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Local topological recursion governs the enumeration of lattice points in Mg,n
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Abstract. The second author and Norbury initiated the enumeration of lattice points in the Deligne–Mumford

compactifications of moduli spaces of curves. They showed that the enumeration may be expressed in terms

of polynomials, whose top and bottom degree coefficients store psi-class intersection numbers and orbifold

Euler characteristics of Mg,n, respectively. Furthermore, they ask whether the enumeration is governed by

the topological recursion and whether the intermediate coefficients also store algebro-geometric information.

In this paper, we prove that the enumeration does indeed satisfy the topological recursion, although with

a modification to the initial spectral curve data. Thus, one can consider this to be one of the first known

instances of a natural enumerative problem governed by the so-called local topological recursion. Combining

the present work with the known relation between local topological recursion and cohomological field theory

should uncover the geometric meaning of the intermediate coefficients of the aforementioned polynomials.
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1 Introduction

Norbury proved that a certain count of lattice points in the moduli space of curvesMg,n stores information

about its intersection theory and orbifold Euler characteristic [30]. He furthermore showed that the enumer-

ation is governed by the topological recursion of Chekhov, Eynard and Orantin [8, 23, 31]. More recently,

Andersen, Chekhov, Norbury and Penner use the general theory that identifies topological recursion with

the Givental formalism to relate this enumeration to cohomological field theory [2, 3, 21].

The second author and Norbury introduced the related count of lattice points in Mg,n, the Deligne–
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Mumford compactification of the moduli space of curves [15]. For positive integers b1, b2, . . . , bn, they

define

Zg,n(b1, b2, . . . , bn) ⊂ Mg,n

to be the set of genus g stable curvesΣ with marked points (p1, p2, . . . , pn) such that there exists a morphism

f : Σ → CP
1 satisfying the following conditions.

(C1) The morphism f has degree b1 + b2 + · · ·+ bn and is regular over P1 \ {0, 1,∞}.

(C2) The ramification profile over 1 ∈ CP
1 is of the form (2, 2, . . . , 2) and the ramification profile over

∞ ∈ CP
1 is of the form (b1, b2, . . . , bn), with ramification order bk occurring at the point pk ∈ Σ.

(C3) Each point over 0 ∈ CP
1 has ramification order at least 2 or is a node of Σ.

The set Zg,n(b1, b2, . . . , bn) is typically the union of a finite set of discrete points in Mg,n with higher-

dimensional components that are naturally products of moduli spaces of curves. The latter arise from maps

f : Σ → CP
1 that have ghost components— that is, irreducible components of Σ that map entirely to 0 ∈ CP

1.

To properly “count” points in Zg,n(b1, b2, . . . , bn), one needs to account for both the orbifold nature ofMg,n

and the existence of these ghost components. This can be conveniently expressed via the orbifold Euler

characteristic as follows.

Definition 1.1. For positive integers b1, b2, . . . , bn, define

Ng,n(b1, b2, . . . , bn) = χ
(
Zg,n(b1, b2, . . . , bn)

)
.

The enumeration Ng,n enjoys the following properties, which can be found in the existing literature [15]

and are explained in greater detail in Section 2.1.

• Quasi-polynomiality. For (g, n) 6= (0, 1) or (0, 2), Ng,n(b1, b2, . . . , bn) is a symmetric quasi-polynomial

in b21, b
2
2, . . . , b

2
n of degree dimC Mg,n = 3g − 3 + n. We use the term quasi-polynomial to refer to a

function on Zn
+ that is polynomial on each fixed parity class. Observe that this allows us to extend

Ng,n(b1, b2, . . . , bn) to evaluation at bi = 0.

• Combinatorial recursion. The enumeration Ng,n(b1, b2, . . . , bn) can be interpreted as a weighted count

of combinatorial objects known as stable ribbon graphs. From this interpretation, one can deduce an

effective recursion to calculate Ng,n(b1, b2, . . . , bn).

• Psi-class intersection numbers. The top degree coefficients of the quasi-polynomial Ng,n store psi-class

intersection numbers on Mg,n.

• Orbifold Euler characteristics. The quasi-polynomial Ng,n satisfies Ng,n(0, 0, . . . , 0) = χ(Mg,n).

We previously mentioned that the enumeration of lattice points in the uncompactified moduli space of curves

Mg,n is governed by the topological recursion and consequently, related to cohomological field theory. It

is certainly natural to seek analogous results in the context of the compactified enumeration Ng,n. In this

regard, the second author and Norbury originally state the following.

(a) “It would be interesting to know whether the compactified lattice point polynomials can be used to define mul-

tidifferentials which also satisfy a topological recursion.” [15, p. 2343]

(b) “We remark that it is currently unknown whether or not the intermediate coefficients ofNg,n(b) store topological

information aboutMg,n.” [15, p. 2323]

In this paper, we settle problem (a) above by proving that the enumeration Ng,n is indeed governed by

the topological recursion, although with a modification to the initial spectral curve data that is explained

below. Although problem (b) above remains unresolved, our main theorem should allow one to invoke the

general theory that identifies topological recursion with the Givental formalism to yield a connection to

cohomological field theory [21]. This would then provide a relation between the intermediate coefficients of

Ng,n(b1, b2, . . . , bn) and the intersection theory of Mg,n. We aim to report on this work in the future.

The main result of the present work is the following.

2



Theorem 1.2. Topological recursion applied to the local spectral curve C
∗ equipped with the data

x(z) = z +
1

z
, y(z) = z and ω0,2(z1, z2) =

dz1 ⊗ dz2
(z1 − z2)2

+
dz1 ⊗ dz2
z1z2

(1)

produces multidifferentials whose expansions at zi = 0 satisfy

ωg,n(z1, z2, . . . , zn) =

∞∑

b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)

n∏

i=1

[bi]z
bi−1
i dzi, for (g, n) 6= (0, 1) or (0, 2).

Here, we use the notation [b] = b for b positive and [0] = 1.

The most notable aspect of the theorem is the nature of the spectral curve involved, which can be considered

local rather than global, in the sense discussed below.

• Global topological recursion.1 In the foundational literature on topological recursion, a spectral curve

is defined to be the data (C, x, y, T ), where C is a compact Riemann surface, x and y are mero-

morphic functions on C, and T is a Torelli marking on C — that is, a choice of symplectic basis for

H1(C;Z) [23, 24]. One usually also imposes some mild regularity conditions on this data, although

they play no role in the present discussion. The global topological recursion then recursively produces

so-called correlation differentials ωg,n for integers g ≥ 0 and n ≥ 1. In particular, ω0,2(z1, z2) is

defined implicitly by the fact that it has double poles without residue along the diagonal z1 = z2, is

holomorphic away from the diagonal, and is normalised on the A-cycles of the Torelli marking via the

equation ∮

Ai

ω0,2(z1, z2) = 0, for i = 1, 2, . . . , genus(C).

The compact nature of C ensures that ω0,2 is uniquely defined from the spectral curve data. A con-

sequence of the global topological recursion is that for (g, n) 6= (0, 1) or (0, 2), the correlation differ-

entials ωg,n have poles only at the branch points of the spectral curve, where dx vanishes.

• Local topological recursion. One can observe that the global topological recursion actually only requires

the local information of the meromorphic functions x, y and the bidifferential ω0,2 at the branch

points of the spectral curve, in order to produce the correlation differentials. Thus, one can more

generally define topological recursion on spectral curves comprising isolated local germs of x, y and

ω0,2, without requiring the existence of a global compact Riemann surface on which this data can

be defined. In particular, the local topological recursion requires ω0,2 to become part of the spectral

curve data. This viewpoint was promoted by Dunin-Barkowksi, Orantin, Shadrin and Spitz in their

work relating topological recursion to Givental’s approach to cohomological field theory [21].

The spectral curve of Theorem 1.2 is local in the sense that the data cannot be extended to CP
1 such that

ω0,2 satisfies the conditions of the global topological recursion. The simple poles of ω0,2 at z1 = 0 and z2 = 0

lead to the correlation differentials ωg,n(z1, z2, . . . , zn) having simple poles at zi = 0 more generally. This

departs from the usual behaviour exhibited by the global topological recursion, in which the poles appear

only at the branch points of the spectral curve, which correspond to zi = ±1 in our case.

It was previously unclear whether there were benefits to using the local version of the topological recursion

beyond the more general viewpoint it afforded. Indeed, Dunin-Barkowski [18] states that “local topological

recursion (to the moment) lacks interesting applications or profound meaning separate from what originates from

ordinary (global) spectral curve topological recursion”. Theorem 1.2 above now provides an instance of the

local topological recursion applied to a natural enumerative problem. The only other such example in the

literature known to us is the concurrent work of Andersen et al., which relates Masur–Veech volumes to

local topological recursion on the Airy spectral curve, equipped with an interesting choice of ω0,2 [1].

1We use the expression global topological recursion to contrast it with its local counterpart. However, this is not to be confused with the

global version of topological recursion introduced by Bouchard and Eynard [5].
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The proof of Theorem 1.2 adopts a general strategy that has been previously employed to show that topo-

logical recursion governs enumerative problems, such as counting lattice points in Mg,n [31] and several

variants of Hurwitz numbers [6, 11, 13, 22]. Minor technical difficulties arise from the modification to ω0,2,

which introduces logarithmic terms into the topological recursion kernel.

The general theory of topological recursion allows one to calculate so-called symplectic invariants Fg ∈ C for

g = 0, 1, 2, . . . and to deduce relations known as string and dilaton equations. Thus, we have the following

immediate consequence of our main result, which previously appeared in the literature with an alternative

proof [15].

Corollary 1.3. The string and dilaton equations for the topological recursion imply the following known relations,

respectively, for (g, n) 6= (0, 1) or (0, 2) and b1, b2, . . . , bn ≥ 0. The hat over bk in the first equation denotes the fact

that we omit it as an argument.

Ng,n+1(1, b1, b2, . . . , bn) =

n∑

k=1

bk−1∑

a=0

[a]Ng,n(a, b1, . . . , b̂k, . . . , bn)

Ng,n+1(2, b1, b2, . . . , bn)−Ng,n+1(0, b1, b2, . . . , bn) = (2g − 2 + n)Ng,n(b1, b2, . . . , bn)

One potential application of the present work is to give an explicit relation between the enumeration Ng,n

and the algebraic geometry of Mg,n. A priori, one might expect such a relation due to the definition

of Ng,n(b1, b2, . . . , bn) as a virtual count of the set Zg,n(b1, b2, . . . , bn) ⊂ Mg,n. Furthermore, we note

that Zg,n(b1, b2, . . . , bn) may alternatively be interpreted as a subset of Mg,n(CP
1;
∑
bi), the moduli space

of stable maps, making a connection with the Gromov–Witten theory of the sphere. Theorem 1.2 now

provides a promising pathway towards the ultimate proof of a relation between the enumeration Ng,n and

the intersection theory of Mg,n via the identification of topological recursion with Givental’s formula [21].

A glance at Appendix A naturally leads to the conjecture below. The data supports the speculation that the

coefficients of Ng,n store algebro-geometric content.

Conjecture 1.4. The polynomials underlying the quasi-polynomial Ng,n have non-negative coefficients.

The structure of the paper is as follows.

• In Section 2, we briefly review the relevant definitions and results concerning the count of lattice points

in Mg,n appearing in the previous work of the second author and Norbury [15]. In particular, we aim

to reveal the sense in which Ng,n(b1, b2, . . . , bn) counts lattice points in Mg,n and explain why the

enumeration is natural. We furthermore provide a definition and concise exposition of the topological

recursion, for both the global and local settings.

• In Section 3, we give the proof of Theorem 1.2. This requires some preliminary work to express the

combinatorial recursion forNg,n in terms of natural generating functions and to deduce some analytic

structure for them. Finally, we match the combinatorial recursion with the topological recursion,

adopting a general strategy that has previously been employed in the literature to prove that certain

enumerative problems satisfy the topological recursion.

• In Section 4, we discuss some further issues stemming from our work. We prove the consequences

stated above as Corollary 1.3 and mention the potential relation to cohomological field theory. We

conclude with some brief remarks on quantum curves and the question of where the local spectral

curve came from. An answer to this may help to identify other interesting instances and applications

of the local topological recursion.

• In Appendix A, we present a table of the polynomials underlying the enumeration Ng,n for small

values of g and n.
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2 Background

2.1 Counting lattice points in Mg,n

In this section, we discuss the enumeration given in Definition 1.1. Our exposition aims to reveal the sense

in which Ng,n(b1, b2, . . . , bn) counts lattice points in Mg,n and explain why the enumeration is natural. We

begin by recalling a definition for a ribbon graph that is well-suited to our purposes.

Definition 2.1. A ribbon graph is a finite graph embedded into an oriented compact surface such that its

complement is a disjoint union of topological disks, which we call faces. We say that a ribbon graph has

type (g, n) if its underlying surface is connected with genus g and there are n faces labelled from 1 up to n.

Unless otherwise stated, we exclusively consider ribbon graphs in which every vertex has degree at least two.

An isomorphism between two ribbon graphs comprises bijections between their respective vertices, oriented

edges and faces that are realised by an orientation-preserving homeomorphism between their underlying

surfaces and preserve all adjacencies and face labels.

A construction of Strebel associates to a smooth genus g curve with n marked points, each decorated by a

positive real number, a metric ribbon graph of type (g, n) [34]. A metric ribbon graph is a ribbon graph whose

vertex degrees are at least three, with a positive real number associated to each edge. The metric structure

naturally endows the faces with perimeters that are equal to the original decorations on the marked points.

The construction allows one to form the orbifold cell decompositions

Mg,n × R
n
+
∼=
⊔

Γ

PΓ and Mg,n
∼=
⊔

Γ

PΓ(b1, b2, . . . , bn),

where the unions are over the finite set of ribbon graphs of type (g, n) whose vertex degrees are at least

three. The cell PΓ consists of the metric ribbon graphs whose underlying ribbon graph is equal to Γ. The

latter decomposition is obtained from the former by prescribing the face perimeters b1, b2, . . . , bn ∈ R+.

These cell decompositions are fundamental in Kontsevich’s proof of Witten’s conjecture, which proceeds by

calculation of the volume of the moduli space with respect to a particular symplectic structure [27]. This

is closely related to Mirzakhani’s calculation of the Weil–Petersson volumes of moduli spaces of hyperbolic

surfaces and indeed, arises as a particular limit of it [10, 29]. Norbury proposed to discretise the volume cal-

culation, by restricting to positive integer values of b1, b2, . . . , bn and counting lattice points in the resulting

integral polytopes PΓ(b1, b2, . . . , bn). These correspond to metric ribbon graphs with vertex degrees at least

three and integral edge lengths or equivalently, ribbon graphs with vertex degrees at least two. Thus, we

have the notion of lattice points in Mg,n and the associated enumeration possesses a variety of interesting

properties [2, 3, 30, 31].

Ribbon graphs appear in diverse mathematical settings and lie in natural bijection with several other com-

binatorial and geometric objects [28]. For our purposes, it is advantageous to associate to a ribbon graph of

type (g, n) with perimeters b1, b2, . . . , bn a branched cover f : Σ → CP
1 from a genus g smooth curve with

n marked points (p1, p2, . . . , pn) satisfying the following conditions.

(C1) The morphism f has degree b1 + b2 + · · ·+ bn and is regular over P1 \ {0, 1,∞}.

(C2) The ramification profile over 1 ∈ CP
1 is of the form (2, 2, . . . , 2) and the ramification profile over

∞ ∈ CP
1 is of the form (b1, b2, . . . , bn), with ramification order bk occurring at the point pk ∈ Σ.

(Ĉ3) Each point over 0 ∈ CP
1 has ramification order at least 2.

The construction is such that the ribbon graph is recovered by taking f−1([0, 1]) ⊂ Σ. The preimages of

0, 1,∞ then naturally correspond to vertices, edges and faces of the ribbon graph, respectively. The labelling

of the marked points gives rise to a labelling of the faces of the ribbon graph. It is common to describe

a ribbon graph via the permutation model [28], and the branched cover encodes the associated triple of

permutations via its monodromy around 0, 1 and ∞.
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This perspective allows one to interpret the enumeration of ribbon graphs as an enumeration of maps to CP
1,

thereby making thematic contact with Gromov–Witten theory. However, we observe that stable curves and

stable maps do not feature in this count. The previous work of the second author and Norbury aims to

“compactify” the count, with the aim of introducing an enumeration that is more natural from the Gromov–

Witten viewpoint [15]. The basic premise is to consider morphisms f : Σ → CP
1 with domains that are

stable curves and to consequently adjust condition (Ĉ3) above to the following natural generalisation, as

mentioned in Section 1.

(C3) Each point over 0 ∈ CP
1 has ramification order at least 2 or is a node of Σ.

Again, one can consider the preimage of the interval [0, 1] under a morphism satisfying conditions (C1),

(C2) and (C3). The domain curve may be nodal and each component that maps with positive degree to CP
1

receives the structure of a ribbon graph. On the other hand, there may be components that map with degree

zero to 0 ∈ CP
1 and we refer to these as ghost components. The structure of such a preimage is encapsulated by

the combinatorial notion of a stable ribbon graph, which is explained in the previous work of the second author

and Norbury [15]. Forgoing the details, one can interpret Ng,n(b1, b2, . . . , bn) as a weighted enumeration

of stable ribbon graphs of type (g, n) with face perimeters prescribed by b1, b2, . . . , bn. The weight of

a stable ribbon graph is the reciprocal of its number of automorphisms multiplied by a contribution of

χ(Mg′,n′) for each maximal ghost component of genus g′ that is connected to non-ghost components by n′

nodes. The notion of stable ribbon graph is the primary tool used to prove the combinatorial recursion for

Ng,n(b1, b2, . . . , bn) stated below.

We record the following properties of the enumeration Ng,n(b1, b2, . . . , bn), the first two of which are crucial

in the proof of our main result in Section 3.

Theorem 2.2 (Do and Norbury [15]).

1. Quasi-polynomiality. For (g, n) 6= (0, 1) or (0, 2), Ng,n(b1, b2, . . . , bn) is a symmetric quasi-polynomial

in b21, b
2
2, . . . , b

2
n of degree dimC Mg,n = 3g − 3 + n. We use the term quasi-polynomial to refer to a

function on Zn
+ that is polynomial on each fixed parity class. Observe that Ng,n(b1, b2, . . . , bn) = 0 whenever

b1 + b2 + · · ·+ bn is odd and that quasi-polynomiality allows us to extend Ng,n(b1, b2, . . . , bn) to evaluation

at bi = 0.

2. Combinatorial recursion. For 2g− 2+n ≥ 2 and b1, b2, . . . , bn ≥ 0, we have the following equation, where

S = {1, 2, . . . , n} and bI = (bi1 , bi2 , . . . , bik) for I = {i1, i2, . . . , ik}.
(

n∑

i=1

bi

)
Ng,n(bS) =

∑

i<j

∑

p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})

+
1

2

∑

i

∑

p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ)

]

In the summations, p, q, r vary over all non-negative integers and we use the notation [p] = p for p positive and

[0] = 1. The word stable over the final summation denotes that we exclude all terms with N0,1 or N0,2.

3. Psi-class intersection numbers. For non-negative integers α1 + α2 + · · · + αn = 3g − 3 + n, the coeffi-

cient of b2α1

1 b2α2

2 · · · b2αn
n in any non-zero polynomial underlying Ng,n(b1, b2, . . . , bn) is equal to the psi-class

intersection number
1

25g−6+2n α1!α2! · · · αn!

∫

Mg,n

ψα1

1 ψα2

2 · · ·ψαn

n .

4. Orbifold Euler characteristics. Let χg,n denote the orbifold Euler characteristic of Mg,n. The quasi-

polynomial Ng,n(b1, b2, . . . , bn) satisfies Ng,n(0, 0, . . . , 0) = χg,n. Furthermore, these numbers obey the

following relation for 2g − 2 + n ≥ 1, with the convention χ0,1 = 0 and χ0,2 = 1.

χg,n+1 = (2 − 2g − n)χg,n +
1

2
χg−1,n+2 +

1

2

∑

g1+g2=g
i+j=n

(
n

i

)
χg1,i+1 χg2,j+1
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2.2 Topological recursion

The topological recursion of Chekhov, Eynard and Orantin emerged as an abstract formulation of loop

equations from the theory of matrix models [8, 23]. Beyond the original applications to matrix models,

topological recursion has been shown or conjectured to govern a diverse array of problems in mathematics

and physics, including the following: intersection theory on moduli spaces of curves [23]; enumeration of

ribbon graphs and hypermaps [14, 17, 20, 31]; various kinds of Hurwitz numbers [6, 11, 12, 13, 22, 19];

Gromov–Witten invariants of CP1 [21, 33]; Gromov–Witten invariants of toric Calabi–Yau threefolds [7, 25,

26]; and asymptotics of coloured Jones polynomials of knots [4, 9].

In general, the topological recursion takes as input a spectral curve and produces multidifferentials ωg,n for

integers g ≥ 0 and n ≥ 1, which we refer to as correlation differentials. If the underlying Riemann surface

of the spectral curve is C, then ωg,n is a symmetric meromorphic section of the line bundle π∗
1(T

∗C) ⊗

π∗
2(T

∗C)⊗ · · · ⊗ π∗
n(T

∗C) on the Cartesian product Cn, where πi : C
n → C denotes projection onto the ith

factor. An explicit definition of topological recursion follows.

• Initial data. A global spectral curve is a tuple (C, x, y, T ), where C is a compact Riemann surface,

x and y are meromorphic functions on C, and T is a Torelli marking on C — that is, a choice of

symplectic basis for H1(C;Z). We furthermore require the zeroes of dx to be simple and disjoint from

the zeroes of dy.

• Base cases. Let ω0,1(z1) = −y(z1) dx(z1). Let ω0,2(z1, z2) be the unique meromorphic bidifferential

on C that has double poles without residue along the diagonal z1 = z2, is holomorphic away from the

diagonal, and is normalised on the A-cycles of the Torelli marking via the equation

∮

Ai

ω0,2(z1, z2) = 0, for i = 1, 2, . . . , genus(C).

• Recursion. For 2g − 2 + n > 0, the multidifferentials ωg,n(z1, z2, . . . , zn) are defined recursively by

the following equation, where S = {2, 3, . . . , n} and zI = (zi1 , zi2 , . . . , zik) for I = {i1, i2, . . . , ik}.

ωg,n(z1, zS) =
∑

α

Res
z=α

K(z1, z)

[
ωg−1,n+1 (z, s(z), zS) +

◦∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(s(z), zJ )

]

The outer summation is over the zeroes α of dx, while the symbol ◦ over the inner summation denotes

that we exclude all terms with ω0,1. The function s(z) is the unique non-identity holomorphic map

defined in a neighbourhood of the simple branch point α ∈ C satisfying x(s(z)) = x(z). Finally, the

kernel K(z1, z) is defined by

K(z1, z) = −

∫ z

o
ω0,2(z1, · )

[y(z)− y(s(z))] dx(z)
,

where o can be taken to be an arbitrary point on the spectral curve.

As mentioned in the introduction, one can observe that the topological recursion as defined above actually

only requires the local information of the meromorphic functions x, y and the bidifferential ω0,2 at the

branch points of the spectral curve, in order to produce the correlation differentials. Thus, one can more

generally define topological recursion on spectral curves comprising isolated local germs of x, y and ω0,2,

without requiring the existence of a global compact Riemann surface on which this data can be defined. We

refer to this generalisation as local topological recursion, which we may define as follows.

• Initial data. A local spectral curve is a tuple (C, x, y, ω0,2), where C is a Riemann surface that may be

non-compact and disconnected, x and y are meromorphic functions on C, and ω0,2 is a meromorphic

bidifferential on C that has double poles without residue along the diagonal z1 = z2 and is holomorphic

away from the diagonal. We furthermore require the zeroes of dx to be simple and disjoint from the

zeroes of dy.
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• Base cases. Let ω0,1(z1) = −y(z1) dx(z1) and let ω0,2(z1, z2) be as in the initial data.

• Recursion. For 2g − 2 + n > 0, the multidifferentials ωg,n(z1, z2, . . . , zn) are defined recursively by

the same equation as in the global topological recursion above.

Local topological recursion was introduced by Dunin-Barkowksi, Orantin, Shadrin and Spitz in their work

relating topological recursion to Givental’s approach to cohomological field theory [21]. There they take

C = D1 ⊔D2 ⊔ · · · ⊔ DN to be a disjoint union of N small disks and they endow Di with a local coordinate

z such that x(z) = z2 + ai in Di, for i = 1, 2, . . . , N . The initial data can then be expressed in terms of the

coefficients of the local expansions of y(z) in Di and ω0,2(z1, z2) in Di ×Dj for i, j = 1, 2, . . . , N .

The spectral curve of Theorem 1.2 is local in the sense that the data cannot be extended to a compact

Riemann surface such that ω0,2 satisfies the conditions of the global topological recursion. Although we do

not take this approach here, the spectral curve could alternatively have been presented more abstractly as

the disjoint union of two small disks, corresponding to the two branch points.

Example 2.3. Recall that the local spectral curve of Theorem 1.2 is C∗ equipped with the data

x(z) = z +
1

z
, y(z) = z and ω0,2(z1, z2) =

dz1 ⊗ dz2
(z1 − z2)2

+
dz1 ⊗ dz2
z1z2

.

The branch points are the zeroes of dx — namely, z = 1 and z = −1. At both of these branch points, the

local involution s(z) is given by s(z) = 1
z . Thus, the recursion kernel can be taken to be

K(z1, z) = −

∫ z

o
ω0,2(z1, · )

[y(z)− y(s(z))] dx(z)
= −

∫ z

∞
dz1 dt
(z1−t)2 +

∫ z

1
dz1 dt
z1 t

[y(z)− y(s(z))] dx(z)
= −

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2
dz1
dz

.

The recursion produces the following formulas in the cases (g, n) = (0, 3) and (1, 1).

ω0,3(z1, z2, z3)

dz1 dz2 dz3
=
∑

α=±1

Res
z=α

K(z1, z)

dz1 dz2 dz3

[
ω0,2(z, z2)ω0,2(

1
z , z3) + ω0,2(z, z3)ω0,2(

1
z , z2)

]

=
∑

α=±1

Res
z=α

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2

[
1

(z − z2)2 (1− zz3)2
+

1

(z − z3)2 (1 − zz2)2

]
dz

=
1

2z1z2z3

[ 3∏

i=1

z2i − zi + 1

(zi − 1)2
+

3∏

i=1

z2i + zi + 1

(zi + 1)2

]

ω1,1(z1)

dz1
=
∑

α=±1

Res
z=α

K(z1, z)

dz1
ω0,2(z,

1
z )

=
∑

α=±1

Res
z=α

[
1

z1 − z
+

log(z)

z1

]
z3

(1− z2)2

(
1

(z2 − 1)2
+ 1

)
dz

=
5z81 − 8z61 + 18z41 − 8z21 + 5

12z1(z21 − 1)4

3 Proof of the main theorem

For the proof of Theorem 1.2, we adopt a general strategy that has been previously used to prove the

topological recursion for enumerative problems, such as counting lattice points in uncompactified moduli

spaces of curves [31] and various kinds of Hurwitz numbers [22, 6, 13, 11]. The modification to ω0,2 in our

result adds minor technical difficulties, since logarithmic terms are introduced into the topological recursion

kernel. We break down the proof into the following parts.

1. Define natural multidifferentials Ωg,n(z1, z2, . . . , zn) for the enumerative problem and use the quasi-

polynomiality of Theorem 2.2 to deduce analytic and symmetry properties for Ωg,n(z1, z2, . . . , zn)

(Proposition 3.4).

2. Express the combinatorial recursion of Theorem 2.2 in terms of the aforementioned multidifferentials

Ωg,n(z1, z2, . . . , zn) (Proposition 3.6).
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3. Break the natural symmetry of the recursion for Ωg,n(z1, z2, . . . , zn) by taking the symmetric part with

respect to z1, using the symmetry properties of Proposition 3.4 (Proposition 3.7).

4. Use the fact that a rational differential form is equal to the sum of its principal parts, where the

principal part of Ω(z1) at z1 = α may be defined by

Res
z=α

dz1
z1 − z

Ω(z). (2)

Finally, match the resulting recursion for the multidifferentials Ωg,n(z1, z2, . . . , zn) with the topological

recursion for the correlation differentials ωg,n(z1, z2, . . . , zn).

These four steps are carried out in the following four subsections, respectively.

3.1 Structure of the enumeration

From the enumerationNg,n(b1, b2, . . . , bn) of Definition 1.1, we define the following formal multidifferentials.

Ωg,n(z1, z2, . . . , zn) =

∞∑

b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)

n∏

i=1

[bi]z
bi−1
i dzi (3)

Theorem 1.2 is essentially the statement that the correlation differentials produced by the topological recur-

sion applied to the spectral curve of equation (1) satisfy

Ωg,n(z1, z2, . . . , zn) = ωg,n(z1, z2, . . . , zn), for (g, n) 6= (0, 1) or (0, 2).

The primary aim is to understand the structure of Ωg,n(z1, z2, . . . , zn), which will play a crucial role in the

proof of Theorem 1.2. The quasi-polynomiality of Ng,n(b1, b2, . . . , bn) stated in Theorem 2.2 is equivalent

to the fact that for (g, n) 6= (0, 1) or (0, 2),

Ωg,n(z1, z2, . . . , zn) ∈ V (z1)⊗ V (z2)⊗ · · · ⊗ V (zn), (4)

where we define the vector space V (z) as follows.

Definition 3.1. Define the complex vector space of differential forms

V (z) =

{
∞∑

b=0

[b]Q(b)zb−1 dz
∣∣∣ Q(b) is a quasi-polynomial in b2

}
.

Lemma 3.2. The vector space V (z) has the basis
{
ξeven0 (z), ξodd0 (z), ξeven1 (z), ξodd1 (z), ξeven2 (z), ξodd2 (z), . . .

}
,

where

ξevenk (z) =
d

dz

(
z
d

dz

)2k
z2

1− z2
dz +

δk,0

z
dz and ξoddk (z) =

d

dz

(
z
d

dz

)2k
z

1− z2
dz.

Proof. Begin by observing that a quasi-polynomial is a unique linear combination of monomials, acting on

either even or odd arguments. So we have the following basis for V (z), as k varies over the non-negative

integers.

ξevenk (z) =
∑

b≥0
b even

[b] · b2kzb−1 dz ξoddk (z) =
∑

b≥0
b odd

[b] · b2kzb−1 dz

=
d

dz

(
z
d

dz

)2k ∑

b>0
b even

zb dz +
δk,0

z
dz =

d

dz

(
z
d

dz

)2k ∑

b>0
b odd

zb dz

=
d

dz

(
z
d

dz

)2k
z2

1− z2
dz +

δk,0

z
dz =

d

dz

(
z
d

dz

)2k
z

1− z2
dz �
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Example 3.3. It was previously shown that [15]

N0,3(b1, b2, b3) =

{
1, b1 + b2 + b3 even,

0, b1 + b2 + b3 odd,
and N1,1(b1) =

{
1
48 (b

2
1 + 20), b1 even,

0, b1 odd.

Hence, we can express the corresponding generating differentials in terms of the basis elements of Lemma 3.2.

Ω0,3(z1, z2, z3) = ζeven0 (z1) ζ
even
0 (z2) ζ

even
0 (z3) + ζeven0 (z1) ζ

odd
0 (z2) ζ

odd
0 (z3)

+ ζodd0 (z1) ζ
even
0 (z2) ζ

odd
0 (z3) + ζodd0 (z1) ζ

odd
0 (z2) ζ

even
0 (z3)

=
dz1 dz2 dz3
2z1z2z3

[ 3∏

i=1

z2i − zi + 1

(zi − 1)2
+

3∏

i=1

z2i + zi + 1

(zi + 1)2

]

Ω1,1(z1) =
1

48
(ζeven1 (z1) + 20 ζeven0 (z1))

=
dz1
12z1

5z81 − 8z61 + 18z41 − 8z21 + 5

(z21 − 1)4

A consequence of Lemma 3.2 is that elements of V (z) are rational differential forms. The next result reveals

that they possess interesting pole structure and symmetry.

Proposition 3.4. For all Ω(z) ∈ V (z),

• Ω(z) has poles only at z = 1, z = −1 and z = 0, with only simple poles occurring at z = 0; and

• Ω(z) + Ω(1z ) = 0.

Proof. The first statement is immediate from Lemma 3.2, since the operator d
dz (z ·) cannot introduce new

poles onCP
1. The second statement can be verified on the basis elements ξevenk (z) and ξoddk (z), then deduced

for all Ω(z) ∈ V (z) by linearity. The verification on basis elements is as follows, using the observation that
1
z

d
d(1/z) = −z d

dz .

ξevenk (z) + ξevenk (1z ) = d

[(
z
d

dz

)2k
z2

1− z2
+ δk,0 log(z)

]
+ d

[(
− z

d

dz

)2k (1z )
2

1− (1z )
2
+ δk,0 log(

1
z )

]

= d

[(
z
d

dz

)2k(
z2

1− z2
+

1

z2 − 1

)
+ δk,0

(
log(z) + log(1z )

)]
= 0

ξoddk (z) + ξoddk (1z ) = d

[(
z
d

dz

)2k
z

1− z2

]
+ d

[(
− z

d

dz

)2k 1
z

1− (1z )
2

]

= d

[(
z
d

dz

)2k(
z

1− z2
+

z

z2 − 1

)]
= 0 �

We next state a lemma concerning V (z) that will be necessary for the subsequent proof of Theorem 1.2.

Lemma 3.5. For all Ω(z) ∈ V (z),

∑

α=±1

Res
z=α

Ω(z) log(z) = Res
z=0

Ω(z). (5)

Proof. We simply verify the equation for the basis elements ξevenk (z) and ξoddk (z), then deduce it for all

Ω(z) ∈ V (z) by linearity. Note that the residue on the right side is 0 for each basis element, apart from
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ξeven0 (z). So let us first suppose that k ≥ 1 and verify the equation for ξevenk (z).

∑

α=±1

Res
z=α

ξevenk (z) log(z) = −
∑

α=±1

Res
z=α

[ ∫
ξevenk (z)

]
d log(z) = −

∑

α=±1

Res
z=α

[(
z
d

dz

)2k
z2

1− z2

]
dz

z

= −
∑

α=±1

Res
z=α

[(
z
d

dz

)2k
1

1− z2

]
dz

z

= Res
z=0

[
d

dz

(
z
d

dz

)2k−1
1

1− z2

]
dz

The first line uses the fact that a function F (z) that is meromorphic at z = α satisfies Res
z=α

dF = 0. It follows

that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z) and g(z) that are meromorphic at z = α. The second

line uses the fact that k is positive. The third line uses the fact that the sum of the residues of a rational

differential form is equal to 0. It is clear that the final expression obtained is equal to 0, since the argument

is holomorphic at z = 0. This completes the proof in this case.

The analogous calculation for ξoddk (z) and k ≥ 0 is almost identical to the previous and is omitted for brevity.

It remains to treat the case ξeven0 (z), in which case the residue on the right side of the equation is evidently

equal to 1. We calculate the left side as follows.

∑

α=±1

Res
z=α

ξeven0 (z) log(z) =
∑

α=±1

Res
z=α

[
d

dz

z2

1− z2
dz +

dz

z

]
log(z) =

∑

α=±1

Res
z=α

[
d

dz

z2

1− z2
dz

]
log(z)

= −
∑

α=±1

Res
z=α

[
z2

1− z2

]
dz

z
= −

∑

α=±1

Res
z=α

z

1− z2
dz

The first line uses the definition of ξeven0 (z) and removes a summand that is clearly holomorphic at z = ±1.

The second line uses the fact that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z) and g(z) that are

meromorphic at z = α. It is then straightforward to calculate that the final expression obtained is equal to 1.

This completes the proof in this case. �

3.2 Combinatorial recursion

We now express the combinatorial recursion of Theorem 2.2 in terms of natural generating functions. Rather

than using the multidifferentials Ωg,n(z1, z2, . . . , zn) defined earlier, it will be convenient to work with the

closely related generating functions

Wg,n(z1, z2, . . . , zn) =
Ωg,n(z1, z2, . . . , zn)

dz1 dz2 · · · dzn
=

∞∑

b1,b2,...,bn=0

Ng,n(b1, b2, . . . , bn)

n∏

i=1

[bi]z
bi−1
i .

Proposition 3.6. For 2g − 2 + n ≥ 2, we have the following equation, where S = {1, 2, . . . , n} and zI =

(zi1 , zi2 , . . . , zik) for I = {i1, i2, . . . , ik}.

n∑

i=1

∂

∂zi
ziWg,n(zS) =

∑

i<j

(
∂

∂zi

[
2

zj

z3i
(1 − z2i )

2
Wg,n−1(zS\{j})

]
+

∂

∂zj

[
2

zi

z3j

(1− z2j )
2
Wg,n−1(zS\{i})

]

+ 2
∂

∂zi

∂

∂zj

[
zj

zi − zj

z3i
(1 − z2i )

2
Wg,n−1(zS\{j})−

zi

zi − zj

z3j

(1− z2j )
2
Wg,n−1(zS\{i})

])

+

n∑

i=1

∂

∂zi

z4i
(1 − z2i )

2

[
Wg−1,n+1(zi, zi, zS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Wg1,|I|+1(zi, zI)Wg2,|J|+1(zi, zJ )

]

Proof. The combinatorial recursion of Theorem 2.2 states that for 2g− 2+ n ≥ 2 and b1, b2, . . . , bn ≥ 0, we
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have the following equation.
(

n∑

i=1

bi

)
Ng,n(bS) =

∑

i<j

∑

p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})

+
1

2

∑

i

∑

p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ)

]

Let us define the operators

O =

∞∑

b1,b2,...,bn=0

[ · ]

n∏

i=1

[bi]z
bi−1
i and OJ =

∞∑

bi=0:i/∈J

[ · ]
∏

i/∈J

[bi]z
bi−1
i .

The result arises from applying the operator O to both sides of the combinatorial recursion. The left side

becomes
∞∑

b1,b2,...,bn=0

(
n∑

i=1

bi

)
Ng,n(bS)

n∏

i=1

[bi]z
bi−1
i =

n∑

i=1

∞∑

b1,b2,...,bn=0

∂

∂zi
zi

(
Ng,n(bS)

n∏

i=1

[bi]z
bi−1
i

)

=

n∑

i=1

∂

∂zi
ziWg,n(zS). (∗)

Applying the operator O to the (i, j)th summand in the first term on the right side of the combinatorial

recursion yields

∞∑

b1,b2,...,bn=0

∑

p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j})
n∏

i=1

[bi]z
bi−1
i

= Oi,j

∞∑

bi,bj=0

∑

p+q=bi+bj
q even

[p]q Ng,n−1(p,bS\{i,j}) [bi] [bj ]z
bi−1
i z

bj−1
j

= Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

p+q∑

k=0

[k] [p+ q − k]zk−1
i z

p+q−k−1
j

= Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

[
∂

∂zi
z
p+q
i z−1

j +
∂

∂zj
z−1
i z

p+q
j

]

+Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

(
z
p+q−1
i z1j + z

p+q−2
i z2j + · · ·+ z1i z

p+q−1
j

)
.

Consider the first of the two terms in this last expression and use
∑

q even
qzq = 2z2

(1−z2)2 to obtain the following.

Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})

[
∂

∂zi
z
p+q
i z−1

j +
∂

∂zj
z−1
i z

p+q
j

]

= Oi,j
∂

∂zi
z−1
j zi

∞∑

q=0
q even

qz
q
i

∞∑

p=0

[p]Ng,n−1(p,bS\{i,j}) z
p−1
i

+Oi,j
∂

∂zj
z−1
i zj

∞∑

q=0
q even

qz
q
j

∞∑

p=0

[p]Ng,n−1(p,bS\{i,j}) z
p−1
j

=
∂

∂zi

[
2

zj

z3i
(1− z2i )

2
Wg,n−1(zS\{j})

]
+

∂

∂zj

[
2

zi

z3j

(1− z2j )
2
Wg,n−1(zS\{i})

]
(∗)
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Now consider the second term in a similar fashion to obtain the following.

Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

(
z
p+q−1
i z1j + z

p+q−2
i z2j + · · ·+ z1i z

p+q−1
j

)

= Oi,j

∞∑

p,q=0
q even

[p]q Ng,n−1(p,bS\{i,j})
∂

∂zi

∂

∂zj

z
p+q
i zj − ziz

p+q
j

zi − zj

= Oi,j
∂

∂zi

∂

∂zj

[
1

zi − zj

∞∑

p,q=0

[p]q Ng,n−1(p,bS\{i,j})
(
z
p+q
i zj − ziz

p+q
j

)]

= 2
∂

∂zi

∂

∂zj

[
zj

zi − zj

z3i
(1− z2i )

2
Wg,n−1(zS\{j})−

zi

zi − zj

z3j

(1− z2j )
2
Wg,n−1(zS\{i})

]
(∗)

Applying the operator O to twice the ith summand in the second term on the right side of the combinatorial

recursion yields

∞∑

b1,b2,...,bn=0
p+q+r=bi

r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ )

]
n∏

i=1

[bi]z
bi−1
i

= Oi

∑

bi=0
p+q+r=bi

r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ)

]
[bi]z

bi−1
i

= Oi
∂

∂zi
zi

∞∑

p,q,r=0
r even

[p][q]r

[
Ng−1,n+1(p, q,bS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ )

]
z
p+q+r−1
i

=
∂

∂zi

2z4i
(1− z2i )

2

[
Wg−1,n+1(zi, zi, zS\{i}) +

stable∑

g1+g2=g
I⊔J=S\{i}

Wg1,|I|+1(zi, zI)Wg2,|J|+1(zi, zJ )

]
(∗)

Finally, combine all of the contributions from the expressions marked by (∗) to obtain the desired result. �

3.3 Breaking the symmetry

A feature of the topological recursion is that it produces symmetric meromorphic multidifferentials from a

recursion that is manifestly asymmetric, with a special role played by the variable z1. We break the symmetry

in the recursion of Proposition 3.6 by applying the operator

F (z1) 7→ F (z1)−
1

z21
F ( 1

z1
)

to every term appearing. In a precise sense, this amounts to taking the symmetric part with respect to

the involution s(z) = 1
z appearing in the topological recursion, stated at the level of functions rather than

differentials.

Recall that equation (4) combined with Proposition 3.4 assert that

Ωg,n(z1, z2, . . . , zn) + Ωg,n(
1
z1
, z2, . . . , zn) = 0.

At the level of generating functions, this translates to the property

Wg,n(z1, z2, . . . , zn)−
1

z21
Wg,n(

1
z1
, z2, . . . , zn) = 0, (6)

which will be useful in subsequent calculations.
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Proposition 3.7. For 2g − 2 + n ≥ 2, we have the following equation, where S = {2, 3, . . . , n} and zI =

(zi1 , zi2 , . . . , zik) for I = {i1, i2, . . . , ik}.

Wg,n(z1, zS)− Res
p=0

Wg,n(p, zS) dp

z1
=

n∑

j=2

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z31

(1− z21)
2
Wg,n−1(z1, zS\{j})

−

n∑

j=2

∂

∂zj

[(
1

z1 − zj
+

zj

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]

+
z31

(1− z21)
2

[
Wg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ )

]

Proof. As mentioned above, we apply the operator F (z1) 7→ F (z1)−
1
z2

1

F ( 1
z1
) to all terms appearing in the

recursion of Proposition 3.6. The left side becomes

n∑

i=1

∂

∂zi
ziWg,n(z1, zS)−

1

z21

[ n∑

i=1

∂

∂zi
ziWg,n(z1, zS)

]

z1 7→
1

z1

=
∂

∂z1
z1Wg,n(z1, zS)−

1

z21

∂

∂( 1
z1
)

1

z1
Wg,n(

1
z1
, zS) +

n∑

i=2

∂

∂zi
zi

[
Wg,n(z1, zS)−

1

z21
Wg,n(

1
z1
, zS)

]

= 2
∂

∂z1
z1Wg,n(z1, zS). (∗∗)

Here, we have used the symmetry property of equation (6) to deduce that the summands with 2 ≤ i ≤ n

are equal to 0 and to expressWg,n(
1
z1
, zS) in terms of Wg,n(z1, zS).

In the summation over i < j on the right side, the symmetry property of equation (6) ensures that a non-zero

contribution arises only for the summands with i = 1 and j = 2, 3, . . . , n. For such a summand, the first

line on the right side contributes

∂

∂z1

[
2

zj

z31
(1 − z21)

2
Wg,n−1(zS\{j})

]
−

1

z21

∂

∂( 1
z1
)

[
2

zj

1
z3

1

(1− 1
z2

1

)2
Wg,n−1(

1
z1
, zS\{1,j})

]

+
∂

∂zj

[
1

z1

z3j

(1− z2j )
2
Wg,n−1(zS)

]
−

1

z21

∂

∂zj

[
z1

z3j

(1 − z2j )
2
Wg,n−1(zS)

]

= 2
∂

∂z1

[
2

zj

z31
(1− z21)

2
Wg,n−1(zS\{j})

]
. (∗∗)

The second line on the right side contributes

2
∂

∂z1

∂

∂zj

[
1

z1 − zj

z31zj

(1− z21)
2
Wg,n−1(z1, zS\{j})

]
− 2

1

z21

∂

∂( 1
z1
)

∂

∂zj

[
1

1
z1

− zj

1
z3

1

zj

(1 − 1
z2

1

)2
Wg,n−1(

1
z1
, zS\{j})

]

− 2
∂

∂z1

∂

∂zj

[
1

z1 − zj

z1z
3
j

(1− z2j )
2
Wg,n−1(zS)

]
+ 2

1

z21

∂

∂( 1
z1
)

∂

∂zj

[
1

1
z1

− zj

1
z1
z3j

(1 − z2j )
2
Wg,n−1(zS)

]

= 2
∂

∂z1

∂

∂zj

[(
zj

z1 − zj
+

z1zj

1− z1zj

)
z31

(1− z21)
2
Wg,n−1(z1, zS\{j})

]

− 2
∂

∂z1

∂

∂zj

[(
z1

z1 − zj
+

1

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]
. (∗∗)

In the summation over i on the right side, the symmetry property of equation (6) ensures that a non-zero
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contribution arises only for the summands with i = 1. So the third line on the right side contributes

∂

∂z1

z41
(1− z21)

2

[
Wg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ)

]

−
1

z21

∂

∂( 1
z1
)

1
z4

1

(1− 1
z2

1

)2

[
Wg−1,n+1(

1
z1
, 1
z1
, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(
1
z1
, zI)Wg2,|J|+1(

1
z1
, zJ )

]

= 2
∂

∂z1

z41
(1 − z21)

2

[
Wg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ )

]
. (∗∗)

Gather together all of the terms marked by (∗∗) and perform some mild algebraic simplification to obtain

the following.

∂

∂z1
z1Wg,n(z1, zS) =

n∑

j=2

∂

∂z1

[
z1

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z31

(1 − z21)
2
Wg,n−1(z1, zS\{j})

]

−

n∑

j=2

∂

∂z1

∂

∂zj

[
z1

(
1

z1 − zj
+

zj

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]

+
∂

∂z1

z41
(1− z21)

2

[
Wg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ )

]

One can remove the operator ∂
∂z1

z1 from every term to recover an equality of the following form, where

[correction] is independent of z1.

Wg,n(z1, zS) +
[correction]

z1
=

n∑

j=2

[(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z31

(1− z21)
2
Wg,n−1(z1, zS\{j})

]

−

n∑

j=2

∂

∂zj

[(
1

z1 − zj
+

zj

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]

+
z31

(1− z21)
2

[
Wg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Wg1,|I|+1(z1, zI)Wg2,|J|+1(z1, zJ )

]

Finally, recall that Wg,n(z1, z2, . . . , zn) has at worst a simple pole at z1 = 0. It follows that the right side of

this equation has no pole at z1 = 0, so the correction term is given by

[correction] = −Res
p=0

Wg,n(p, zS) dp,

and this completes the proof. �

We remark that equating coefficients of z1, z2, . . . , zn in the recursion of Proposition 3.7 leads to the following

asymmetric form of the combinatorial recursion for Ng,n(b1, b2, . . . , bn).

Proposition 3.8. For 2g − 2 + n ≥ 2 and b1, b2, . . . , bn ≥ 0, we have the following equation, where S =

{2, 3, . . . , n} and bI = (bi1 , bi2 , . . . , bik) for I = {i1, i2, . . . , ik}.

2b1Ng,n(b1, bS) =

n∑

j=2

[
∑

p+q=b1+bj

[p]q Ng,n−1(p,bS\{j}) + sgn(b1 − bj)
∑

p+q=|b1−bj |

[p]q Ng,n−1(bS\{j})

]

+
∑

p+q+r=b1

[p][q]r

[
Ng−1,n+1(p, q,bS) +

stable∑

g1+g2=g
I⊔J=S

Ng1,|I|+1(p,bI)Ng2,|J|+1(q,bJ )

]
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3.4 Proof of the main theorem

We now have all of the pieces in place to prove our main result.

Proof of Theorem 1.2. Recall that we wish to prove that Ωg,n = ωg,n for all (g, n) 6= (0, 1) or (0, 2), where the

former is defined via the enumerationNg,n(b1, b2, . . . , bn) and equation (3), while the latter is defined via the

topological recursion applied to the local spectral curve of equation (1). We use an inductive approach with

base cases (g, n) = (0, 3) and (1, 1). One may verify directly that Ω0,3 = ω0,3 and Ω1,1 = ω1,1 by comparing

the calculations of Example 2.3 and Example 3.3. So the theorem is true whenever 2g − 2 + n = 1. Now

consider (g, n) satisfying 2g− 2+ n ≥ 2 and assume the inductive hypothesis that Ωg′,n′ = ωg′,n′ whenever

1 ≤ 2g′ − 2 + n′ < 2g − 2 + n and (g′, n′) 6= (0, 1) or (0, 2).

We begin by rewriting Proposition 3.7 in terms of multidifferentials by multiplying by dz1 dz2 · · · dzn.

Ωg,n(z1, zS)−
dz1
z1

Res
p=0

Ωg,n(p, zS) =

n∑

j=2

(
2 dzj
z1zj

+
dzj

(z1 − zj)2
+

dzj
(1− z1zj)2

)
z31

(1 − z21)
2
Ωg,n−1(z1, zS\{j})

−

n∑

j=2

∂

∂zj

[(
1

z1 − zj
+

zj

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]
dz1 dz2 · · · dzn

+
z31

(1 − z21)
2

1

dz1

[
Ωg−1,n+1(z1, z1, zS) +

stable∑

g1+g2=g
I⊔J=S

Ωg1,|I|+1(z1, zI)Ωg2,|J|+1(z1, zJ)

]
(7)

By Proposition 3.4, Ωg,n(z1, zS) has at worst a simple pole at z1 = 0 and poles at z1 = 1 and z1 = −1.

Hence, the left side of the previous equation only has poles at z1 = 1 and z1 = −1. Now use the fact that a

rational differential is equal to the sum of its principal parts, each of which may be expressed by equation (2),

to obtain the following.

Ωg,n(z1, zS)−
dz1
z1

Res
p=0

Ωg,n(p, zS) =
∑

α=±1

Res
z=α

dz1
z1 − z

[
Ωg,n(z, zS)−

dz

z
Res
p=0

Ωg,n(p, zS)

]

Substituting equation (7) into the right side of the previous equation yields the following.

Ωg,n(z1, zS)−
dz1
z1

Res
p=0

Ωg,n(p, zS)

=
∑

α=±1

Res
z=α

1

z1 − z

z3

(1 − z2)2
dz1
dz

[
n∑

j=2

(
2 dz dzj
zzj

+
dz dzj

(z − zj)2
+

dz dzj
(1− zzj)2

)
ωg,n−1(z, zS\{j})

+ ωg−1,n+1(z, z, zS) +

stable∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(z, zJ)

]
(8)

Since the entire second line on the right side of equation (7) is evidently analytic at z1 = α for all α ∈ C,

we may omit it from this equation. Furthermore, we have invoked the induction hypothesis to replace each

Ωg′,n′ on the right side with ωg′,n′ .

Recalling the definition of ω0,2, we have

ω0,2(z, z2) =
dz dz2

(z − z2)2
+

dz dz2
z z2

⇒ ω0,2(z, z2)− ω0,2(
1
z , z2) =

2 dz dz2
z z2

+
dz dz2

(z − z2)2
+

dz dz2
(1− zz2)2

.

Therefore, equation (8) above can be written equivalently as follows, where we have also used the induction

hypothesis and Proposition 3.4 to deduce that ωg′,n′(z, z) = −ωg′,n′(1z , z) for various terms on the right
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side.

Ωg,n(z1, zS) =
dz1
z1

Res
p=0

Ωg,n(p, zS) +
∑

α=±1

Res
z=α

−1

z1 − z

z3

(1− z2)2
dz1
dz

[
n∑

j=2

ω0,2(z, z2)ωg,n−1(
1
z , zS\{j})

+

n∑

j=2

ω0,2(
1
z , z2)ωg,n−1(z, zS\{j}) + ωg−1,n+1(z,

1
z , zS) +

stable∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(
1
z , zJ )

]
,

Now absorb the terms in the two summations over j into the summation over g1+ g2 and I ⊔J = S. Recall

that the symbol ◦ over the inner summation denotes that we exclude all terms with ω0,1.

Ωg,n(z1, zS) =
dz1
z1

Res
p=0

Ωg,n(p, zS) +
∑

α=±1

Res
z=α

−1

z1 − z

z3

(1− z2)2
dz1
dz

[
ωg−1,n+1(z,

1
z , zS)

+

◦∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(
1
z , zJ)

]
. (9)

By construction we have Ωg,n(p, zS) ∈ V (p)⊗ V (z2)⊗ · · · ⊗ V (zn), so Lemma 3.5 asserts that

Res
p=0

Ωg,n(p, zS) =
∑

α=±1

Res
z=α

Ωg,n(z, zS) log(z).

Multiply both sides of this equation by dz1
z1

and use equation (7) to substitute for Ωg,n(z, zS) on the right

side. Observing that the terms

dz1
z1

Res
p=0

Ωg,n(p, zS) and

n∑

j=2

∂

∂zj

[(
1

z1 − zj
+

zj

1− z1zj

)
z3j

(1− z2j )
2
Wg,n−1(zS)

]

are analytic at z1 = 1 and z1 = −1, we obtain the following.

dz1
z1

Res
p=0

Ωg,n(p, zS)

=
∑

α=±1

Res
z=α

Ωg,n(z, zS)
log(z)

z1
dz1

=
∑

α=±1

Res
z=α

log(z)

z1

z3

(1 − z2)2
dz1
dz

[
n∑

j=2

(
2 dz dzj
zzj

+
dz dzj

(z − zj)2
+

dz dzj
(1− zzj)2

)
Ωg,n−1(z, zS\{j})

+ Ωg−1,n+1(z1, z1, zS) +
stable∑

g1+g2=g
I⊔J=S

Ωg1,|I|+1(z1, zI)Ωg2,|J|+1(z1, zJ )

]

=
∑

α=±1

Res
z=α

− log(z)

dz

z3

(1− z2)2
dz1
dz

[
ωg−1,n+1(z,

1
z , zS) +

◦∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(
1
z , zJ )

]

Here, we have used the induction hypothesis and the same algebraic trickery that was used previously to

deduce equation (9) from equation (8).

Substituting the previous equation into equation (9) results in

Ωg,n(z1, zS) =
∑

α=±1

Res
z=α

K(z1, z)

[
ωg−1,n+1(z,

1
z , zS) +

◦∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J|+1(
1
z , zJ )

]
,

where we have recognised the recursion kernel K(z1, z) calculated in Example 2.3. The right side of this

equation coincides precisely with the topological recursion as defined in Section 2.2, so we have finally

deduced that Ωg,n = ωg,n. By induction, we conclude that Ωg,n = ωg,n for all (g, n) 6= (0, 1) or (0, 2). �
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4 Applications and remarks

4.1 String and dilaton equations

The correlation differentials produced by the topological recursion satisfy string and dilaton equations [23].

∑

α

Res
z=α

y(z)ωg,n+1(z, zS) = −

n∑

k=1

dzk
∂

∂zk

(
ωg,n(zS)

dx(zk)

)
(10)

∑

α

Res
z=α

Φ(z)ωg,n+1(z, zS) = (2g − 2 + n)ωg,n(zS) (11)

Each left side is a summation over the zeroes α of dx, S denotes the set {1, 2, . . . , n}, and Φ(z) is any

function satisfying dΦ(z) = y(z) dx(z). Although these were originally proven in the context of global

topological recursion, we show below that they also hold for the spectral curve of Theorem 1.2. In that

case, we immediately obtain the relations of Corollary 1.3, which are known due to the previous work of the

second author and Norbury [15].

Proof of Corollary 1.3. First, we deal with the string equation. Consider the left side of equation (10) and use

the fact that the sum of the residues at the poles of y(z)ωg,n+1(z, zS) is 0. Multiplying ωg,n+1(z, zS) by

y(z) = z removes the simple pole and introduces a pole at z = ∞. So using Proposition 3.4, we have

∑

α=±1

Res
z=α

y(z)ωg,n+1(z, zS) = − Res
z=∞

z ωg,n+1(z, zS) = −Res
z=0

1

z
ωg,n+1(

1
z , zS) = Res

z=0

1

z
ωg,n+1(z, zS)

=

∞∑

b1,b2,...,bn=0

Ng,n+1(1,bS)

n∏

i=1

[bi]z
bi−1
i dzi.

Next, consider the kth summand of the right side of equation (10).

− dzk
∂

∂zk

(
ωg,n(zS)

dx(zk)

)
= dzk

∂

∂zk

(
1

dzk

z2k
1− z2k

∞∑

b1,b2,...,bn=0

Ng,n(bS)

n∏

i=1

[bi]z
bi−1
i dzi

)

= dzk

∞∑

a=0

∞∑

m=1

∞∑

b1,...,̂bk,...,bn=0

Ng,n(a,bS\{k}) [a](a+ 2m− 1)za+2m−2
i

∏

i∈S\{k}

[bi]z
bi−1
i dzi

Hence, extracting the coefficient of
∏n

i=1[bi] z
bi−1
i dzi from the two sides of equation (10) leads to the first

relation of Corollary 1.3.

Ng,n+1(1, b1, b2, . . . , bn) =

n∑

k=1

bk∑

a=0

[a]Ng,n(a, b1, . . . , b̂k, . . . , bn)

Next, we deal with the dilaton equation, in which case we take Φ(z) = 1
2z

2 − log(z). Consider the left side

of equation (11) and use Lemma 3.5 to deal with the logarithmic term that arises.

∑

α=±1

Res
z=α

Φ(z)ωg,n+1(z, zS) =
∑

α=±1

Res
z=α

1

2
z2ωg,n+1(z, zS)−

∑

α=±1

Res
z=α

log(z)ωg,n+1(z, zS)

= − Res
z=∞

1

2
z2ωg,n+1(z, zS)− Res

z=0
ωg,n+1(z, zS)

= Res
z=0

1

2z2
ωg,n+1(z, zS)− Res

z=0
ωg,n+1(z, zS)

=

∞∑

b1,b2,...,bn=0

[
Ng,n+1(2,bS)−Ng,n+1(0,bS)

] n∏

i=1

[bi]z
bi−1
i dzi

So extracting the coefficient of of
∏n

i=1 [bi]z
bi−1
i dzi from the two sides of equation (11) leads to the second

relation of Corollary 1.3.

Ng,n+1(2, b1, b2, . . . , bn)−Ng,n+1(0, b1, b2, . . . , bn) = (2g − 2 + n)Ng,n(b1, b2, . . . , bn) �
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4.2 Quantum curves

The notion of topological recursion is closely related to the notion of quantum curve [32]. Briefly speaking,

one integrates the correlation differentials and stores them in the following so-called wave function.

ψ(x, ~) = exp

[
∞∑

g=0

∞∑

n=1

~2g−2+n

n!

∫ x∫ x

· · ·

∫ x

ωg,n(z1, z2, . . . , zn)

]

The wave function satisfies differential equations of the form

P̂ (x̂, ŷ)ψ(x, ~) = 0,

where x̂ = x, ŷ = −~
∂
∂x and P̂ is a non-commutative polynomial. It has been empirically observed and

proved in a variety of contexts that there is natural choice of P̂ (x̂, ŷ) whose semi-classical limit P (x, y) = 0

recovers the underlying spectral curve for the topological recursion. Of course, this phenomenon most

naturally applies to the case of global spectral curves. As an example, it is known that the enumeration of

lattice points in Mg,n is governed by the global rational spectral curve x(z) = z + 1
z and y(z) = z and that

the corresponding quantum curve is given by the following operator P̂ (x̂, ŷ) = ŷ2 − x̂ŷ + 1 [14].

It would be interesting to construct a natural wave function for the topological recursion of Theorem 1.2 and

to find a quantum curve operator that annihilates it. Although the spectral curve is not global in the usual

sense, it has the same underlying algebraic curve as for the enumeration of lattice points in Mg,n. Thus,

one might expect a different quantum curve operator to the one above, which still recovers y2 − xy+1 = 0

in the semi-classical limit. Examples of this nature may help to shed further light on the still mysterious

phenomenon of quantum curves.

4.3 Where did the spectral curve come from?

It is natural to ask where the spectral curve of Theorem 1.2 came from. In particular, it would be useful to

be able to identify other problems that are governed by local topological recursion, perhaps with a modified

ω0,2 as in the case here. Typically, one can speculate the form of a global spectral curve attached to an

enumerative problem from the case (g, n) = (0, 1), given that ω0,1(z1) = −y(z1) dx(z1). The enumeration

of lattice points in Mg,n for (g, n) = (0, 1) and (0, 2) matches the enumeration of lattice points in Mg,n,

which indicates using the same x(z) and y(z) in the spectral curve data.2

The spectral curve of Theorem 1.2 arises from a modification to ω0,2 for the enumeration of lattice points

in Mg,n. One moves to the compactified version of the count by allowing nodes and there is a sense in

which nodes correspond to (0, 2) information. For example, the stabilisation of a nodal curve contracts

(0, 2) components — that is, components with genus zero and two nodal points — to nodes. Alternatively,

consider the graphical interpretation of topological recursion, which expresses each correlation differential

ωg,n as a weighted sum over decorated graphs [21, 23]. For each such graph, the vertices are weighted by

intersection numbers on Mg,n and the edges by so-called jumps, which are essentially the coefficients of ω0,2.

These decorated graphs bear a close relation to the graphs arising from the stratification of Mg,n, so that

edges correspond to nodes. So again, we see that ω0,2 controls nodal behaviour and it should come as less

of a surprise that the enumeration of lattice points in Mg,n requires a modification to ω0,2. That the extra

contribution to ω0,2 is of the form dz1 dz2
z1z2

corresponds to the fact that we should take N0,2(0, 0) = 1.

It would be interesting to take standard enumerative problems governed by global topological recursion

— such as the psi-class intersection numbers on Mg,n, simple Hurwitz numbers and the Gromov–Witten

theory of CP1 — and consider the effect of a modification to ω0,2 on the associated correlation differentials.

2This statement is somewhat subtle, since the natural definitions would lead to N0,1(b) = 0 for b > 0. Instead, consider the

enumeration of lattice points in Mg,n and Mg,n as the enumeration of ordinary and stable ribbon graphs, in which all vertices

have degree at least two. One can pass to the analogous problems in which this degree condition is relaxed using the pruning

correspondence [16]. The resulting problems are stored in the same correlation differentials, but as coefficients in the expansion at

x = ∞, rather than at z = 0. It is the alignment of these problems for (g, n) = (0, 1) and (0, 2) that suggests using the same x(z)

and y(z) in the spectral curve data.
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Theorem 2.2 asserts that Ng,n(b1, b2, . . . , bn) is a symmetric quasi-polynomial that is non-zero only when

b1 + b2 + · · · + bn is even. Hence, Ng,n(b1, b2, . . . , bn) can be described by the underlying polynomials

N
(k)

g,n(b1, b2, . . . , bn) that determine it in the case b1, b2, . . . , bk are odd and bk+1, bk+2, . . . , bn are even, where

we may restrict to k even. The following table is replicated from the literature [15] and stores this information

for some small values of g and n. We remind the reader that the data lends strong support to Conjecture 1.4,

which speculates that the coefficients of such polynomials are always non-negative.

g n k N
(k)

g,n(b1, b2, . . . , bn)

0 3 0 1

0 3 2 1

1 1 0 1
48 (b

2
1 + 20)

0 4 0 1
4 (b

2
1 + b22 + b23 + b24 + 8)

0 4 2 1
4 (b

2
1 + b22 + b23 + b24 + 2)

0 4 4 1
4 (b

2
1 + b22 + b23 + b24 + 8)

1 2 0 1
384 (b

4
1 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 192)

1 2 2 1
384 (b

4
1 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 84)

0 5 0 1
32

∑
b4i +

1
8

∑
b2i b

2
j +

7
8

∑
b2i + 7

0 5 2 1
32

∑
b4i +

1
8

∑
b2i b

2
j +

5
16 (b

2
1 + b22) +

1
8 (b

2
3 + b24 + b25) +

19
16

0 5 4 1
32

∑
b4i +

1
8

∑
b2i b

2
j +

5
16 (b

2
1 + b22 + b23 + b24) +

7
8b

2
5 +

7
8

1 3 0 1
4608

∑
b6i +

1
768

∑
b4i b

2
j +

1
384b

2
1b

2
2b

2
3 +

13
1152

∑
b4i +

1
24

∑
b2i b

2
j +

29
144

∑
b2i +

17
12

1 3 2 1
4608

∑
b6i +

1
768

∑
b4i b

2
j+

1
384b

2
1b

2
2b

2
3+

43
4608

∑
b4i +

1
24

∑
b2i b

2
j+

277
4608

∑
b2i +

1
512b

4
3+

1
1536 b

2
3+

81
256

2 1 0 1
1769472 b

8
1 +

3
40960 b

6
1 +

133
61440 b

4
1 +

1087
34560b

2
1 +

247
1440

0 6 0 1
384

∑
b6i +

3
28

∑
b4i b

2
j +

3
32

∑
b2i b

2
jb

2
k +

1
6

∑
b4i +

9
6

∑
b2i b

2
j +

109
24 b

2
i + 34
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