows
from Mirzakhani’s recursion relation (1) since that relation uniquely determines the polyno-
mials. This approach, which is nontrivial and not so transparent, is treated in [6]. Second,
the statement of the theorem is equivalent to relations between the coefficients of the volume
polynomials which are intersection numbers of ψ classes and κ classes (see Sect. 3 for def-
initions), so relations between the latter can be used to deduce the theorem. The recursion
relations generalize the string and dilaton equations proven by Witten in [7]. It is the approach
that we present in this paper which also allows us to prove Theorem 3. The third approach is
the most interesting. The theorem should follow from an analysis of the intermediary cone
angle moduli spaces, and although we can only do this in simple cases, it is still a useful
approach because it sheds light on the recursion relations between intersection numbers.
Furthermore, it predicts that there are other recursion relations between intersection numbers
on the moduli space.

2 Volume of the moduli space

2.1 Teichmüller space and Fenchel–Nielsen coordinates

Fix a smooth oriented surface Sg,n of genus g and n boundary components labeled from 1 to
n. Define a marked hyperbolic surface of type (g, n) and lengths (L1, . . . , Ln) to be a pair
(�, f ), where � is an oriented hyperbolic surface with n geodesic boundaries of lengths
L1, L2, . . . , Ln and f : Sg,n → � is an orientation preserving diffeomorphism. We call f
the marking of the hyperbolic surface and define the Teichmüller space

Tg,n(L) = {(�, f )}/ ∼,
where (�1, f1) ∼ (�2, f2) if there exists an isometry φ : �1 → �2 such that φ ◦ f1 is
isotopic to f2.
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Fenchel–Nielsen coordinates are global coordinates for Teichmüller space defined as fol-
lows. Choose a maximal set of disjoint embedded simple closed curves on the topologi-
cal surface Sg,n. Their complement is a collection of genus zero surfaces each with three
boundary components, i.e., pairs of pants. We call such a decomposition a pants decompo-
sition of the surface Sg,n. Each pair of pants contributes Euler characteristic -1, so there are
2g− 2 +n = −χ(�) pairs of pants in the decomposition, and hence 3g− 3 +n closed geo-
desics (not counting the boundary curves.) Also on Sg,n, choose a further disjoint collection
of g embedded closed curves and n embedded arcs between boundary components equal to
the union of 6g − 6 + 3n arcs which give the seams of each pair of pants, i.e., each pair of
pants contains three embedded arcs joining its boundary components pairwise.

A marking f : Sg,n → � of a hyperbolic surface with n geodesic boundary components
� induces a pants decomposition on � from Sg,n. The isotopy class of embedded closed
curves contains a collection {γ1, . . . , γ3g−3+n} of disjoint embedded simple closed geode-
sics which cuts � into hyperbolic pairs of pants with geodesic boundary components. Their
lengths l1, . . . , l3g−3+n give half the Fenchel–Nielsen coordinates, and the other half are the
twist coordinates θ1, . . . , θ3g−3+n which we now define. Any hyperbolic pair of pants con-
tains three geodesic arcs giving the shortest paths between boundary components. An arc of
a seam passing through γj is isotopic to the non-embedded piecewise geodesic arc given by
the union of two shortest path geodesic arcs between boundary components of the two pairs
of pants meeting along γj together with a (generally non-integral) multiple of γj . The length
of this multiple of γj is denoted by θj ∈ R. (If θj ∈ [0, lj ) then the piecewise geodesic arc
is embedded.)

The coordinates (lj , θj ) for j = 1, 2, . . . , 3g − 3 + n give rise to an isomorphism

Tg,n(L) ∼= (R+ × R)3g−3+n

and are canonical coordinates for a symplectic form

ω =
∑
i

dli ∧ dθi . (6)

It is a quite deep fact that the symplectic form is invariant under the action of the mapping
class group Modg,n, of isotopy classes of orientation preserving diffeomorphisms of the sur-
face that preserve boundary components. The action of Modg,n on Tg,n(L) is induced by its
action on markings. There is a finite number of pants decomposition up to the action of the
mapping class group, each class consisting of infinitely many geometrically different types.
Thus once a topological pants decomposition of the surface is chosen a given hyperbolic
surface has infinitely many geometrically different pants decompositions equivalent under
Modg,n. Each different decomposition gives different lengths and twist coordinates to the
same hyperbolic surface, and hence different coordinates, whereas the symplectic form (6)
depends only on the hyperbolic surface. Hence the symplectic form descends to the moduli
space which is a quotient of Teichmüller space

Mg,n(L) ∼= Tg,n(L)/Modg,n.

The volume of the moduli space Vg,n(L) is defined to be the integral of the top-dimensional
form ω3g−3+n/(3g− 3 + n)! over Mg,n(L), or equivalently over a fundamental domain for
Modg,n in Tg,n(L).

When the moduli space describes hyperbolic surfaces with a specified cone angle and
geodesic boundary components then the above description of Teichmüller space via pants
decompositions goes through if the cone angle is less than π . Mirzakhani’s proof [1] that the
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volume is a polynomial generalizes using the results of [4] to show that the volume of the
moduli space with cone angle φ is also a polynomial with iφ in place of length. If the cone
angle is greater thanπ—and we are interested in the cone angle tending to 2π—then the pants
decomposition does not always exist. The failure of this coordinate system suggests that one
might instead use something like Penner coordinates [8] to define the volume and recapture
the volume polynomial. We explicitly calculated the volume of M0,4 with three cusp points
and one cone angle tending to 2π which indeed resulted in the volume polynomial obtained
by analytically continuing the case of cone angle less than π .

2.2 Coordinates on a hyperbolic surface

It is useful to view a hyperbolic surface from one geodesic boundary component, say ∂1,
chosen from the n boundary components. The boundary component ∂1 gives a coordinate
system on the surface—to any point on the surface assign its distance from ∂1 and the point
on ∂1 where the shortest geodesic meets. More generally, take any geodesic beginning at a
given point on the surface and meeting ∂1 perpendicularly, and assign to the point its length
and the point it meets ∂1. This makes the coordinate system locally smooth, at the cost of
losing uniqueness for the coordinates of a point.

Mirzakhani uses this coordinate system in the following way. Project points onto the sec-
ond coordinate, which takes its values in ∂1. Now suppose that there is another boundary
component, ∂i say. The projection of ∂i is an interval I 0

i ⊂ ∂1. More precisely, the projection

is a collection of infinitely many disjoint intervals {I ji | j = 0, . . . ,∞} since we take any
perpendicular geodesic, not just the shortest one, resulting in non-unique coordinates.

The sum of the lengths fi = ∑
j l(I

j
i ) is a well-defined function on the moduli space

Mg,n(L). The length of a single interval l(I ji ) is well defined on Teichmüller space Tg,n(L),
and although it does not descend to the moduli space, l(I ji ) descends to an intermediate
moduli space:

Tg,n(L)
↓

M̂g,n(L)
↓

Mg,n(L)

and Mirzakhani shows that this enables one to integrate the function fi = ∑
j l(I

i
j ) over

Mg,n(L) yielding a polynomial, calculable from Vg,n−1. The n− 1 collections of intervals

{I ji | j = 0, . . . ,∞}, i = 2, . . . , n, are disjoint from each other and Mirzakhani simi-
larly shows that the complementary region (up to a measure zero set) gives a well-defined
function f c on the moduli space which can be integrated in terms of lower volumes. Since
f c + ∑

fi = L1, the sum of all of the integrals gives

∫

Mg,n(L)

L1dvol = L1Vg,n(L)

the derivative of which can be calculated and leads to Mirzakhani’s recursion relation:

∂

∂L1
(L1Vg,n(L)) = Ag,n(L)+ Bg,n(L).
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For completeness we will define the right-hand side although this will not be used further in
the paper. Put L̂ = (L2, . . . , Ln) and let (L2, . . . , L̂j , . . . , Ln) mean we remove Lj . Then

Ag,n(L) =
∫
KL1(x, y)V

′
g−1,n+1(x, y, L̂)dxdy

where

V ′
g−1,n+1(x, y, L̂) = Vg−1,n+1(x, y, L̂)+

∑
gi ,ni ,Li

Vg1,n1(x,L1)× Vg2,n2(y,L2)

and the sum is over all g1 + g2 = g, n1 + n2 = n+ 1 and L1 � L2 = L̂. And

Bg,n(L) =
n∑
j=2

∫
KL1,Lj (x)Vg,n−1(x, L2, . . . , L̂j , . . . , Ln)dx.

The kernels are defined by

KL1(x, y) = H(x + y, L1), KL1,Lj (x) = H(x,L1 + Lj )+H(x,L1 − Lj )

for

H(x, y) = 1

2

(
1

1 + e
x+y

2

+ 1

1 + e
x−y

2

)
.

The derivation of these kernels comes from a detailed study of a hyperbolic pair of pants—the
simplest hyperbolic surface. We refer the reader to [1,2] for full details.

3 Characteristic classes of surface bundles

3.1 Surface bundles

To any oriented topological surface bundle

�g ↪→ X

π ↓ ↑ si
B

i = 1, . . . , n

with n sections having disjoint images we can associate characteristic classes in H ∗(B),
[9]. On X there is a complex line bundle γ → X with fibre at b ∈ B the vertical cotangent
bundle T ∗π−1(b). A local trivialization is obtained from a local trivialization of the fibre
bundle X. For each i = 1, . . . , n pull back the line bundle γ to s∗i γ = γi → B. Define

ψi = c1(γi) ∈ H 2(B).

Let e = c1(γ ) ∈ H 2(X). (We use the terminology e because it is naturally the Euler
class of γ . We have put a complex structure on γ for convenience.) Define the Mumford–
Morita–Miller classes

κ̃m = π!em+1 ∈ H 2m(B),

where π! : Hk(X) → Hk−2(B) is the umkehr map, or Gysin homomorphism, obtained by
integrating along the (oriented) fibres. Alternatively, the umkehr map is obtained from the
composition
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π! : Hk(X)
PD→ Hd−k(X)

π∗→ Hd−k(B)
PD→ Hk−2(B),

where d = dimX and PD denotes Poincare duality. The Mumford–Morita–Miller classes
ignore the n sections si . Use instead the sequence

π! : Hk
c (X − ∪si(B)) PD→ Hd−k(X − ∪si(B)) π∗→ Hd−k(B)

PD→ Hk−2(B),

whereHk
c (X−∪si(B)) denotes cohomology with compact supports. Define the kappa classes

κm = π!em+1
c ∈ H 2m(B),

where ec = e(γ ) ∈ H 2
c (X − ∪i si (B)) is the Euler class with compact support. It has the

property that on any fibre �

〈ec,� − ∪i si (B)〉 = −χ(� − ∪i si (B))
which generalizes 〈e,�〉 = −χ(�). It is convenient to work with the compact manifold X
and in place of ec use its image in H 2(X)

H 2
c (X − ∪i si (B)) → H 2(X)

ec �→ en = e +
n∑
i=1

PD[si(B)].

The expression for en is deduced from its two properties

〈en,�〉 = −χ(� − ∪i si (B)), en · PD[sj (B)] = 0, j = 1, . . . , n, (7)

the first because it is defined by restriction, and the second because it lies in the kernel of the
map H 2(X) → H 2(∪i si (B)).

We will need relations between classes obtained by simply forgetting a section. Now

en+1 = en + PD[sn+1(B)]
so from en+1 · PD[sn+1(B)] = 0 and c = a + b ⇒ cm+1 = am+1 + b

∑m
j=0 c

j am−j

em+1
n+1 = em+1

n + PD[sn+1(B)] · emn
thus the forgetful map πn+1 induces π∗

n+1 : H ∗(B) → H ∗(B) satisfying

κm = π∗
n+1κm + ψmn+1 (8)

and the straightforward relation

ψj = π∗
n+1ψj , j = 1, . . . , n. (9)

To any� bundle π : X → B with n sections si , there corresponds the pull-back� bundle
π∗X → X with n sections π∗si and a further tautological section sn+1. In some sense, the
section sn+1 gives all possible ways to add an (n+ 1)st section to the bundle over B. In this
context, the forgetful map has two interpretations. As the map π∗

n+1 : H ∗(B) → H ∗(B)
discussed above, and also as π∗ : H ∗(B) → H ∗(X). The two are related by

s∗n+1 ◦ π∗ = π∗
n+1.

The pull-back relation (8) looks the same for π∗

κm = π∗κm + ψmn+1 (8a)
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whereas the relation (9) needs to be adjusted to

ψj = π∗ψj + PD[sj (B)], j = 1, . . . , n. (9a)

We have yet to mention that the tautological section sn+1 : X → π∗X does not have
disjoint image from the other sections π∗si . After blowing up to separate the images of the
sections, we are naturally led to consider surface bundles π : X → B that allow fibres with
mild singularities. More precisely, the singular fibres may be stable curves—they consist of
a collection of smooth components meeting at nodal singularities with the property that each
component has multiplicity 1, and negative Euler characteristic after we subtract all labeled
points and common points with other components. We call X a bundle of stable curves or
simply a bundle with singular fibres, although strictly it is no longer a fibre bundle. The
cohomology classes ψi and κm extend to this situation. Their definitions are best understood
when we put a continuous family of conformal structures on the fibres, or we assume the
stronger property that X and B are complex analytic varieties. Define γ = KX ⊗ π∗K−1

B ,
essentially the vertical canonical bundle (relative dualising sheaf.) This coincides with the
definition above on smooth fibres and generalizes the definition to singular fibres. One can
make sense of sections of this bundle along singular fibres in terms of meromorphic 1-forms
with simple poles and conditions on residues [10] but we will not explain this here. The
definitions of ψi and κm are as above. Relations (8a) and (9a) generalize to bundles of stable
curves. Proofs can be found in [11] and [7].

A simple example will demonstrate the definitions and relations. LetX be the blow-up of
P1 × P1 at the three points (0, 0), (1, 1) and (∞,∞). The map from X to the first P1 factor
realizes X as a surface bundle

P1 ↪→ X

π ↓ ↑ si
P1

i = 1, . . . , 4

which we equip with four sections s1(z) = (z, 0), s2(z) = (z, 1), s3(z) = (z,∞) and
s4(z) = (z, z). The general fibre is genus 0 with four labeled points, and the singular fibres,
at 0, 1 and ∞, are stable curves with two irreducible components each with two labeled
points (and a common intersection point). We can generateH2(X) byH , F , E1, E2 and E3,
where Ei are the exceptional divisors of the blow-up and H = P1 × {w} and F = {z} × P1

for any w and z different from 0, 1 and ∞. We use these curves to represent their divisor
class, homology class and their Poincare dual cohomology class. Then

c1(γ ) = −2H + E1 + E2 + E3 ⇒ κ̃1 = c1(γ )
2 = −3,

c1

(
γ

[∑
si(B)

])
= 2H + F − E1 − E2 − E3 ⇒ κ1 = c1

(
γ

[∑
si(B)

])2 = 1,

ψ1 = c1(γ ) · s1(B) = c1(γ ) · (H − E1) = 1 = ψi, i = 2, 3, 4.

Since X is the blow-up of the pull-back of the P1 bundle over a point with three sections,
(8a) and (9a) are also evident.

3.2 Intersection numbers

Let us use Mg,n to notate the moduli space of genus g curves with n labeled points, which
is isomorphic to the moduli space of genus g hyperbolic surfaces with n labeled cusps,
Mg,n(L) with L = 0, and Mg,n the Deligne–Mumford compactification which adds stable
curves to Mg,n. Wolpert [12] showed that the symplectic structure ω on Mg,n extends to
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Mg,n. The ψi and κm classes naturally live inH ∗(Mg,n). They are associated to a universal
surface bundle over Mg,n, essentially given by Mg,n+1 with map forgetting the last labeled
point, and any bundle X equipped with conformal structures on fibres is the pull-back of the
universal bundle under a map B → Mg,n.

Theorem 5 (Mirzakhani) The coefficient Cα of L2α1
1 , . . . , L

2αn
n in Vg,n(L) is

Cα = 1

2|α|α!(3g − 3 + n− |α|)!
∫

Mg,n

ψ
α1
1 , . . . , ψαnn ω

3g−3+n−|α|. (10)

This is proven in [2] by showing that Mg,n(L) is the symplectic quotient of a larger
symplectic manifold by a Hamiltonian T n action, where a fixed value of the moment map
corresponds to fixing the lengths L1, . . . , Ln of the geodesic boundary components. Any
such quotient is equipped with n line bundles coming from the T n action, and their Chern
classes are related to the coefficients of the volume polynomial. In [2] Mirzakhani used
this together with her recursion relation for the volume polynomials to give a new proof of
Witten’s conjecture [7] regarding intersections of ψ classes on Mg,n. In the original proof
of Witten’s conjecture, Kontsevich [13] calculated the Laplace transform of the top degree
terms of Vg,n(L). It would be interesting to understand the Laplace transform of the whole
polynomial Vg,n(L).

In the following, writeψα forψα1
1 , . . . , ψ

αn
n and ignore the term if there is an αj < 0. For

ease of reading, note that in all formulae the variable j sums from 0 to m while the variable
k sums from 1 to n.

Lemma 1 The equation

Vg,n+1(L, 2πi) =
n∑
k=1

Lk∫

0

LkVg,n(L)dLk

is equivalent to

m∑
j=0

(−1)j
(
m

j

) ∫

Mg,n+1

ψαψ
j
n+1κ

m−j
1 =

n∑
k=1

∫

Mg,n

ψ
α1
1 , . . . , ψ

αk−1
k , . . . , ψαnn κ

m
1 (11)

for all α and m.

Proof Assume that |α|+m = 3g− 2 +n since otherwise (11) is zero on both sides. By (10)
and substitution of L2j

n+1 with (2πi)2j , the coefficient of L2α1
1 , . . . , L

2αn
n in Vg,n+1(L, 2πi)

is
m∑
j=0

(2πi)2j

2|α|+j α!j !(m− j)!
∫

Mg,n+1

ψαψ
j
n+1ω

m−j

=
m∑
j=0

(2πi)2j

2|α|+j α!j !(m− j)!
∫

Mg,n+1

ψαψ
j
n+1(2π

2κ1)
m−j

= 2m−|α|π2m

α! m!
m∑
j=0

(−1)j
(
m

j

) ∫

Mg,n+1

ψαψ
j
n+1κ

m−j
1
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where we have used the identity ω = 2π2κ1 proven in [14].

The coefficient of L2α1
1 , . . . , L

2αn
n in

Lk∫
0
LkVg,n(L)dLk is

αk

2|α|−1(2αk)α!m!
∫

Mg,n

ψ
α1
1 , . . . , ψ

αk−1
k , . . . , ψαnn ω

m

= 2m−|α|π2m

α! m!
∫

Mg,n

ψ
α1
1 , . . . , ψ

αk−1
k , . . . , ψαnn κ

m
1 .

Add this expression over k = 1, . . . , n and divide both sides by the factor 2m−|α|π2m/α!m!
to prove the lemma. ��

Lemma 2 The equation

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L)

is equivalent to

m∑
j=0

(−1)j
(
m

j

) ∫

Mg,n+1

ψαψ
j+1
n+1κ

m−j
1 = (2g − 2 + n)

∫

Mg,n

ψακm1 . (12)

Proof The proof is much like the proof of the previous lemma. The coefficient of L2α1
1 , . . . ,

L
2αn
n in ∂Vg,n+1/∂Ln+1(L, 2πi) is

m∑
j=0

(2j + 2)(2πi)2j+1

2|α|+j+1α!(j + 1)!(m− j)!
∫

Mg,n+1

ψαψ
j+1
n+1ω

m−j

= 2πi
2m−|α|π2m

α! m!
m∑
j=0

(−1)j
(
m

j

) ∫

Mg,n+1

ψαψ
j+1
n+1κ

m−j
1

and the coefficient of L2α1
1 , . . . , L

2αn
n in Vg,n(L) is

2m−|α|π2m

α! m!
∫

Mg,n

ψακm1

so the equivalence follows. ��

Completion of the proof of Theorem 2 It suffices to prove the relations (11) and (12). Notice
that whenm = 0 (11) and (12) are, respectively, the string and dilaton equations which were
proven by Witten in [7]. The method of proof for the more general identities is similar.

Let π : X → B be a bundle of stable curves with n disjoint sections and π∗X the pull-
back bundle with n+ 1 sections. Blow up π∗X along the intersections of images of sections
to get a bundle of stable curves over X with n+ 1 disjoint sections s1, . . . , sn+1. Our aim is
to compare ψ and κ classes in H ∗(X) and H ∗(B).
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Take the integrand of the left-hand side of (11) and consider its image under the umkehr
map.

π!

⎧⎨
⎩

m∑
j=0

(−1)j
(
m

j

)
ψ
j
n+1κ

m−j
1

n∏
k=1

ψ
αk
k

⎫⎬
⎭ = π!

⎧⎨
⎩(κ1 − ψn+1)

m
n∏
k=1

ψ
αk
k

⎫⎬
⎭

= π!

⎧⎨
⎩(π∗κm1 )

n∏
k=1

(
π∗ψαk

k
+ PD[sk(B)] · π∗ψαk−1

k

)⎫⎬
⎭

= κm1

n∑
k=1

ψ
α1
1 , . . . , ψ

αk−1
k

, . . . , ψ
αn
n .

To get from the first line to the second line we have used the pull-back formulae (8a) and (9a)
and the fact that π∗ is a ring homomorphism, so in particular (π∗η)m = π∗(ηm). To get from
the second line to the third line we have used the fact that π! : H ∗(X) → H ∗(B) is anH ∗(B)
module homomorphism, i.e. π!(ξπ∗η) = π!(ξ)η, together with the explicit evaluations

π!(1) = 0, π!(si(B)) = 1

most easily calculated from the Poincare duality description of π!. Thus, in the product the
image under π! of the highest degree term π∗(κm1 ψα) is zero, the image of the second high-
est degree term constitutes the expression in the third line, and the lower order terms vanish
since they contain products PD[sj (B)] · PD[sk(B)] = 0 because the images of sj and sk are
disjoint.

Since ∫

X

η =
∫

B

π!η

choose X = Mg,n+1 and B = Mg,n, so (11) follows.

The proof of (12) is similar. Again apply the umkehr map to the integrand of the left-hand
side of (12).

π!

⎧⎨
⎩

m∑
j=0

(−1)j
(
m

j

)
ψ
j+1
n+1κ

m−j
1

n∏
k=1

ψ
αk
k

⎫⎬
⎭ = π!

⎧⎨
⎩ψn+1 · (κ1−ψn+1)

m
n∏
k=1

ψ
αk
k

⎫⎬
⎭

= π!

⎧⎨
⎩ψn+1 · (π∗κm1 )

n∏
k=1

(
π∗ψαk

k
+PD[sk(B)] · π∗ψαk−1

k

)⎫⎬
⎭

= (2g−2+n)κm1
n∏
k=1

ψ
αk
k
.

To go from the second line to the third line note that ψn+1 coincides with the twisted Euler
class en+1 that satisfies (7) and hence π!ψn+1 = 2g−2+n andψn+1 ·PD[sk(B)] = 0. Thus
the top degree term constitutes the expression in the third line, and all lower degree terms
vanish. ��

Equations 2 and 3 suggest that a direct analysis of the moduli space of cone surfaces
with cone angle θ ≈ 2π , or more accurately an infinitesimal analysis near 2π , gives rise to
intriguing phenomena. Equation 3 seems plausible since the removed cone point is free to
wander around each hyperbolic surface with area 2π(2g−2+n), so the change in volume is
related to integrating over the smaller moduli space and along each fibre. Intuition for Eq. 2
seems less obvious.
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Proof of Theorem 3 The first intersection number identity in the proof of Theorem 2 applies
to n = 0 yielding

3g−2∑
j=0

(−1)j
(

3g − 2

j

) ∫

Mg,1

ψ
j
1 κ

3g−2−j
1 = 0. (13)

Following the proof of Lemma 1, (13) is equivalent to the equation Vg,1(2πi) = 0 and hence
the polynomial factorises into Vg,1(L) = (L2 + 4π2)Pg(L) for some polynomial Pg(L),
proving (4).

The second intersection number identity in the proof of Theorem 2 applies to n = 0 to
prove

3g−3∑
j=0

(−1)j
(

3g − 3

j

) ∫

Mg,1

ψ
j+1
1 κ

3g−3−j
1 = (2g − 2)

∫

Mg,0

κ
3g−3
1 (14)

and again as in Lemma 2 (14) is equivalent to the equation

V ′
g,1(2πi) = 2πi(2g − 2)Vg,0

thus expressing Vg,0 in terms of Mirzakhani’s volumes. Since Vg,1(L) vanishes at L = 2πi
we can also write the derivative as follows:

2πi(2g − 2)Vg,0 = dVg,1

dL

∣∣∣∣
L=2πi

= lim
L→2πi

Vg,1(L)

L− 2πi

= lim
L→2πi

4πiVg,1(L)

L2 + 4π2 = 4πiPg(2πi)

completing the proof of Theorem 3. ��

4 Use of recursion relations

4.1 Low genus calculations

Proof of Theorem 4 The volume V0,n+1(L1, . . . , Ln+1) is a degree n − 2 symmetric poly-
nomial in L2

1, . . . , L
2
n+1 and we need to show it is uniquely determined by evaluation at

Ln+1 = 2πi, since this is determined by V0,n(L1, . . . , Ln) via (2). This follows from the
elementary fact that a symmetric polynomial f (x1, . . . , xn) of degree less than n is uniquely
determined by evaluation of one variable at any a ∈ C, f (x1, . . . , xn−1, a). To see this,
suppose otherwise. Any symmetric g(x1, . . . , xn) of degree less than n that evaluates at a as
f does, satisfies

f (x1, . . . , xn−1, a)− g(x1, . . . , xn−1, a) = (xn − a)P (x1, . . . , xn)

= Q(x1, . . . , xn)

n∏
j=1

(xj − a)

but the degree is less than n so the difference is identically 0.
The proof for genus 1 is similar. The degree of V1,n+1 as a polynomial in L2

1, . . . , L
2
n+1

is equal to n+ 1 so the proof of the genus 0 case shows that (2) determines V1,n+1 from V1,n

123



Geom Dedicata

up to the constant c in V1,n+1 + c
∏n
j=1(L

2
j + 4π2). Now use (3) to determine c, and hence

V1,n+1.
Theorem 4 can be converted to an algorithm for calculating V0,n(L). The algorithm using

(2) turns out to be much more efficient than the algorithm coming from Mirzakhani’s rela-
tion (1) in genus 0, which needs V0,n−1 and pairs V0,n1 , V0,n2 for all n1 + n2 = n + 1, to
produce V0,n. We have included a simple MAPLE routine in the appendix for calculating
V0,n using (2). (The notion of a “more efficient” algorithm is not so precise here. We have
merely compared the speeds of different calculations on MAPLE.)

In genus 0, the string equation—(11) withm = 0—leads to an explicit formula for the top
coefficients, or equivalently the following formula for genus 0 intersection numbers without
kappa classes: ∫

Mg,n

ψ
α1
1 , . . . , ψαnn =

(
n− 3

α1, . . . , αn

)
.

It seems reasonable to guess that when g = 0 (11) might be used to get an explicit combina-
torial description of all genus 0 intersection numbers with powers of κ1, or equivalently all
coefficients of V0,n(L). Zograf [15] has recursion relations between the constant coefficients
V0,n(0).

4.2 Higher derivatives

We expect to have expressions for higher derivatives ∂kVg,n+1/∂L
k
n+1 evaluated at Ln+1 =

2πi. Evidence comes from the fact that (2) and (3) use generalised versions of the string
and dilaton equations. The Virasoro relations are a sequence of relations for the top degree
terms of Vg,n(L), with first two relations in the sequence the string and dilaton equations,
so may also have versions in terms of evaluations of derivatives of the volume polynomial
at Ln+1 = 2πi. The Virasoro relations recursively determine the top degree coefficients of
the volume polynomials by using the relations in a clever way. In recent work [16], Mulase
and Safnuk showed how to extend the Virasoro relations to the full volume polynomials. It
would be desirable to instead determine the polynomials recursively by relying on the more
straightforward expansion of a function around a point. It would be interesting to know if one
can express the results [16] in terms of derivatives of the volume polynomial at Ln+1 = 2πi.

In principle, we can use Mirzakhani’s recursion relation to get expressions for higher
derivatives of the volume evaluated at Ln+1 = 2πi. Differentiate the equation

∂(Ln+1Vg,n+1)

∂Ln+1
= Ag,n+1 + Bg,n+1

to get

∂2(Ln+1Vg,n+1)

∂L2
n+1

= ∂Ag,n+1

∂Ln+1
+ ∂Bg,n+1

∂Ln+1

and evaluate at Ln+1. Substitute the equation for the first derivative, to get the following
equation for the second derivative. Put E = ∑n

j=1 Lj∂/∂Lj , the Euler vector field:

∂2Vg,n+1

∂L2
n+1

(L, 2πi) = E · Vg,n(L)− (4g − 4 + n)Vg,n(L).

By taking higher derivatives of Mirzakhani’s relation we can recursively get equations for
higher derivatives. The strength of (2) and (3) is the simplification of Mirzakhani’s relations
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(1). It is not clear that the higher derivative relations obtained by the method above possess
this same strength. This leads to the following question: when does ∂kVg,n+1/∂L

k
n+1(L, 2πi)

depend only on Vg,n(L)?

Appendix

MAPLE routine for calculating V0,n(L)

> # input: symmetric polynomial f in n variables L1,...,Ln
# output: symmetric polynomial S in n+1 variables L1,…,L(n+1)
# satisfying S(L(n+1)=0)=f
sym:=proc(f) local i,j,k,m,S,T,T1,prod,sum,epsilon:
S:=f:
epsilon:=array[1,...,100]:
for i from 1 to 100 do epsilon[i]:=0: od:
while epsilon[n+1]<1 do
T:=subs(seq(L||j=(1-epsilon[j])*L||j,j=1,...,n),f):
T1:=0:
for i from 1 to n do
prod:=1:
for j from i+1 to n+1 do
prod:=prod*(1-epsilon[j])
od:
T1:=T1+prod*subs(L||i=L||(n+1),T):
od:
sum:=0: for k from 1 to n do sum:=sum+epsilon[k] od:
S:=S+(-1)ˆsum*T1:
for k from 1 to 100 do
if epsilon[k]=1 then epsilon[k]:=0
else epsilon[k]:=1: k:=100 end if:
od:
od:
S:=simplify(S):
end:

> # calculate the genus zero volumes recursively from evalua-
tion
# of V_(0,n+1) at L(n+1)=2*Pi*I
for n from 3 to 12 do
P:=0:
for j from 1 to n do
P:=P+int(L||j*V[n],L||j)
od:
Q0:=P:
C0:=simplify(coeff(Q0,Pi,0)):
sim:=sym(C0):
V[n+1]:=sim:
for k from 1 to n-2 do
P||k:=sim-C||(k-1):
Q||k:=subs(L||(n+1)=2*Pi*I,Q||(k-1)-P||k*Piˆ(2*k-2)):
C||k:=simplify(coeff(Q||k,Pi,2*k)):
sim:=sym(C||k):
V[n+1]:=V[n+1]+sim*Piˆ(2*k):
od:
od:
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