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Abstract. Moduli spaces of hyperbolic surfaces may be endowed with a symplectic
structure via the Weil–Petersson form. Mirzakhani proved that Weil–Petersson
volumes exhibit polynomial behaviour and that their coefficients store intersection
numbers on moduli spaces of curves. In this survey article, we discuss these results
as well as some consequences and applications.
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1. Introduction

Over the last few decades, moduli spaces of curves have become increasingly
important objects of study in mathematics. In fact, they now lie at the centre of a rich
confluence of seemingly disparate areas such as geometry, topology, combinatorics,
integrable systems, matrix models and theoretical physics.

Smooth curves with labelled points are equivalent to Riemann surfaces with
punctures, and these are in turn equivalent to punctured surfaces with complete
constant curvature Riemannian metrics.1 For all but finitely many pairs (g,n), a
genus g surface with n punctures admits a hyperbolic metric. Thus, we are led to the
study of hyperbolic surfaces and their corresponding moduli spaces. In this article,
we adopt such a hyperbolic geometric perspective, which allows for lines of thought
that have no natural analogue in the realms of algebraic geometry and complex
analysis.

For an n-tuple L = (L1,L2, . . . ,Ln) of positive real numbers, letMg,n(L) denote
the set of genus g hyperbolic surfaces with n geodesic boundary components whose
lengths are prescribed by L. We require the boundary components to be labelled
from 1 up to n and consider hyperbolic surfaces up to isometries which preserve
these labels. The Teichmüller theory construction of this space endows it with an
orbifold structure and local coordinates known as Fenchel–Nielsen coordinates.
These may be used to define the Weil–Petersson symplectic form ω, thus providing
the moduli space of hyperbolic surfaces Mg,n(L) with a natural symplectic structure.
Our primary focus will be on the Weil–Petersson volume

Vg,n(L) =

∫
Mg,n(L)

ω3g−3+n

(3g− 3+ n)!
.

The foundation of this article is a result due to Mirzakhani [30] which states
that the Weil–Petersson volume is given by the following polynomial.

Vg,n(L) =
∑

|α|+m=3g−3+n

(2π2)m
∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψαnn κm1

2|α|α1!α2! · · ·αn!m!
L2α1
1 L2α2

2 · · ·L2αnn .

Here, ψ1,ψ2, . . . ,ψn ∈ H2(Mg,n;Q) are the psi-classes while κ1 ∈ H2(Mg,n;Q) is
the first Mumford–Morita–Miller class on the Deligne–Mumford compactification of
the moduli space of curves. We use α = (α1,α2, . . . ,αn) to denote an n-tuple of non-
negative integers and |α| to denote the sumα1+α2+· · ·+αn. For a concise exposition
of intersection theory on moduli spaces of curves, including the definitions of the
psi-classes and the Mumford–Morita–Miller classes, see Appendix A.

Mirzakhani originally demonstrated the polynomiality of Weil–Petersson vol-
umes using symplectic reduction [30]. She subsequently provided an alternative
proof where the main idea is to unfold the integral on Mg,n(L) to a more tractable

1We decree that all surfaces referred to in this article are to be connected and oriented. We also decree
that all algebraic curves referred to in this article are to be complex, connected and complete.
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cover over the moduli space [29]. One of the tools required is a generalization of Mc-
Shane’s identity which, in its original form, states that a certain sum over the simple
closed geodesics on a hyperbolic once-punctured torus is constant. The end result
is a recursive formula which can be used to calculate all Weil–Petersson volumes.
This in turn yields a recursion for intersection numbers on Mg,n. As a consequence,
Mirzakhani was able to deduce the celebrated Witten–Kontsevich theorem.

Some of the recent work on moduli spaces of hyperbolic surfaces has focused
on the behaviour of Weil–Petersson volumes under various limits. For example, the
Weil–Petersson volume polynomials exhibit interesting behaviour when one of the
lengths formally approaches 2πi. This manifests as non-trivial relations between
Vg,n+1(L,Ln+1) and Vg,n(L), which generalise the string and dilaton equations [14].
These can be proven using arguments from algebraic geometry. However, the form of
the relations also suggests that a proof may entail the geometry of hyperbolic cone
surfaces. In particular, one can interpret the evaluation L = θi as the degeneration of
the corresponding geodesic boundary component to a cone point with angle θ.

A direct implementation of Mirzakhani’s recursive formula produces a rather
slow algorithm for the calculation of Weil–Petersson volumes. However, Zograf has
provided an alternative algorithm which is empirically much faster and calculated
enough numerical data to produce interesting conjectures concerningWeil–Petersson
volumes in the large g limit [52]. Some progress on these conjectures has recently
been made by Mirzakhani [32].

It is natural to consider the asymptotic behaviour of Vg,n(Nx) for a fixed
x = (x1, x2, . . . , xn) as N approaches infinity. We are thus motivated to analyse a
certain normalisation of the Weil–Petersson form on Mg,n(Nx) as N approaches
infinity [13]. In the limit, we obtain a 2-form originally defined by Kontsevich in
his proof of Witten’s conjecture [22]. In this way, we obtain yet another proof of the
Witten–Kontsevich theorem which makes explicit the connection between the work
of Kontsevich and Mirzakhani.

The structure of the article is as follows.
• In Section 2, we introduce hyperbolic surfaces and their moduli spaces via
Teichmüller theory. We discuss the Weil–Petersson symplectic structure of
the spaceMg,n(L) and its Deligne–Mumford compactification. We conclude
by showing how the hyperbolic geometry leads to a cell decomposition of
the moduli space based on the combinatorial notion of a ribbon graph.

• In Section 3, we begin the study of Weil–Petersson volumes. Some early
results in the area are presented, followed by some preparatory remarks on
symplectic reduction. We then show how Mirzakhani applies this technique
to prove the polynomiality of Weil–Petersson volumes [30].

• In Section 4, we discuss Mirzakhani’s recursion for Weil–Petersson vol-
umes [29]. We calculate the volume of M1,1(0) as a motivating example.
The generalised McShane identity is presented and then used as one of
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the main ingredients in the proof of Mirzakhani’s recursive formula. We
consider some applications of the recursion, including a proof of theWitten–
Kontsevich theorem.

• In Section 5, we analyse Weil–Petersson volumes under various limits. In
particular, we examine the recent results on the behaviour of Vg,n(L) as
one of the lengths approaches 2πi [14], in the large g limit [32], and as the
lengths approach infinity [13].

2. Moduli spaces of hyperbolic surfaces

2.1. Hyperbolic surfaces

Consider the smooth surface Σg,n with genus g and n boundary components.
A hyperbolic surface of type (g,n) is the surface Σg,n equipped with a complete Rie-
mannian metric of constant curvature −1. We restrict our attention to the case when
every boundary component is smooth and totally geodesic. A mild restriction on the
pair of non-negative integers (g,n) is required due to the Gauss-Bonnet theorem. In
its simplest form, it states that the integral of the Gaussian curvature over a surface
with Riemannian metric and totally geodesic boundary is equal to 2πmultiplied by
the Euler characteristic of the surface.∫

S

KdA = 2πχ(S).

So for a metric of constant curvature −1 to exist, the Euler characteristic must be
negative — in other words, 2g− 2+ n > 0. This is a rather mild restriction since it
only prohibits the pairs (0, 0), (0, 1), (0,2) and (1,0). Note that these exceptional
cases are precisely the pairs (g,n) for which a Riemann surface of genus g with n
punctures possesses infinitely many automorphisms.

An alternative definition of a hyperbolic surface uses the notion of an atlas. Thus,
we define a hyperbolic surface to be a smooth surface covered by charts φU : U→ H2

which map open subsets of the surface homeomorphically onto their image in the
hyperbolic plane. We require that if U ∩ V 6= ∅, then the two charts are compatible
in the sense that the transition function φV ◦ φ−1

U : φU(U ∩ V)→ φV (U ∩ V) is an
isometry. As usual, a hyperbolic surface is defined by a maximal atlas — that is, a
maximal collection of compatible charts. The two definitions provided coincide
since any two-dimensional domain with a Riemannian metric of constant curvature
−1 is locally isometric to a subset of the hyperbolic plane. Which to use as a
working definition is largely a matter of taste, though it is advantageous to keep both
viewpoints in mind.

Yet another way to define a hyperbolic surface is via its universal cover. Every hy-
perbolic surface S with geodesic boundary has a universal cover isometric to a convex
domain in H2 with geodesic boundary. Therefore, hyperbolic surfaces with geodesic
boundary arise from taking the quotient of a convex domain in H2 with geodesic
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boundary by a discrete subgroup of PSL(2,R), the group of orientation-preserving
isometries in the hyperbolic plane. The following result states an important geomet-
ric property of hyperbolic surfaces. For a proof, see Buser’s Geometry and spectra of
compact Riemann surfaces [10], a valuable reference on the hyperbolic geometry of
surfaces.

Proposition 2.1. On a hyperbolic surface, non-trivial homotopy classes of closed curves
have unique geodesic representatives. Furthermore, such geodesic representatives realise
minimal intersection and self-intersection numbers. In particular, every simple closed curve
is homotopic to a simple closed geodesic.

For an n-tuple L = (L1,L2, . . . ,Ln) of positive real numbers, we define the
moduli space of hyperbolic surfaces as follows.

Mg,n(L) =

(S,β1,β2, . . . ,βn)

∣∣∣∣∣∣∣
S is a hyperbolic surface of type
(g,n) with boundary components
β1,β2, . . . ,βn of lengths L1,L2, . . . ,Ln


/

∼

Here, (S,β1,β2, . . . ,βn) ∼ (T ,γ1,γ2, . . . ,γn) if and only if there exists an isometry
from S to T which sends βk to γk for all k.

Note that when the length of a boundary component approaches zero, we
obtain a hyperbolic cusp in the limit. By a hyperbolic cusp, we mean a subset of the
surface isometric to R/Z× [2,∞), in the Poincaré upper half-plane model for H2.
In particular, we denote the moduli space of genus g hyperbolic surfaces with n
labelled cusps by Mg,n(0).

One of the goals of this article is to explain how the study of moduli spaces of
hyperbolic surfaces can lead to results concerning moduli spaces of curves. This is
possible through the interplay between hyperbolic surfaces, Riemann surfaces, and
algebraic curves. It is well-known that the category of smooth algebraic curves is
equivalent to the category of compact Riemann surfaces. Due to this equivalence,
the boundary between these two fields is rather porous, with techniques from com-
plex analysis flowing into algebraic geometry and vice versa. The uniformisation
theorem then provides a one-to-one correspondence between Riemann surfaces and
hyperbolic surfaces.

Theorem 2.2 (Uniformisation theorem). Every Riemannian metric on a surface is
conformally equivalent to a complete constant curvature metric. If the Euler characteristic of
the surface is negative and we require that the curvature is −1, then the metric is unique.

From the previous discussion, a smooth genus g algebraic curve with n labelled
points corresponds to a genus g Riemann surface with n labelled points, which we
usually think of as punctures.{

smooth algebraic curves with
genus g and n labelled points

}
←→

{
Riemann surfaces with
genus g and n punctures

}
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The complex structure on a Riemann surface defines a conformal class of metrics
which, by the uniformisation theorem, contains a hyperbolic metric as long as
2g− 2+ n > 0. Furthermore, if we demand that the resulting surface is complete,
then this hyperbolic metric is unique and gives each puncture the structure of a
hyperbolic cusp. So we have the following one-to-one correspondence.{

Riemann surfaces with
genus g and n punctures

}
←→

{
hyperbolic surfaces with
genus g and n cusps

}
At the moment, the moduli space of hyperbolic surfacesMg,n(L) has only been

defined as a set. In Section 2.2, we will see that it possesses not only a topology, but
also an orbifold structure. The equivalence above sets up a bijection between the
moduli space of curves Mg,n and the moduli space of hyperbolic surfaces Mg,n(0).
This map respects the topology of both spaces as well as the structure-preserving au-
tomorphism groups. As a result, Mg,n and Mg,n(0) are homeomorphic as orbifolds.

2.2. Teichmüller theory

Teichmüller theory will enable us to construct the moduli space of hyperbolic
surfaces Mg,n(L) and endow it with a natural symplectic structure. Begin by fixing
a smooth surface Σg,n with genus g and n boundary components labelled from 1
up to n, where 2g− 2+ n > 0. Define a marked hyperbolic surface of type (g,n) to be
a pair (S, f) where S is a hyperbolic surface and f : Σg,n → S is a diffeomorphism.
We call f the marking of the hyperbolic surface and define the Teichmüller space as
follows.

Tg,n(L) =

(S, f)

∣∣∣∣∣∣∣
(S, f) is a marked hyperbolic surface of
type (g,n) with boundary components
of lengths L1,L2, . . . ,Ln


/

∼

Here, (S, f) ∼ (T ,g) if and only if there exists an isometry φ : S→ T such that φ ◦ f is
isotopic to g.

One can informally think of Teichmüller space as the space of deformations of
the hyperbolic structure on a given hyperbolic surface. For example, consider applying
a hyperbolic Dehn twist to a marked hyperbolic surface. By this, we mean cutting
along a simple closed geodesic, twisting the two sides relative to each other, and
gluing the two sides back together. This gives a one parameter family of deformations
of the hyperbolic structure. Once a full twist has been applied, the end result is
a hyperbolic surface isometric to the original and hence, corresponds to the same
point in the moduli space. On the other hand, the end result has a different marking
to the original and hence, corresponds to a different point in the Teichmüller space.

The geometry and topology of Teichmüller space will become much more
apparent once we define global coordinates, known as Fenchel–Nielsen coordinates.
We use the idea that pairs of pants— spheres with three boundary components— can
be used as building blocks to create surfaces with negative Euler characteristic. Start
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by considering a pants decomposition of the surface Σg,n, which is a collection of
disjoint simple closed curves whose complement is a disjoint union of pairs of pants.
Alternatively, a pants decomposition is a maximal collection of disjoint simple closed
curves such that no curve is parallel to the boundary and no two are homotopic.
Since the Euler characteristic is additive over surfaces glued along circles, the number
of pairs of pants in any such decomposition must be −χ(Σg,n) = 2g − 2 + n. A
simple combinatorial argument can be used to show that every pants decomposition
of Σg,n consists of precisely 3g− 3+ n simple closed curves.

Amarking f : Σg,n → Smaps a fixed pants decomposition to a collection of sim-
ple closed curves on S, each of which is homotopic to a unique simple closed geodesic
by Proposition 2.1. Denote these simple closed geodesics by γ1,γ2, . . . ,γ3g−3+n and
let their lengths be `1, `2, . . . , `3g−3+n, respectively. Cutting S along these geodesics
leaves a disjoint union of 2g−2+n hyperbolic pairs of pants. The following elemen-
tary result guarantees that the lengths `1, `2, . . . , `3g−3+n are sufficient to determine
the hyperbolic structure on each pair of pants.

Lemma 2.3. There exists a unique hyperbolic pair of pants up to isometry with geodesic
boundary components of prescribed non-negative length. As usual, we interpret a geodesic
boundary component with length zero as a hyperbolic cusp. The three simple geodesic arcs
perpendicular to the boundary components and joining them in pairs are referred to as
seams. Cutting along the seams decomposes a hyperbolic pair of pants into two congruent
right-angled hexagons.

Note that the lengths `1, `2, . . . , `3g−3+n provide insufficient information to
reconstruct the hyperbolic structure on all of S, since there are infinitely many ways
to glue together the pairs of pants. This extra gluing information is stored in the
twist parameters, which we denote by τ1, τ2, . . . , τ3g−3+n. To construct them, fix
a collection C of disjoint smooth curves on Σg,n which are either closed or have
endpoints on the boundary. We require that C meets the pants decomposition
transversely, such that its restriction to any pair of pants consists of three disjoint
arcs, connecting the boundary components pairwise. Now to construct the twist
parameter τk, take a curve γ ∈ C such that f(γ) meets γk. Homotopic to f(γ),
relative to the boundary of S, is a unique length-minimising piecewise geodesic
curve which is entirely contained in the seams of the pairs of pants and the curves
γ1,γ2, . . . ,γ3g−3+n. The twist parameter τk is the signed distance that this curve
travels along γk, according to the following sign convention. Lemma 2.3 guarantees
that the twist parameter is independent of the choice of curve γ ∈ C.

negative twist parameter positive twist parameter
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For further details, one can consult Thurston’s book [45], in which he writes
the following.

“That a twist parameter takes values in R, rather than S1, tends to
be a confusing issue . . .But, remember, to determine a point in
Teichmüller space we need to consider how many times the leg of
the pajama suit is twisted before it fits onto the baby’s foot.”

More prosaically, the length parameters and the twist parameters modulo the
length parameters are sufficient to reconstruct the hyperbolic structure on S. However,
to recover the marking as well, it is necessary to consider the twist parameters as
elements of R. Despite the fact that the length and twist parameters — collectively
known as Fenchel–Nielsen coordinates—depend on the choice of pants decomposition
and the construction of twist parameters, we have the following result.

Theorem 2.4. The map Tg,n(L)→ R3g−3+n
+ × R3g−3+n, which associates to a marked

hyperbolic surface its length and twist parameters, is a bijection. In fact, if Teichmüller space
is considered with its natural topology, then the map is a homeomorphism.

Clearly, there is a projection map Tg,n(L)→Mg,n(L) which simply forgets the
marking. In fact, the moduli space is obtained as a quotient of Teichmüller space by
a group action. Define the mapping class group as

Modg,n = Diff+(Σg,n)/Diff+0 (Σg,n),

where Diff+ denotes the group of orientation preserving diffeomorphisms fixing
the boundary components and Diff+0 denotes the normal subgroup consisting of
those diffeomorphisms isotopic to the identity. There is a natural action of the
mapping class group on Teichmüller space such that [φ] ∈ Modg,n sends the marked
hyperbolic surface (X, f) to the marked hyperbolic surface (X, f ◦ φ). The moduli
space Mg,n(L) is obtained by taking the quotient of the Teichmüller space Tg,n(L)
by the action of the mapping class group Modg,n.

Proposition 2.5. The action of Modg,n on Tg,n(L) is properly discontinuous, though
not necessarily free. Therefore, the quotient Mg,n(L) = Tg,n(L)/Modg,n is an orbifold of
dimension 6g− 6+ 2n.

So themoduli space of hyperbolic surfacesMg,n(L) has not only a topology, but
also an orbifold structure. The orbifold group at a point is canonically isomorphic
to the automorphism group of the corresponding hyperbolic surface. However, the
situation is not so bad, since the following theorem— which follows from results of
Boggi and Pikaart [6] — allows one to make sense of calculations on the orbifold
by lifting to a finite cover. For this reason, it is convenient for us to consider the
cohomology of moduli spaces with rational, rather than integral, coefficients.

Theorem 2.6. A finite cover M̃g,n(L)→Mg,n(L) exists such that M̃g,n(L) is a smooth
manifold.
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We have only very briefly touched upon the vast area that is Teichmüller theory.
For more information, see the Handbook of Teichmüller theory [37, 38].

2.3. Symplectification and compactification

The Teichmüller space Tg,n(L) can be endowed with the canonical symplectic
form

ω =

3g−3+n∑
k=1

d`k ∧ dτk

using the Fenchel–Nielsen coordinates. Although this is a rather trivial statement, it
is a deep fact that this form is invariant under the action of the mapping class group.
Therefore, ω descends to a symplectic form on the quotient, namely the moduli
space Mg,n(L). This is referred to as theWeil–Petersson symplectic form and we will
also denote it by ω. Its existence allows us to introduce the techniques of symplectic
geometry to the study of moduli spaces. For all values of L, the spaces Mg,n(L) are
diffeomorphic to each other, but not necessarily symplectomorphic to each other. It
is therefore natural to ask how the symplectic structure varies as L varies, a question
which we will pursue in Section 3.3.

The uniformisation theorem allows us to deduce that themoduli spacesMg,n(L)

are not only diffeomorphic to each other, but also diffeomorphic to the moduli space
of curvesMg,n. It is often more natural to work with the Deligne–Mumford compact-
ification Mg,n, obtained by introducing the notion of a stable algebraic curve — see
Appendix A for the relevant definitions. There is an analogous construction in the
hyperbolic setting, where a node of an algebraic curve corresponds to degenerating
the length of a simple closed curve on a hyperbolic surface to zero. This intuition
leads to the following construction of Tg,n(L), the Teichmüller space of marked
stable hyperbolic surfaces. Define a stable hyperbolic surface of type (g,n) to be a pair
(S,M) where S is a surface of genus g with n labelled boundary components andM
is a collection of disjoint simple closed curves on S, none of which are homotopic
to the boundary. We require that S \M be endowed with a finite area hyperbolic
metric such that the boundary components are geodesic. It is useful to think of a
stable hyperbolic surface as a collection of hyperbolic surfaces whose cusps have
been formally identified in pairs. As usual, we refer to a diffeomorphism f : Σg,n → S

as a marking and define the compactified Teichmüller space as follows.

Tg,n(L) =

(S,M, f)

∣∣∣∣∣∣∣
(S,M, f) is a marked stable hyperbolic
surface of type (g,n) with boundary
components of lengths L1,L2, . . . ,Ln


/

∼

Here, (S,M, f) ∼ (T ,N,g) if and only if there exists a homeomorphism φ : S → T

such that φ(M) = N, φ restricted to S\M is an isometry, and φ◦ f is isotopic to g on
each connected component of Σg,n \ f−1(M). Once again, the mapping class group
acts on the compactified Teichmüller space and one may define theDeligne–Mumford
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compactification of the moduli space of hyperbolic surfaces as

Mg,n(L) = Tg,n(L)/Modg,n.

Let us make some remarks on the Deligne–Mumford compactification. First,
the compactification locusMg,n(L)\Mg,n(L) is a union of submanifolds of positive
codimension. Second, Mg,n(0) can be canonically identified with the Deligne–
Mumford compactification of themoduli space of curvesMg,n via the uniformisation
theorem. Hence,Mg,n(0) possesses a natural complex structure, whereas the moduli
space Mg,n(L) does not, for L 6= 0. However, by the work of Wolpert, the Fenchel–
Nielsen coordinates do induce a real analytic structure [1, 51].

Wolpert [51] used the real analytic structure on Mg,n(L) to show that the
Weil–Petersson form extends smoothly to a closed non-degenerate form on the
Deligne–Mumford compactification Mg,n(L). In the particular case L = 0, he
showed that this extension defines a cohomology class [ω] ∈ H2(Mg,n,R) which
satisfies the following.

Theorem 2.7. The de Rham cohomology class of the Weil–Petersson symplectic form on
Mg,n(0) satisfies [ω] = 2π2κ1 ∈ H2(Mg,n,R), where κ1 denotes the first Mumford–
Morita–Miller class.

2.4. Combinatorial moduli space

An important notion in the study of moduli spaces of curves is the combinato-
rial structure known in the literature as a ribbon graph or fatgraph. A ribbon graph of
type (g,n) is essentially the 1-skeleton of a cell decomposition of a genus g surface
with n faces. We require the vertices to have degree at least three and the faces to be
labelled from 1 up to n. Note that such a graph may possibly have loops or multiple
edges. The orientation of the surface gives a cyclic ordering to the oriented edges
pointing toward each vertex. Conversely, given the underlying graph and the cyclic
ordering of the oriented edges pointing toward each vertex, the genus of the surface
and its cell decomposition may be recovered. This is accomplished by using the
extra structure to thicken the graph into a surface with boundaries. These boundaries
may then be filled in with disks to produce a closed surface with an associated cell
decomposition.

One usually draws ribbon graphs with the convention that the cyclic ordering
of the oriented edges pointing toward each vertex is induced by the orientation of
the page. For example, the following diagram portrays a ribbon graph of type (1,1)
as well as the surface obtained by thickening the graph.
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It is often useful to think of a ribbon graph in the following more precise way.
Given a cell decomposition Γ of a surface, let X denote the set of its oriented edges
and let s0 be the permutation on X which cyclically permutes all oriented edges
pointing toward the same vertex in an anticlockwise manner. Also, let s1 be the
permutation on X which interchanges each pair of oriented edges which correspond
to the same underlying edge. The set X/〈s0〉 is canonically equivalent to the set of
vertices of Γ while the set X/〈s1〉 is canonically equivalent to the set of edges of Γ .
Furthermore, if we let s2 = s1s

−1
0 , then the set X/〈s2〉 is canonically equivalent to

the set of faces of Γ . Therefore, one can alternatively define a ribbon graph to be a
triple (X, s0, s1) where X is a finite set, s0 is a permutation on X without fixed points
or transpositions, and s1 is an involution on X without fixed points. We also require
a labelling in the form of a bijection from X/〈s2〉 to {1, 2, . . . ,n}. Define two ribbon
graphs (X, s0, s1) and (X, s0, s1) to be isomorphic if and only if there exists a bijection
f : X→ X such that f ◦ s0 = s0 ◦ f and f ◦ s1 = s1 ◦ f. We also impose the condition
that f must preserve the labelling of the boundary components. A ribbon graph
automorphism is, of course, an isomorphism from a ribbon graph to itself. The set
of automorphisms of a ribbon graph Γ forms a group which is denoted by Aut(Γ).

A ribbon graph with a positive real number assigned to each edge is referred to
as ametric ribbon graph. The metric associates to each face in the cell decomposition a
perimeter, which is simply the sum of the numbers appearing around the boundary
of the face. We define the combinatorial moduli space as follows.

MRGg,n(L) =

{
metric ribbon graphs of type (g,n)

with perimeters L1,L2, . . . ,Ln

}/
∼

Here, two metric ribbon graphs are equivalent if and only if there exists an isometry
between them which corresponds to a ribbon graph isomorphism.

For a ribbon graph Γ of type (g,n), consider MRGΓ (L) ⊆ MRGg,n(L), the
subset consisting of those metric ribbon graphs whose underlying ribbon graph is
Γ . Note that MRGΓ (L) can be naturally identified with the following quotient of a
possibly empty polytope by a finite group.

MRGΓ (L) ∼=
{
e ∈ RE(Γ)+

∣∣∣ AΓe = L
}/

Aut(Γ)

Here, e represents the lengths of the edges in the metric ribbon graph, E(Γ) denotes
the edge set of Γ , and AΓ is the linear map which represents the adjacency between
faces and edges in the cell decomposition corresponding to Γ . Thus, MRGΓ (L) is an
orbifold cell and these naturally glue together via edge degenerations — in other
words, when an edge length goes to zero, the edge contracts to give a ribbon graph
with fewer edges. So this cell decomposition forMRGg,n(L) equips it with not only a
topology, but also an orbifold structure. The main reason for consideringMRGg,n(L)
is the following result.
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Theorem 2.8. The moduli spaces Mg,n(L) and MRGg,n(L) are homeomorphic as
orbifolds.

One can prove this fact by generalising the work of Bowditch and Epstein [8],
who consider the case of cusped hyperbolic surfaces. The main idea is to associate to
a hyperbolic surface S with geodesic boundary its spine Γ(S). For every point p ∈ S,
let n(p) denote the number of shortest paths from p to the boundary. Generically,
we have n(p) = 1 and we define the spine as

Γ(S) = {p ∈ S | n(p) > 2}.

The locus of points with n(p) = 2 consists of a disjoint union of open geodesic
segments. These correspond precisely to the edges of a graph embedded in S. The
locus of points with n(p) > 3 forms a finite set which corresponds to the set of
vertices of the aforementioned graph. In fact, if n(p) > 3, then the corresponding
vertex will have degree n(p). In this way, Γ(S) has the structure of a ribbon graph.
Furthermore, it is a deformation retract of the original hyperbolic surface, so if S is a
hyperbolic surface of type (g,n), then Γ(S) will be a ribbon graph of type (g,n).

Now for each vertex p of Γ(S), consider the n(p) shortest paths from p to
the boundary. We refer to these geodesic segments as ribs and note that they are
perpendicular to the boundary of S. The diagram below shows part of a hyperbolic
surface, along with its spine and ribs. Cutting S along its ribs leaves a collection of
hexagons, each with four right angles and a reflective axis of symmetry along one
of the diagonals. In fact, this diagonal is one of the edges of Γ(S) and we assign
to it the length of the side of the hexagon which lies along the boundary of S. Of
course, there are two such sides — however, the reflective symmetry guarantees that
they are equal in length. In this way, Γ(S) becomes a metric ribbon graph of type
(g,n). By construction, the perimeters of Γ(S) correspond precisely with the lengths
of the boundary components of S, so we have a map Γ : Mg,n(L)→MRGg,n(L). It
is possible, though more difficult, to construct the inverse map S : MRGg,n(L) →
Mg,n(L) and show that it preserves the orbifold structure of the moduli spaces.
The omitted details may be found elsewhere in the literature, such as Section 4 of
Bowditch and Epstein’s paper [8, 12].

The notion of the combinatorial moduli space is crucial to Kontsevich’s proof of
Witten’s conjecture concerning intersection numbers on Mg,n [22]. We remark that
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Kontsevich uses a different construction of the combinatorial moduli space which
begins with punctured Riemann surfaces. Metric ribbon graphs arise via the existence
of Jenkins–Strebel quadratic differentials on Riemann surfaces, an observation which
Kontsevich attributes to Harer, Mumford, Penner and Thurston.

3. Weil–Petersson volumes

3.1. Early results

By raising theWeil–Petersson symplectic form to the appropriate exterior power,
one obtains the following volume form on the Teichmüller space Tg,n(L).

ω3g−3+n

(3g− 3+ n)!
= d`1 ∧ dτ1 ∧ d`2 ∧ dτ2 ∧ · · ·∧ d`3g−3+n ∧ dτ3g−3+n.

Of course, Tg,n(L) has infinite volume with respect to this form. However, the action
of the mapping class group is such that the volume of Mg,n(L) is finite. One way to
see this is via Wolpert’s observation [51] that the Weil–Petersson symplectic form
extends smoothly to a closed non-degenerate form on the Deligne–Mumford com-
pactification Mg,n(L). Another way is via Bers’ observation [4] that every hyperbolic
surface possesses a pants decomposition where the length of each curve is bound
by a constant depending only on the topology of the surface and the maximum
boundary length. Thus, let us define theWeil–Petersson volume

Vg,n(L) =

∫
Mg,n(L)

ω3g−3+n

(3g− 3+ n)!
.

Below we present a brief selection of some early results concerning Weil–
Petersson volumes. When comparing these results with those in the literature, there
may be some discrepancy due to two issues. First, there are distinct normalisations of
the Weil–Petersson symplectic form which differ by a factor of two. We have scaled
the results, where appropriate, to correspond to the Weil–Petersson symplectic form
defined in Section 2.3. Second, one must treat the special cases of V1,1(L1) and V2,0

with some care. This is due to the fact that every hyperbolic surface of type (1,1) or
(2,0) possesses a twofold symmetry. Correspondingly, every point in M1,1(L) and
M2,0 is an orbifold point, generically with orbifold group equal to Z/2Z. Cleaner
statements of results are obtained if one considers V1,1(L1) and V2,0 as orbifold
volumes — in this case, half of the true volumes. The upshot is that one should not
be alarmed if results concerning Weil–Petersson volumes from distinct sources differ
by a factor which is a power of two.

• Wolpert [49, 50] proved that V0,4(0, 0, 0, 0) = 2π2, V1,1(0) = π2

12 and
Vg,n(0) = q(2π2)3g−3+n for some rational number q. This last fact is a
corollary of Theorem 2.7, from which it follows that q =

∫
Mg,n

κ3g−3+n
1 .

• Penner [39] proved that V1,2(0, 0) = π4

4 .
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• Zograf [52] proved that V0,n(0) =
(2π2)n−3

(n−3)! an, where a3 = 1 and

an =
1
2

n−3∑
k=1

k(n− k− 2)
n− 1

(
n− 4
k− 1

)(
n

k+ 1

)
ak+2an−k for n > 4.

• Nakanishi and Näätänen [35] calculated the Weil–Petersson volumes of the
two-dimensional moduli spaces.

V0,4(L1,L2,L3,L4) =
1
2
(L21 + L

2
2 + L

2
3 + L

2
4 + 4π2),

V1,1(L1) =
1
48

(L21 + 4π2).

Nakanishi and Näätänen’s result shows that V1,1(L1) and V0,4(L1,L2,L3,L4) are
both polynomials in the squares of the boundary lengths. That this is the case for
all Weil–Petersson volumes Vg,n(L) was proven by Mirzakhani in two distinct ways.
In Section 3.3, we discuss the first of Mirzakhani’s proofs, which uses symplectic
reduction in a fundamental way [30].

3.2. Symplectic reduction

Symplectic geometry has its origins in the mathematical formulation and
generalisation of the phase space of a classical mechanical system. Physicists have
often taken advantage of the fact that when a symmetry group of dimension n acts on
a system, then the number of degrees of freedom for the positions and momenta can
be reduced by 2n. The analogous mathematical phenomenon is known as symplectic
reduction.

More precisely, take a symplectic manifold (M,ω) of dimension 2d with a

Tn = S1 × S1 × · · · × S1︸ ︷︷ ︸
n times

action that preserves the symplectic form. Suppose that there exists a moment map
µ :M→ Rn. In other words, µ is invariant under the Tn action and, for each basis
vector of Rn, we have the equation

dµX(·) = ω(X#, ·).

Here, µX :M→ R is the component of µ along X and X# is the vector field generated
by the 1-parameter subgroup {exp tX | t ∈ R} ⊆ Tn. If 0 is a regular value of µ, we
can define the manifoldM0 = µ−1(0)/Tn, since Tn must act on the level sets of µ.

Theorem 3.1 (Marsden–Weinstein theorem). The orbit spaceM0 = µ−1(0)/Tn is a
symplectic manifold of dimension 2d − 2n with respect to the unique 2-form ω0 which
satisfies i∗ω = π∗ω0. Here, π : µ−1(0) → M0 and i : µ−1(0) → M are the natural
projection and inclusion maps.

Since 0 is a regular value, there exists an ε > 0 such that all a ∈ Rn satisfying
|a| < ε are also regular values. So it is possible to define symplectic manifolds
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(Ma,ωa) for all such a. If we think of the Tn action as n commuting circle actions,
then the kth copy of S1 induces a circle bundle Sk on M0. The variation of the
symplectic form ωa can be described in terms of the first Chern classes φk = c1(Sk).

Theorem 3.2. For a = (a1,a2, . . . ,an) sufficiently close to 0, (Ma,ωa) is symplec-
tomorphic to M0 equipped with a symplectic form whose cohomology class is equal to
[ω0] + a1φ1 + a2φ2 + · · ·+ anφn.

From this theorem, one obtains as a direct corollary an expression for the
variation of the volume.

Corollary 3.3. For a = (a1,a2, . . . ,an) sufficiently close to 0, the volume of (Ma,ωa)
is a polynomial in a1,a2, . . . ,an of degree d = 1

2 dim(Ma) given by the formula∑
|α|+m=d

∫
M0
φα1

1 φ
α2
2 · · ·φαnn ωm

α1!α2! · · ·αn!m!
aα1
1 a

α2
2 · · ·a

αn
n .

There are several good introductions to symplectic geometry, such as the book
by Cannas da Silva [41]. The rich subject of Tn actions on symplectic manifolds is
discussed at length by Guillemin [17].

3.3. Polynomiality of Weil–Petersson volumes

We now consider Mirzakhani’s construction of a setup in which Corollary 3.3
may be used to produce Weil–Petersson volumes [30]. This allows us to prove that
Vg,n(L) is a polynomial and, furthermore, that its coefficients store intersection
numbers on the moduli space of curves Mg,n. We start by considering the space

M̂g,n =

(X,p1,p2, . . . ,pn)

∣∣∣∣∣∣∣
X is a genus g hyperbolic surface with
n geodesic boundary components
β1,β2, . . . ,βn and pk ∈ βk for all k

 .

There is a Tn action on this space, where the kth copy of S1 moves the point pk along
the boundary βk at a constant speed in the direction given by the orientation of the
surface.

We now show that M̂g,n has a Tn invariant symplectic structure. Fix a tuple γ =

(γ1,γ2, . . . ,γn) of homotopy classes of disjoint simple closed curves on the surface
Σg,2n with genus g and 2n labelled boundary components such that γk bounds a
pair of pants with the boundaries labelled 2k− 1 and 2k. Since mapping classes act
on homotopy classes of curves, elements of Modg,2n act on γ componentwise. Now
define

M∗g,2n = {(X,η1,η2, . . . ,ηn) | X ∈Mg,2n(0) and (η1,η2, . . . ,ηn) ∈ Modg,2n · γ}.

Equivalently, we can use the definition M∗g,2n = Tg,2n(0)/Stab(γ), where the sta-
biliser

Stab(γ) = {[φ] ∈ Modg,2n | φ(γk) is homotopic to γk for all k} 6 Modg,2n
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acts on the Teichmüller space in the usual way. Since the Weil–Petersson symplectic
form on the Teichmüller space Tg,2n(0) is invariant under the action of the mapping
class group, it must also be invariant under Stab(γ). Therefore, it descends to a
symplectic form on M∗g,2n.

There is a natural map f : M̂g,n →M∗g,2n which is easy to describe. Simply take
(X,p1,p2, . . . ,pn) where X ∈Mg,n(L) and, to the kth boundary component, glue in
a pair of pants with two cusps labelled 2k− 1 and 2k and a boundary component of
length Lk. Of course, this can be done in infinitely many ways and we choose the
unique way such that the seam from the cusp labelled 2kmeets the point pk. The
map f can be used to pull back the symplectic form from M∗g,2n to M̂g,n, where it is
invariant under the Tn action. Furthermore, by the definition of the Weil–Petersson
symplectic form, the canonical map `−1(L)/Tn →Mg,n(L) is a symplectomorphism,
where ` : M̂g,n → Rn sends a hyperbolic surface to the n-tuple of its boundary
lengths. One may check that the Tn action is the Hamiltonian flow for the moment
map µ : M̂g,n → Rn defined by µ(X,p1,p2, . . . ,pn) = ( 12L

2
1,

1
2L

2
2, . . . ,

1
2L

2
n), where

Lk denotes the length of the geodesic boundary component βk.
By construction, the symplectic quotientµ−1( 12L

2
1,

1
2L

2
2, . . . ,

1
2L

2
n)/T

n is themod-
uli space Mg,n(L). As usual, the Tn action gives rise to n circle bundles on the sym-
plectic quotient. Although the moment map is only regular away from 0, one obtains
circle bundles S1, S2, . . . , Sn on Mg,n(0) by taking the limit as L → 0. Mirzakhani
proved the following fact concerning the Chern classes of these circle bundles.

Proposition 3.4. For k = 1, 2, . . . ,n, c1(Sk) = ψk ∈ H2(Mg,n;Q).

This proposition states that c1(Sk) is an element of H2(Mg,n;Q), even though
it is apparent that Sk is a circle bundle over the uncompactified space Mg,n(0).
However, with a little more care, all of the previous discussion generalises to the
Deligne–Mumford compactifications of the moduli spaces involved. We are now
ready to state and prove one of the most important results underlying this article.

Theorem 3.5 (Mirzakhani’s theorem). The Weil–Petersson volume Vg,n(L) is given by
the formula

∑
|α|+m=3g−3+n

(2π2)m
∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψαnn κm1

2|α|α1!α2! · · ·αn!m!
L2α1
1 L2α2

2 · · ·L2αnn .

Proof. We simply apply Corollary 3.3 to the symplectic manifold M̂g,n with the
moment map µ defined above. This implies that the Weil–Petersson volume of
Mg,n(L) for L 6= 0 is a polynomial in 1

2L
2
1,

1
2L

2
2, . . . ,

1
2L

2
n. The coefficients are given

by integrating products of Chern classes of certain circle bundles alongside powers
of the reduced symplectic form. In the L → 0 limit, Proposition 3.4 states that
these Chern classes are precisely the psi-classes on Mg,n. Furthermore, the reduced
symplectic form converges to the usual Weil–Petersson symplectic form in the limit.
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All that is required now is to invoke Corollary 3.3 and substitute ω = 2π2κ1, which
is true in cohomology by Theorem 2.7.2 �

We remark that Theorem 3.2 applied to this setup yields a generalisation of
Theorem 2.7. The generalisation states that the de Rham cohomology class of the
Weil–Petersson symplectic form on Mg,n(L) satisfies

[ω] = 2π2κ1 +
1
2
L21ψ1 +

1
2
L22ψ2 + · · ·+

1
2
L2nψn ∈ H2(Mg,n;R).

Mirzakhani’s theorem shows that the Weil–Petersson volume Vg,n(L) is a poly-
nomial whose coefficients store intersection numbers on Mg,n. One of the conse-
quences is that a meaningful statement about the volume Vg,n(L) often yields a
meaningful statement about the intersection theory on Mg,n, and vice versa. The
strength of such an approach lies in the fact that one need not consider the geometry
of the Deligne–Mumford compactification, which is rather subtle. This is because
the compactification locus is the union of submanifolds of positive codimension,
which do contribute to the Weil–Petersson volume .

In this section, we have only outlined the proof of Mirzakhani’s theorem,
whereas the technical details can be found in Mirzakhani’s original paper [30]. The
reader may also like to compare Mirzakhani’s theorem with the earlier results of
Kaufmann, Manin and Zagier [19] on higher Weil–Petersson volumes and their
relationship with intersection theory on Mg,n.

4. A recursion for Weil–Petersson volumes

4.1. The volume of M1,1(0)

One of the main obstacles in the calculation of Weil–Petersson volumes is the
fact that the Fenchel–Nielsen coordinates for Teichmüller space are not well-behaved
under the action of the mapping class group. In particular, there is no concrete
description for a fundamental domain of Mg,n(L) in Tg,n(L) in the general case.
The workaround successfully applied by Mirzakhani [29] is to unfold the integral in
the following way. Let π : X1 → X2 be a covering map, dv2 a volume form on X2,
and dv1 = π∗dv2 the pullback volume form on X1. If π is a finite covering, then for
any function f : X1 → R, one can construct the pushforward function π∗f : X2 → R
defined by

(π∗f)(y) =
∑

x∈π−1(y)

f(x).

In fact, even if π is an infinite covering, then the pushforward function may still exist,
provided f is sufficiently well-behaved. The main reason for considering this setup

2The literature on symplectic reduction generally does not discuss the case of symplectic orbifolds.
However, one can get around such problems by lifting to a manifold cover, which is possible by Theo-
rem 2.6. This takes a little extra care, but essentially causes no problems.
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is the fact that, under mild integrability assumptions, we have∫
X1

f dv1 =

∫
X2

(π∗f) dv2.

We will use this strategy to calculate the volume of M1,1(0), which will serve as
a motivating example for the general case of Mg,n(L). For this, set X2 = M1,1(0) and

X1 = M∗1,1(0) = {(X,γ) | X ∈M1,1(0) and γ a simple closed geodesic on X}.

Equivalently, we can use the definition M∗1,1(0) = T1,1(0)/Stab(α), where α is a
simple closed curve on the interior of the once-punctured torus. The stabiliser

Stab(α) = {[φ] ∈ Mod1,1 | φ(α) is homotopic to α} 6 Mod1,1

acts on the Teichmüller space in the usual way. Using Fenchel–Nielsen coordinates,
we see that each (X,γ) ∈M∗1,1(0) can be described by the pair (`, τ), where ` denotes
the length of γ and τ the corresponding twist parameter. The only redundancy in this
description comes from the fact that the pair (`, τ+ `) may also be used to describe
the same point in M∗1,1(0). Hence, we can write

M∗1,1(0) ∼= {(`, τ) | ` ∈ R+ and 0 6 τ 6 `}/ ∼,

where (`,0) ∼ (`, `) for all ` ∈ R+.
The map π : M∗1,1(0) → M1,1(0) is the obvious projection map defined by

π(X,γ) = X. Through the tower of coverings T1,1(0)→ M∗1,1(0)→ M1,1(0), we see
that the Weil–Petersson form pulls back to π∗ω = d`∧ dτ on the intermediate cover
M∗1,1(0). Let ` : M

∗
1,1(0)→ R be the geodesic length function so that `(X,γ) equals

the length of γ on X. Unfolding the integral and using the description above for
M∗1,1(0) yields the following equalities.∫

M1,1(0)

∑
π(Y)=X

f(`(Y))dX =

∫
M∗

1,1(0)
f(`(Y))dY =

∫∞
0

∫ `
0
f(`)dτd`.

Therefore, in order to obtain the volume of M1,1(0), we would like an identity
of the form ∑

π(Y)=X

f(`(Y)) = 1,

valid for all X ∈M1,1(0). Note that the summation is over the set of simple closed
geodesics on X. Such an identity had been discovered by McShane [27] prior to
Mirzakhani’s work on Weil–Petersson volumes.

Theorem 4.1 (McShane identity). If X is a hyperbolic torus with one cusp, then∑
γ

2
1+ exp `(γ)

= 1.

Here, the summation is over the set of simple closed geodesics on X and `(γ) denotes the
length of γ.
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So to complete the calculation of the volume of M1,1(0), take f(`) = 2
1+exp ` .∫

M1,1(0)
1dX =

∫∞
0

∫ `
0

2
1+ exp `

dτ d` =

∫∞
0

2`
1+ exp `

d` =
π2

6
.

However, recall that the case of M1,1(0) is exceptional in the sense that a generic
point of the moduli space is an orbifold point with orbifold group Z/2Z. This fact
arises from the existence of the elliptic involution on every hyperbolic torus with
one cusp. Since we consider orbifold volumes in this article, it is necessary to divide
the integral calculation above by two. Therefore, we finally have the result

V1,1(0) =
π2

12
.

4.2. McShane identities

In order to unfold the integral required to calculate Vg,n(L), it is necessary to
obtain a more general version of McShane’s identity.

Theorem 4.2 (Generalised McShane identity). On a hyperbolic surface with geodesic
boundary components β1,β2, . . . ,βn of lengths L1,L2, . . . ,Ln, respectively,∑

(α1,α2)

D(L1, `(α1), `(α2)) +

n∑
k=2

∑
γ

R(L1,Lk, `(γ)) = L1.

Here, the first summation is over unordered pairs (α1,α2) of simple closed geodesics which
bound a pair of pants with β1, while the second summation is over simple closed geodesics γ
which bound a pair of pants with β1 and βk. The functions D : R3 → R and R : R3 → R
are given by the equations

D(x,y, z) = 2 log

(
e
x
2 + e

y+z
2

e−
x
2 + e

y+z
2

)
and R(x,y, z) = x− log

(
cosh y2 + cosh x+z2
cosh y2 + cosh x−z2

)
.

The proof supplied by Mirzakhani [29] is a modification of the argument
originally applied by McShane to the case of the once-punctured torus [27]. The
main idea is to consider, for each point x ∈ β1, the geodesic γx which meets β1

orthogonally at x. If we start at x and walk along γx, then one of the following
situations must arise.

(1) The geodesic γx intersects itself.

(2) The geodesic γx intersects β1 without intersecting itself.

(3) The geodesic γx intersects βk for 2 6 k 6 n without intersecting itself.

(4) The geodesic γx never intersects itself or a boundary component.
We now use this observation to construct a map from a subset β∗1 ⊆ β1 to the set

P1 =

{
embedded hyperbolic pairs of pants, one of
whose geodesic boundary components is β1

}
.

Note that the generalised McShane identity is not a summation over simple closed
geodesics, but over P1. It just so happens that on a once-punctured torus, the two
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notions coincide. In fact, McShane’s original identity — see Theorem 4.1 — may
be recovered by using (g,n) = (1,1), dividing both sides of the identity by L1, and
taking the L1 → 0 limit.

In cases (1) and (2), consider the union of β1 and the geodesic path γx from x

to the intersection point. For ε > 0 sufficiently small, the ε-neighbourhood of this
embedded graph is topologically a pair of pants. By taking geodesic representatives
in the homotopy classes of the boundary components, we obtain an embedded
hyperbolic pair of pants, one of whose geodesic boundary components is β1. Let
f(x) ∈ P1 denote this pair of pants.

In case (3), consider the union of β1, βk and the geodesic path γx from x to the
intersection point. Again, for ε > 0 sufficiently small, the ε-neighbourhood of this
embedded graph is topologically a pair of pants. By taking geodesic representatives
in the homotopy classes of the boundary components, we obtain an embedded
hyperbolic pair of pants, one of whose geodesic boundary components is β1. Let
f(x) ∈ P1 denote this pair of pants.

Thus, we have defined a function f : β∗1 → P1, where β∗1 is the set consisting
of those points in β1 for which cases (1), (2) or (3) occur. The points in β1 for
which f is undefined are those for which case (4) occurs. A result due to Birman
and Series [5] states that the union of all complete simple geodesics on a closed
hyperbolic surface has Hausdorff dimension one. By doubling the surface along its
boundary, we can generalise the statement to hyperbolic surfaces with boundary and
complete simple geodesics perpendicular to the boundary. Hence, we may deduce
that β \ β∗1 is a subset of zero measure with respect to the hyperbolic line element µ
on β1. In fact, Mirzakhani [29] shows that it is homeomorphic to the union of a
Cantor set and countably many isolated points. The upshot of this discussion is the
equation ∑

P∈P1

µ(f−1(P)) = L1.

Theorem 4.2 now follows from a couple of simple facts.

Lemma 4.3.
• If P ∈ P1 is bound by β1 and two simple closed geodesics α1 and α2, then

µ(f−1(P)) = D(L1, `(α1), `(α2)).

• If P ∈ P1 is bound by β1, βk and a simple closed geodesic γ, then

µ(f−1(P)) = R(L1,Lk, `(γ)).

Note that the calculation of µ(f−1(P)) is local in the sense that it depends
only on the geometry of P and not on the geometry of the entire surface. To a
hyperbolic pair of pants with geodesic boundary components α,β,γ, we associate
four distinguished points on α. Such a pair of pants necessarily contains exactly four
complete simple geodesics which meet α orthogonally exactly once and are disjoint
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from β and γ. One of them intersects α at B1 and spirals around β one way, while
another intersects α at B2 and spirals around β the other way. Similarly, one of them
intersects α at C1 and spirals around γ one way, while another intersects α at C2 and
spirals around γ the other way. Note that the orientation reversing isometry which
reflects the pair of pants through its seams interchanges B1 with B2 and C1 with C2.
This is encapsulated in the schematic diagram below.

α

β γ

B1

B2

C1

C2

Suppose that x ∈ α lies on the interval B1C1 which does not include B2 and C2 or
on the interval B2C2 which does not include B1 and C1. Then the geodesic γx will
intersect itself or α, so case (1) or (2) occurs. Therefore, we defineD(`(α), `(β), `(γ))
to be twice the length of the interval B1C1 which does not include B2 and C2. Now
suppose that x ∈ α lies on the interval B1B2 which does not include C1 and C2.
Then the geodesic γx will intersect β, so case (3) occurs. Therefore, we define
R(`(α), `(β), `(γ)) to be the length of the interval C1C2 which includes B1 and B2.
The proof of Lemma 4.3 now follows from these definitions.

All that remains is to explicitly compute the functionsD and R. In the universal
cover, the value of D(`(α), `(β), `(γ)) is twice the distance between the projection
of β and γ on α and the value of R(`(α), `(β), `(γ)) is `(α) minus the length of
the projection of γ on α. We do not complete the calculation here but remark
that it can be carried out by applying some elementary results from hyperbolic
trigonometry [10].

There are now many variations on the McShane theme.
• Bowditch used the notion of Markoff triples to give an alternative proof of
McShane’s identity for the once-punctured torus [7].

• Akiyoshi, Miyachi and Sakuma produced variants of McShane’s identity for
quasi-Fuchsian punctured surface groups and hyperbolic punctured surface
bundles over the circle [2].
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• McShane determined an identity for simple geodesics on a closed hyperbolic
surface of genus two [28]. This work capitalises on the existence of the
hyperelliptic involution and Weierstrass points on a genus two surface.

• Tan, Wong and Zhang gave a generalisation of McShane’s identity to hyper-
bolic cone surfaces, where all cone points have angles bounded above by
π [42]. They also found variations concerning representations of punctured
torus groups to SL(2,C) [43] and also classical Schottky groups [44].

• Luo and Tan have recently found aMcShane identity for all closed hyperbolic
surfaces [25]. Their proof draws some inspiration from Calegari’s elegant
and unified treatment [11] of the following two results — namely, the
identities of Basmajian [3] and Bridgeman [9]. Despite the fact that these
share a similar flavour with McShane identities, they concern lengths of
orthogeodesics3 in hyperbolic manifolds of arbitrary dimension and do not
provide any explicit information about lengths of simple closed geodesics
in hyperbolic surfaces.

Theorem 4.4. LetM be a compact hyperbolic n-manifold with totally geodesic boundary
∂M and let (`1, `2, `3, . . .) denote the lengths of the ortho geodesics of M, listed with
multiplicity. There exist functions An and Vn depending only on n such that

area ∂M =
∑

An(`i) and volumeM =
∑

Vn(`i).

4.3. Mirzakhani’s recursion

In this section, we prove a formula for Weil–Petersson volumes, originally due
to Mirzakhani [29]. We use the convention that V0,1(L1) = 0, V0,2(L1,L2) = 0 and
V0,3(L1,L2,L3) = 1.

Theorem 4.5 (Mirzakhani’s recursion). For 2g+ n > 3, the Weil–Petersson volumes
satisfy the following relation.

2
∂

∂L1
L1Vg,n(L) =∫∞

0

∫∞
0
xyH(x+ y,L1)Vg−1,n+1(x,y, L̂)dxdy

+
∑

g1+g2=g
ItJ=[2,n]

∫∞
0

∫∞
0
xyH(x+ y,L1)Vg1,|I|+1(x,LI)Vg2,|J|+1(y,LJ)dxdy

+

n∑
k=2

∫∞
0
x [H(x,L1 + Lk) +H(x,L1 − Lk)]Vg,n−1(x, L̂k)dx

3An orthogeodesic ofM is a geodesic arc which is perpendicular to ∂M at its endpoints.
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Here, we have used the notation L̂ = (L2,L3, . . . ,Ln), LI = (Li1 ,Li2 , . . . ,Lim) for I =
{i1, i2, . . . , im}, and L̂k = (L2, . . . , L̂k, . . . ,Ln) where the hat denotes omission. The
function H : R2 → R is defined by

H(x,y) =
1

1+ exp x+y2
+

1
1+ exp x−y2

.

The proof uses the calculation of V1,1(0) from Section 4.1 as a model. Our
point of departure is the generalised McShane identity — see Theorem 4.2 — which
we rewrite in the following way.

Dcon(X) +
∑

g1+g2=g
ItJ=[2,n]

Dg1,I(X) +

n∑
k=2

Rk(X) = L1.

We have grouped the left hand side into terms of three distinct types.
• The first type is

Dcon(X) =
∑

(α1,α2)

D(L1, `(α1), `(α2)),

where the summation is over unordered pairs (α1,α2) of simple closed
geodesics which bound a pair of pants with β1, whose complement is a
connected surface.

• The second type is

Dg1,I(X) =
∑

(α1,α2)

D(L1, `(α1), `(α2)),

where the summation is over unordered pairs (α1,α2) of simple closed
geodesics which bound a pair of pants with β1, whose complement is a
disconnected surface. We require that one component of this disconnected
surface has genus g1 and includes only those boundary components from
the original surface labelled by elements of I.

• The third type is

Rk(X) =
∑
γ

R(L1,Lk, `(γ)),

where the summation is over simple closed geodesics γ which bound a pair
of pants with β1 and βk.

The rationale for expressing the generalised McShane identity in this way is
that each term is now a summation over a mapping class group orbit. This is due
to the fact that two sets of disjoint simple closed curves on a surface are in the
same mapping class group orbit if and only if their complements have the same
topological type and labelling of boundary components. Sums over mapping class
group orbits can be expressed as pushforwards of functions on appropriate covers of
the moduli space. And these are the functions which we are able to integrate over
the moduli space itself.
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Now take the generalised McShane identity and integrate both sides over the
moduli space Mg,n(L).

L1Vg,n(L) =

∫
Mg,n(L)

Dcon(X)dX+
∑

g1+g2=g
ItJ=[2,n]

∫
Mg,n(L)

Dg1,I(X)dX

+

n∑
k=2

∫
Mg,n(L)

Rk(X)dX.

From the previous discussion, we know that it is possible to unfold each of the
integrals using the strategy employed in Section 4.1. For example, let us concentrate
on the term ∫

Mg,n(L)

Rk(X)dX.

In order to unfold the integral, recall that we require a coveringmapπ : X1 → X2,
a volume form dv2 on X2, and the pullback volume form dv1 = π∗dv2 on X1. For
this, set X2 = Mg,n(L) and

X1 = M∗g,n(L) =

{
(X,γ)

∣∣∣∣∣ X ∈Mg,n(L) and γ a simple closed geodesic on
X which bounds a pair of pants with β1 and βk

}
.

Equivalently, we can use the definition M∗g,n(L) = Tg,n(L)/Stab(α), where α is a
simple closed curve on the surface Σg,n which bounds a pair of pants with the
boundary components labelled 1 and k. The stabiliser

Stab(α) = {[φ] ∈ Modg,n | φ(α) is homotopic to α} 6 Modg,n

acts on the Teichmüller space in the usual way. Using Fenchel–Nielsen coordinates,
we see that each (X,γ) ∈ M∗g,n(L) can be described by the triple (`, τ, X̂), where
` denotes the length of γ and τ the corresponding twist parameter. The surface
X̂ ∈Mg,n−1(`, L̂k) is simply the complement of the pair of pants bound by β1, βk
and γ. The only redundancy in this description comes from the fact that the triple
(`, τ+ `, X̂) may also be used to describe the same point in M∗g,n(L). Hence, we can
write

M∗g,n(L)
∼= {(`, τ, X̂) | ` ∈ R+, 0 6 τ 6 ` and X̂ ∈Mg,n−1(`, L̂k)}/ ∼,

where (`, τ, X̂) ∼ (`, τ+ `, X̂).
The map π : M∗g,n(L) → Mg,n(L) is the obvious projection map defined by

π(X,γ) = X. Through the tower of coverings Tg,n(L)→M∗g,n(L)→Mg,n(L), we see
that the Weil–Petersson form pulls back to π∗ω = d`∧ dτ∧ ω̂ on the intermediate
coverM∗g,n(L), where ω̂ is theWeil–Petersson form on the lower dimensionalmoduli

space Mg,n−1(`, L̂k). Let ` : M∗g,n(L) → R be the geodesic length function so that
`(X,γ) equals the length of γ on X. Unfolding the integral and using the description
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above for M∗g,n(L) yields the following equalities.∫
Mg,n(L)

Rk(X)dX =

∫
Mg,n(L)

∑
π(Y)=X

R(L1,Lk, `(Y))dX

=

∫
M∗
g,n(L)

R(L1,Lk, `(Y))dY

=

∫∞
0

∫ `
0

∫
Mg,n−1(`,L̂k)

R(L1,Lk, `) ω̂ dτd`

=

∫∞
0
xR(L1,Lk, x)Vg,n−1(x, L̂k)dx.

For the other terms in the generalised McShane identity, although the details
may be different, the argument remains the same. After unfolding each of the
integrals and summing, the end result is the following formula.

L1Vg,n(L) =
1
2

∫∞
0

∫∞
0
xyD(L1, x,y)Vg−1,n+1(x,y, L̂)dxdy

+
1
2

∑
g1+g2=g
ItJ=[2,n]

∫∞
0

∫∞
0
xyD(L1, x,y)Vg1,|I|+1(x,LI)Vg2,|J|+1(y,LJ)dxdy

+

n∑
k=2

∫∞
0
xR(L1,Lk, x)Vg,n−1(x, L̂k)dx.

Note that the factor of 1
2 in front of the first two terms of the right hand side is

to account for the twofold symmetry between x and y. Theorem 4.5 expresses the
recursion in a more useful form, which is obtained by applying 2 ∂

∂L1
to both sides

of this equation. For this, we use the straightforward calculations

∂

∂x
D(x,y, z) = H(y+ z, x) and

∂

∂x
R(x,y, z) =

1
2
[H(z, x+ y) +H(z, x− y)] .

4.4. Applications of Mirzakhani’s recursion

The mechanism behind Mirzakhani’s recursion is based on removing pairs
of pants from the surface Σg,n which contain at least one boundary component.
Therefore, the calculation of any Weil–Petersson volume can be reduced to the base
cases V0,3(L1,L2,L3) = 1 and V1,1(L1) =

1
48 (L

2
1 + 4π2). In the practical application

of Mirzakhani’s recursion, we require the following explicit integral calculations.∫∞
0
x2k−1H(x, t)dx = F2k−1(t),∫∞

0

∫∞
0
x2a−1y2b−1H(x+ y, t)dxdy =

(2a− 1)!(2b− 1)!
(2a+ 2b− 1)!

F2a+2b−1(t).
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Here, F2k−1(t) is the following even polynomial of degree 2k in t, where the coeffi-
cient of t2m is a rational multiple of π2k−2m.

F2k−1(t) = (2k− 1)!
k∑
i=0

ζ(2i)(22i+1 − 4)
(2k− 2i)!

t2k−2i.

We list below the polynomials F2k−1(t) for the first few values of k.

F1(t) =
t2

2
+

2π2

3
,

F3(t) =
t4

4
+ 2π2t2 +

28π4

15
,

F5(t) =
t6

6
+

10π2t4

3
+

56π4t2

3
+

992π6

63
,

F7(t) =
t8

8
+

14π2t6

3
+

196π4t4

3
+

992π6t2

3
+

4064π8

15
.

As an example of Mirzakhani’s recursion, consider the following computation of
V1,2(L1,L2).

Example 4.6. For (g,n) = (1,2), we obtain a contribution from only two terms on the
right hand side of Mirzakhani’s recursion — one involving V0,3 and the other involving
V1,1. This corresponds to the fact that removing a pair of pants from the surface Σ1,2 which
contains at least one boundary component must leave Σ0,3 or Σ1,1.

2
∂

∂L1
L1V1,2(L1,L2)

=

∫∞
0

∫∞
0
xyH(x+ y,L1)V0,3(x,y,L2)dxdy

+

∫∞
0
x[H(x,L1 + L2) +H(x,L1 − L2)]V1,1(x)dx

=

∫∞
0

∫∞
0
xyH(x+ y,L1)dxdy

+

∫∞
0
x[H(x,L1 + L2) +H(x,L1 − L2)]

(
x2 + 4π2

48

)
dx

=
F3(L1)

6
+
F3(L1 + L2) + F3(L1 − L2)

48
+
π2F1(L1 + L2) + π

2F1(L1 − L2)

12

=
5L41
96

+
L21L

2
2

16
+
L42
96

+
π2L21
2

+
π2L22
6

+
π4

2
.

Now integrate with respect to L1 and divide by 2L1 to obtain the desired result. Observe
that no constant of integration appears, since V1,2(0, 0) is finite, as noted in Section 3.1.

V1,2(L1,L2) =
L41
192

+
L21L

2
2

96
+
L42
192

+
π2L21
12

+
π2L22
12

+
π4

4
.
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Mirzakhani’s recursion can be used to provide an alternative proof of the
following fact, which is a direct corollary of Theorem 3.5.

Corollary 4.7. The Weil–Petersson volume Vg,n(L) is an even symmetric polynomial in
L1,L2, . . . ,Ln of degree 6g− 6+ 2n. Furthermore, the coefficient of L2α1

1 L2α2
2 · · ·L2αnn is

a rational multiple of π6g−6+2n−2|α|.

The symmetry of Vg,n(L) is a consequence of the symmetry of the boundary
labels. However, the symmetry is not present in Mirzakhani’s recursion, which treats
one of the boundary components as distinguished. The remainder of Corollary 4.7
can be proven with a straightforward application of induction on the value of
2g− 2+ n.

Mirzakhani’s theorem— see Theorem 3.5— shows thatVg,n(L) is a polynomial
whose coefficients store information about the intersection theory on Mg,n. In fact,
all psi-class intersection numbers onMg,n can be recovered from the top degree part
of Vg,n(L) alone. On the other hand, Mirzakhani’s recursion — see Theorem 4.5
— shows that the Weil–Petersson volume Vg,n(L) can be calculated in an explicit
manner. So the conjunction of these two results provides an algorithm to compute
all psi-class intersection numbers on Mg,n. Thus, Mirzakhani was able to give a
new proof of the Witten–Kontsevich theorem [30]. Although several proofs of
the Witten–Kontsevich theorem now exist in the literature, there are three novel
features of Mirzakhani’s proof. First, she proved it by directly verifying the Virasoro
constraints. Second, her proof was the first to appear which did not make explicit use
of a matrix model. Third, her work uses hyperbolic geometry in a fundamental way.

Following Mirzakhani’s work, Liu and Xu have demonstrated that Mirzakhani’s
recursion is in fact equivalent to the Witten–Kontsevich theorem [24]. Mulase and
Safnuk have derived a differential version of Mirzakhani’s recursion and shown that it
is a Virasoro constraint for Weil–Petersson volumes [34]. In this way, they prove that
a certain generating function for intersection numbers on Mg,n involving psi-classes
and the class κ1 yields a 1-parameter family of solutions to the KdV hierarchy.

Further mileage can be obtained from integration over moduli spaces of hy-
perbolic surfaces. For example, Mirzakhani has applied this technique to obtain
the following result concerning the number of simple closed geodesics of bounded
length on a hyperbolic surface [31].

Theorem 4.8. For γ a simple closed curve on X ∈ Mg,n(0), let s(X,γ,N) denote the
number of simple closed geodesics in the mapping class group orbit of γ whose length is at
most N. Then

lim
N→∞

s(X,γ,N)

N6g−6+2n =
c(γ)B(X)∫

Mg,n(0)
B(X)

.

Here, c(γ) ∈ Q depends only on the topological type of γ and B(X) is the volume of the
unit ball centred at X in the space of measured geodesic laminations.
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5. Limits of Weil–Petersson volumes

5.1. Hyperbolic cone surfaces

Mirzakhani’s recursion — see Theorem 4.5 — allows us to calculate Weil–
Petersson volumes explicitly. The table in Appendix B contains Vg,n(L) for various
values of g and n. These data suggest the striking observation that Vg,1(2πi) = 0.
This statement does indeed hold true for all positive integers g, which indicates
that the Weil–Petersson volume polynomials display interesting behaviour when
the lengths are formally set to 2πi. Further investigation into the matter yields the
following results [14].

Theorem 5.1 (String and dilaton equations for Weil–Petersson volumes). For 2g−
2+ n > 0, the Weil–Petersson volumes satisfy the following relations.

Vg,n+1(L, 2πi) =
n∑
k=1

∫Lk
0
Lk Vg,n(L)dLk,

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi (2g− 2+ n)Vg,n(L).

These equations must follow from Mirzakhani’s recursion since it uniquely
determines all Weil–Petersson volumes. The proof based on this observation is rather
unwieldy and not so transparent [12]. An alternative proof expresses the string and
dilaton equations as relations between the coefficients of Vg,n+1(L,Ln+1) and of
Vg,n(L). By Mirzakhani’s theorem — see Theorem 3.5 — this translates to relations
between intersection numbers on Mg,n+1 and on Mg,n. Thus, we may equivalently
write Theorem 5.1 in the following way.

m∑
j=0

(−1)j
(
m

j

) ∫
Mg,n+1

ψα1
1 · · ·ψ

αn
n ψjn+1κ

m−j
1 =

n∑
k=1

∫
Mg,n

ψα1
1 · · ·ψ

αk−1
k · · ·ψαnn κm1 ,

m∑
j=0

(−1)j
(
m

j

) ∫
Mg,n+1

ψα1
1 · · ·ψ

αn
n ψj+1

n+1κ
m−j
1 = (2g− 2+ n)

∫
Mg,n

ψα1
1 · · ·ψ

αn
n κm1 .

Observe that ψk on the left hand side refers to the psi-class on Mg,n+1 while on the
right hand side it refers to the psi-class on Mg,n. These are generalisations of the
string and dilaton equations — see Theorem A.1 — which correspond to the case
m = 0. They may be proven using arguments from algebraic geometry [14] and were
also obtained by Liu and Xu in their work on higher Weil–Petersson volumes [23].
The succinct statement of Theorem 5.1 indicates that the Weil–Petersson volume
polynomial Vg,n(L) provides a useful way to package intersection numbers onMg,n.

One predicts yet another approach to the string and dilaton equations, which
may prove to be the most interesting. A phenomenon often occurring in hyperbolic
geometry is the fact that a purely imaginary length can be interpreted as an angle. As
an example, consider the work of Tan, Wong and Zhang [42], in which they show
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that the generalised McShane identity — see Theorem 4.2 — holds for hyperbolic
cone surfaces. In fact, one need only substitute iθ into the formula to represent
a cone point with angle θ. It follows that one can extend the definition of the
Weil–Petersson volume polynomials to the case of moduli spaces of hyperbolic
cone surfaces. Thus, it is tempting to think of the string and dilaton equations as
describing the Weil–Petersson volume and its derivative as one of the boundary
components degenerates to a cone point with angle 2π and hence, is removable.
Unfortunately, a proof of the string and dilaton equations following this intuition
is yet to be formalised. One of the main obstacles is the fact that the Teichmüller
theory for hyperbolic cone surfaces breaks down when cone points have angles larger
than π. Indeed, on such surfaces, it ceases to be true that every homotopy class of
closed curves contains a geodesic representative.

Note that Mirzakhani’s recursion does not produce Weil–Petersson volumes
of moduli spaces of closed hyperbolic surfaces. One application of Theorem 5.1 is
the computation of these numbers. The following result is a direct corollary of the
dilaton equation in the n = 0 case [14].

Corollary 5.2. The Weil–Petersson volumes of moduli spaces of closed hyperbolic surfaces
satisfy the formula

Vg,0 =
V ′g,1(2πi)

2πi(2g− 2)
.

Another application of the string and dilaton equations is the computation of
small genus Weil–Petersson volumes [14].

Proposition 5.3. The string equation alone uniquely determines V0,n+1(L,Ln+1) from
V0,n(L) and the string and dilaton equations together uniquely determine V1,n+1(L,Ln+1)

from V1,n(L).

The proof of Proposition 5.3 is elementary and can be converted to algorithms
for the computation of V0,n(L) and V1,n(L). These are empirically more efficient
than a direct implementation of Mirzakhani’s recursion, which requires V0,k for
3 6 k 6 n for the computation of V0,n+1.

The string and dilaton equations for Weil–Petersson volumes relate the value
and derivative of Vg,n+1(L,Ln+1) evaluated at Ln+1 = 2πi to Vg,n(L). Therefore,
one might wonder whether there are similar expressions for higher derivatives. In
fact, we have the following equation involving the second derivative, although it is
in some sense equivalent to the string equation.

∂2Vg,n+1

∂L2n+1
(L, 2πi) =

n∑
k=1

Lk
∂Vg,n(L)

∂Lk
− (4g− 4+ 2n)Vg,n(L).

There is reason to believe that such equations for higher derivatives simply do not
exist. For example, see the work of Eynard and Orantin [15], which considers Weil–
Petersson volumes as analogous to correlation functions arising from matrix models.
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They predict string and dilaton equations for functions which emerge from a vast
generalisation of Mirzakhani’s recursion.

5.2. The large g limit

Mirzakhani’s recursion can in theory be used to calculate all Weil–Petersson
volumes. However, a direct implementation of the recursion yields a computer
program which is practical only for small genus. Zograf has provided an alternative
algorithm which is empirically much faster [53]. In particular, he has managed to
gather enough numerical evidence to suggest two interesting conjectures involving
Weil–Petersson volumes in the large g limit. In order to state the first, we use the
following notation introduced by Mirzakhani [32] to express a certain normalisation
of the coefficients of the polynomial Vg,n(L).

[τα1τα2 · · · ταn ]g,n =

∏
22αk(2αk + 1)!!

(3g− 3+ n− |α|)!

∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψ

αn
n ω3g−3+n−|α|.

Proposition 5.4. For a fixed tuple (α1,α2, . . . ,αn) of non-negative integers,

lim
g→∞ [τα1τα2 · · · ταn ]g,n

Vg,n(0)
= 1.

Although stated as a conjecture by Zograf [53], the result follows from certain
Weil–Petersson volume estimates due to Mirzakhani [32]. These are obtained by
rewriting her recursion — see Theorem 4.5 — in the following form.

[τα1τα2 · · · ταn ]g,n

=
1
2

3g−3+n−|α|∑
m=0

∑
i+j=α1+m−2

bm [τiτjτα2τα3 · · · ταn ]g−1,n+1

+
1
2

∑
g1+g2=g
ItJ=[2,n]

3g−3+n−|α|∑
m=0

∑
i+j=α1+m−2

bm [τiταI ]g1,|I|+1 [τjταJ ]g2,|J|+1

+

n∑
k=2

3g−3+n−|α|∑
m=0

(2αk + 1)bm [τα2 · · · ταk+α1+m−1 · · · ταn ]g,n−1.

Here, we have used the notation ταI = ταi1ταi2 · · · ταim for I = {i1, i2, . . . , im}. It is
particularly useful to observe that the sequence bn = ζ(2n)(1− 1

22n−1 ) consists only
of positive terms, is strictly increasing, and limits to the value of 1.

The second of Zograf’s conjectures gives the asymptotic behaviour of Vg,n(0).

Conjecture 5.5. For a fixed non-negative integer n,

Vg,n(0) =
1
√
gπ

(4π2)2g−3+n(2g− 3+ n)!
[
1+ cng

−1 +O(g−2)
]

as g→∞.
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This is consistent with the previously obtained bounds for Weil–Petersson
volumes [16, 39, 40] which show the existence of positive constants C1 and C2 for a
fixed non-negative integer n such that

Cg1 (2g)! < Vg,n(0) < C
g
2 (2g)!.

Although this conjecture is yet to be proven, Mirzakhani [32] has offered some
further supporting evidence.

Theorem 5.6. For a fixed non-negative integer n,

Vg,n+1(0)
2gVg,n(0)

= 4π2 +O(g−1) and
Vg,n(0)

Vg−1,n+2(0)
= 1+O(g−1) as g→∞.

Mirzakhani has used these and other Weil–Petersson volume estimates in
the large g limit to investigate the geometric properties of random hyperbolic sur-
faces [32]. In particular, she has obtained results concerning the length of the shortest
simple closed geodesic, the diameter, and the Cheeger constant of a random surface
with large genus, chosen with respect to the Weil–Petersson measure.

It is worth remarking that the g→∞ limit for fixed n is rather distinct from
the n→∞ limit for fixed g. The latter case was investigated by Manin and Zograf,
who obtain generating functions for the Weil–Petersson volumes Vg,n(0) and prove
the following result [26].

Theorem 5.7. There exist constants a0,a1,a2, . . . andC such that, for a fixed non-negative
integer g,

Vg,n(0) = n!Cnn(5g−7)/2 [ag +O(n−1)
]

as n→∞.

5.3. The asymptotic Weil–Petersson form

If we are only interested in psi-class intersection numbers on Mg,n, then we
need only look at the top degree part of the polynomial Vg,n(L). This observation
leads us to consider the following asymptotics of the Weil–Petersson volume for a
fixed value of x = (x1, x2, . . . , xn).

(5.8) lim
N→∞

Vg,n(Nx)

N6g−6+2n =
∑

|α|=3g−3+n

∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψαnn

23g−3+nα1!α2! · · ·αn!
x2α1
1 x2α2

2 · · · x2αnn .

One way to access the asymptotics of the Weil–Petersson volume is via the
following map on the combinatorial moduli space.

f : MRGg,n(x)→MRGg,n(Nx)→Mg,n(Nx).

This homeomorphism of orbifolds is the composition of two maps — the first
scales the ribbon graph metric by N while the second uses the Bowditch–Epstein
construction described in Section 2.4. In one direction, this construction associates
to a hyperbolic surface with boundary its spine — in other words, the set of points
which have at least two equal shortest paths to the boundary. The inverse of this
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construction produces a hyperbolic surface S(Γ) ∈Mg,n(L) for every metric ribbon
graph Γ ∈MRGg,n(L).

The normalised Weil–Petersson form ω
N2 on Mg,n(Nx) pulls back via f to a

symplectic form on the combinatorial moduli space. We will be interested in the
limiting behaviour of this symplectic form since we may alternatively express the
asymptotics of the Weil–Peterson volume in the following way.

lim
N→∞

Vg,n(Nx)

N6g−6+2n =
1

(3g− 3+ n)!
lim
N→∞

∫
Mg,n(Nx)

( ω
N2

)3g−3+n

=
1

(3g− 3+ n)!

∫
MRGg,n(x)

(
lim
N→∞

f∗ω

N2

)3g−3+n

=
1

(3g− 3+ n)!

∑
Γ

∫
MRGΓ (x)

(
lim
N→∞

f∗ω

N2

)3g−3+n

.

To obtain the second line from the first, we pull back the integral to the combinatorial
moduli space and invoke the Lebesgue dominated convergence theorem to move
the limit inside the integral. To obtain the third line from the second, we use
the orbifold cell decomposition of the combinatorial moduli space described in
Section 2.4. Recall that the combinatorial moduli space MRGg,n(x) is the disjoint
union of orbifold cells MRGΓ (x), where Γ ranges over the ribbon graphs of type
(g,n). Here, the sum is only over the set of trivalent ribbon graphs of type (g,n),
since these correspond precisely to the open cells of this decomposition.

The previous discussion suggests that we should study the asymptotic behaviour
of the Weil–Petersson form. In order to do this, fix a trivalent ribbon graph Γ of type
(g,n) and label its edges from 1 up to 6g − 6 + 3n. As noted in Section 2.4, the
lengths of these edges e1, e2, . . . , e6g−6+3n provide a set of natural coordinates on
MRGΓ (x) and we can write

MRGΓ (x) ∼=
{
e ∈ R6g−6+3n

+

∣∣∣ AΓe = x
}/

Aut(Γ).

Here, AΓ is the linear map which represents the adjacency between faces and edges
in the cell decomposition corresponding to Γ .

Theorem 5.9. In the N → ∞ limit, the symplectic form f∗ω
N2 converges pointwise to a

2-form Ω on MRGΓ (x). There exists a (6g− 6+ 2n)× (6g− 6+ 2n) skew-symmetric
matrix BΓ such that, after an appropriate permutation of the edge labels,

Ω =
∑

16i<j66g−6+2n

[BΓ ]ij dei ∧ dej.

We can use this theorem to write the asymptotics of the Weil–Petersson volume
in the following way, where pf(BΓ ) denotes the Pfaffian of BΓ .

(5.10) lim
N→∞

Vg,n(Nx)

N6g−6+2n =
∑
Γ

pf(BΓ )
|Aut(Γ)|

∫
AΓe=x

de1 ∧ de2 ∧ · · ·∧ de6g−6+2n.
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Now we can equate the expressions appearing in Equations (5.8) and (5.10). The
Pfaffian and integral in Equation (5.10) can be calculated explicitly in terms of the
combinatorics of Γ . Upon doing so and taking the Laplace transform of both sides,
we recover the following identity.

Theorem 5.11 (Kontsevich’s combinatorial formula). For 2g− 2+ n > 0, we have
the following equality of rational polynomials in s1, s2, . . . , sn.∑
|α|=3g−3+n

∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψ

αn
n

n∏
k=1

(2αk − 1)!!

s2αk+1
k

=
∑
Γ

22g−2+n

|Aut(Γ)|

∏
e∈E(Γ)

1
s`(e) + sr(e)

.

The sum on the right hand side is over trivalent ribbon graphs of type (g,n). For an edge e,
the expressions `(e) and r(e) denote the labels of the faces on its left and right.4

This is the main identity used by Kontsevich in his proof of the Witten–
Kontsevich theorem. At first blush, the equality seems rather surprising, since the
left hand side is manifestly polynomial in 1

s1
, 1
s2
, . . . , 1

sn
while the right hand side is

not. Our proof of this result highlights the close relationship between the combina-
torial methods pioneered by Kontsevich [22] and the hyperbolic geometry used by
Mirzakhani [29, 30].

It is worthmaking a few remarks on the proof of Theorem5.9. The result appears
implicitly in the work of Mondello [33] although we will discuss an alternative proof
which is less computational in nature [13]. Underlying this work is the observation
that a hyperbolic surface with large boundary lengths resembles a ribbon graph after
appropriately scaling the hyperbolic metric. In order to make this statement precise,
take a metric ribbon graph Γ and consider the surface 1

N
S(NΓ) for large values of

N. Here, we use the notation λX to denote the result of scaling the metric on X by
a positive real number λ. By the Gauss–Bonnet theorem, the area of the surface
1
N
S(NΓ) goes to zero as N increases to infinity. On the other hand, the length of the

boundaries remains fixed. So in the N→∞ limit, one expects the entire surface to
collapse onto the spine Γ . The following result formalises this intuition in a precise
way [13].

Theorem 5.12. In the Gromov–Hausdorff topology, for every metric ribbon graph Γ , we
have

lim
N→∞

1
N
S(NΓ) = Γ .

The intuitive observation behind this result suggests a great deal about the
geometry of a hyperbolic surface with large boundary lengths. For example, one
expects the length of a closed geodesic on 1

N
S(NΓ) to converge to a sum of lengths of

edges in Γ . Furthermore, one expects the acute angle at which two closed geodesics
meet to converge to 0. We recover the limiting behaviour of the Weil–Petersson form

4Although the left and right of an edge are not well-defined, the expression s`(e) + sr(e) certainly is.
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from the limiting behaviour of such lengths and angles via the following result of
Wolpert [51].

Proposition 5.13. Let C1,C2, . . . ,C6g−6+2n be simple closed geodesics with lengths
`1, `2, . . . , `6g−6+2n in a hyperbolic surface S ∈Mg,n(L). If Ci and Cj meet at a point p
for i < j, denote by θp the angle between the curves, measured anticlockwise from Ci to Cj.
Define the (6g− 6+ 2n)× (6g− 6+ 2n) skew-symmetric matrix X by the formula

Xij =
∑

p∈Ci∩Cj

cos θp for i < j.

If X is invertible, then `1, `2, . . . , `6g−6+2n are local coordinates at S ∈Mg,n(L) and the
Weil–Petersson form is given by

ω = −
∑
i<j

[X−1]ij d`i ∧ d`j.

A judicious choice of curves allows us to use this result to obtain Theorem 5.9,
including a concrete description of the matrix BΓ in terms of the combinatorics
of the ribbon graph Γ . Furthermore, one finds that the asymptotic Weil–Petersson
form Ω coincides with the 2-form on the combinatorial moduli space introduced
by Kontsevich in his proof of the Witten–Kontsevich theorem [22].

A. Intersection theory on moduli spaces of curves

The reader will find a wealth of information concerning moduli spaces of curves
and their intersection theory elsewhere in the literature [18, 46, 47]. The aim of this
appendix is to provide a concise exposition of the topic in order to keep this article
reasonably self-contained.

For non-negative integers g and n satisfying the Euler characteristic condition
2g− 2+ n > 0, define the moduli space of curves as follows.

Mg,n =

{
(C,p1,p2, . . . ,pn)

∣∣∣∣∣ C is a smooth algebraic curve with genus g
and n distinct points p1,p2, . . . ,pn

}/
∼

Here, (C,p1,p2, . . . ,pn) ∼ (D,q1,q2, . . . ,qn) if and only if there exists an isomor-
phism from C to D which sends pk to qk for all k. It is often more natural to work
with the Deligne–Mumford compactification of the moduli space of curves.

Mg,n =

{
(C,p1,p2, . . . ,pn)

∣∣∣∣∣ C is a stable algebraic curve with genus g
and n distinct smooth points p1,p2, . . . ,pn

}/
∼

Again, (C,p1,p2, . . . ,pn) ∼ (D,q1,q2, . . . ,qn) if and only if there exists an isomor-
phism from C to D which sends pk to qk for all k. An algebraic curve is called
stable if it has at worst nodal singularities and a finite automorphism group. The
practical interpretation of this latter condition is that the normalisation of every
rational component must have at least three distinguished points which are nodes
or labelled points. One of the virtues of the Deligne–Mumford compactification
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amongst the various competing options is the fact that it is modular — in other
words, each point in Mg,n represents an algebraic curve. The set Mg,n possesses a
rich geometric structure and is an example of a Deligne–Mumford stack, although
one will not go too far wrong thinking of it as a complex orbifold.

A natural approach to understanding the structure of geometric spaces is
through algebraic invariants, such as homology and cohomology. And so it is with
moduli spaces of curves, but for the fact that its full cohomology ring is notoriously
intractable in general. However, a great deal of progress can be made by calculating
intersection numbers with respect to certain characteristic classes. The classes that
we consider live in the cohomology ring H∗(Mg,n;Q) and arise from taking Chern
classes of natural complex vector bundles.5 One obtains a more natural theory using
rational, rather than integral, coefficients for cohomology due to the orbifold nature
of Mg,n.

Given a stable genus g curve with n + 1 labelled points, one can forget the
point labelled n+ 1 to obtain a genus g curve with n labelled points. The resulting
curve may not be stable, but gives rise to a well-defined stable curve after contracting
all unstable rational components to a point. This yields a map π : Mg,n+1 →Mg,n

known as the forgetful morphism, which can be interpreted as the universal family over
Mg,n. Thus, given a pair (C,p) consisting of a stable curve C ∈Mg,n and a point p
on the curve, it is possible to associate to it a unique stable curve D ∈Mg,n+1 such
that π(D) = C. In particular, the fibre over C ∈Mg,n is essentially the stable curve
corresponding to C. So the point labelled k defines a section σk : Mg,n →Mg,n+1

for k = 1, 2, . . . ,n. The forgetful morphism can be used to pull back cohomology
classes, but it will also be useful to push them forward. This is possible via the Gysin
map π∗ : H∗(Mg,n+1;Q)→ H∗(Mg,n;Q), the homomorphism of graded rings with
grading −2 which represents integration along fibres.

Consider the vertical cotangent bundle on Mg,n+1 whose fibre at the point
associated to the pair (C,p) is equal to the cotangent line T∗pC. Unfortunately, this
definition is nonsensical when p is a singular point of C. Therefore, it is necessary
to consider the relative dualising sheaf, the unique line bundle on Mg,n+1 which
extends the vertical cotangent bundle. More precisely, it can be defined as L =

KX⊗π∗K−1
B , whereKX denotes the canonical line bundle onMg,n+1 andKB denotes

the canonical line bundle on Mg,n. Sections of L correspond to meromorphic 1-
forms with at worst simple poles allowed at the nodes which also satisfy the condition
that the two residues at the preimages of each node under normalisation must sum
to zero.

The tautological line bundles on Mg,n are formed by pulling back L along the
sections σk for k = 1, 2, . . . ,n. Taking Chern classes of these line bundles, we obtain

5Readers with a more algebraic predilection may prefer to think of these classes as living in the Chow
ringA∗(Mg,n;Q).
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the psi-classes

ψk = c1(σ
∗
kL) ∈ H2(Mg,n;Q) for k = 1, 2, . . . ,n.

Define the twisted Euler class by e = c1 (L (D1 +D2 + · · ·+Dn)), where Dk is
the divisor on Mg,n+1 representing the image of the section σk. Taking the pushfor-
wards of its powers, we obtain theMumford–Morita–Miller classes

κm = π∗(e
m+1) ∈ H2m(Mg,n;Q) form = 0, 1, 2, . . . , 3g− 3+ n.

A great deal of attention has been paid to the subring of H∗(Mg,n;Q) known
as the tautological ring. It has the benefit of being more tractable than the full
cohomology ring and possessing a rich combinatorial structure, while still containing
all known classes of geometric interest. Any top intersections in the tautological
ring can be determined from the top intersections of psi-classes alone. Thus, we are
motivated to study intersection numbers of the form

〈τα1τα2 · · · ταn〉 =
∫
Mg,n

ψα1
1 ψ

α2
2 · · ·ψ

αn
n ∈ Q,

where |α| = 3g − 3 + n or equivalently, g = 1
3 (|α| − n + 3). The angle bracket

notation above — originally introduced by Witten — suppresses the genus and
encodes the symmetry between the psi-classes. We treat the τ variables as commuting,
so that we can write intersection numbers in the form 〈τd0

0 τ
d1
1 τ

d2
2 · · · 〉 and we set

〈τα1τα2 · · · ταn〉 = 0 if n = 0 or if the genus g = 1
3 (|α| − n + 3) is non-integral or

negative. In this way, we have defined a linear functional 〈·〉 : Q[τ0, τ1, τ2, . . .]→ Q.
The psi-class intersection numbers contain a great deal of structure, as evidenced by
the following result [48].

Proposition A.1 (String and dilaton equations). For 2g − 2 + n > 0, the psi-class
intersection numbers satisfy the following relations.

〈τ0τα1τα2 · · · ταn〉 =
n∑
k=1

〈τα1 · · · ταk−1 · · · ταn〉,

〈τ1τα1τα2 · · · ταn〉 = (2g− 2+ n)〈τα1τα2 · · · ταn〉.

One of the landmark results concerning intersection theory on moduli spaces
of curves is Witten’s conjecture, now Kontsevich’s theorem. In conjunction with the
string equation, it allows us to calculate any psi-class intersection number from the
base case 〈τ30〉 = 1. In order to precisely describe the result, we let t = (t0, t1, t2, . . .)
and τ = (τ0, τ1, τ2, . . .) and consider the generating function F(t) = 〈exp(t ·τ)〉. Here,
the expression is to be expanded using multilinearity in the variables t0, t1, t2, . . ..
Equivalently, we may define

F(t0, t1, t2, . . .) =
∑
d

∞∏
k=0

tdkk
dk!
〈τd0

0 τ
d1
1 τ

d2
2 · · · 〉,
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where the summation is over all sequences d = (d0,d1,d2, . . .) of non-negative
integers with finitely many non-zero terms. In his foundational paper [48], Witten
argued on physical grounds that the formal seriesU = ∂2F

∂t20
satisfies the KdV hierarchy

of partial differential equations. This is the prototypical example of an exactly
solvable model, whose soliton solutions have attracted tremendous mathematical
interest over the past few decades. More explicitly, the Witten–Kontsevich theorem
can be stated in the following way.

Theorem A.2 (Witten–Kontsevich theorem). The generating function F satisfies the
following partial differential equation for every non-negative integer n.

(2n+ 1)
∂3F

∂tn∂t
2
0
=

(
∂2F

∂tn−1∂t0

)(
∂3F

∂t30

)
+ 2

(
∂3F

∂tn−1∂t
2
0

)(
∂2F

∂t20

)
+

1
4

∂5F

∂tn−1∂t
4
0
.

An equivalent formulation of the Witten–Kontsevich theorem states that the
Virasoro operators annihilate the generating function exp F. These operators span
the Virasoro Lie algebra and are defined by

L−1 = −
∂

∂t0
+

1
2
t20 +

∞∑
k=0

tk+1
∂

∂tk
, L0 = −

3
2
∂

∂t1
+

1
2

∞∑
k=0

(2k+ 1)tk
∂

∂tk
+

1
16

,

and for positive integers n,

Ln =−
(2n+ 3)!!

2n+1

∂

∂tn+1
+

1
2n+1

∞∑
k=0

(2k+ 2n+ 1)!!
(2k− 1)!!

tk
∂

∂tn+k

+
1

2n+2

∑
i+j=n−1

(2i+ 1)!!(2j+ 1)!!
∂2

∂ti∂tj
.

There now exist several proofs of the Witten–Kontsevich theorem, due to Kont-
sevich [22], Okounkov and Pandharipande [36], Kim and Liu [21], Kazarian and
Lando [20], and Mirzakhani [30]. That there are so many proofs, each with their
own distinct flavour, is testament to the importance and richness of the result.

B. Table of Weil–Petersson volumes

The following table shows some examples of Weil–Petersson volumes. We use
the notationm(α1,α2,...,αk) to denote the monomial symmetric polynomial∑

(β1,β2,...,βn)

L2β1
1 L2β2

2 · · ·L2βnn ,

where the summation ranges over all permutations of (α1,α2, . . . ,αk, 0, 0, . . . , 0).
For example, we have the following when n = 3.

m(3,2,1) = L
6
1L

4
2L

2
3 + L

6
1L

2
2L

4
3 + L

4
1L

6
2L

2
3 + L

4
1L

2
2L

6
3 + L

2
1L

6
2L

4
3 + L

2
1L

4
2L

6
3,

m(2) = L
4
1 + L

4
2 + L

4
3,

m(1,1,1) = L
2
1L

2
2L

2
3.
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g n Vg,n(L1,L2, . . . ,Ln)

0 3 1

4 1
2m(1) + 2π2

5 1
8m(2) +

1
2m(1,1) + 3π2m(1) + 10π4

6 1
48m(3) +

3
16m(2,1) +

3
4m(1,1,1) +

3π2

2 m(2) + 6π2m(1,1) + 26π4m(1) +
244π6

3

7 1
384m(4) +

1
24m(3,1) +

3
32m(2,2) +

3
8m(2,1,1) +

3
2m(1,1,1,1) +

5π2

12 m(3)

+ 15π2

4 m(2,1) + 15π2m(1,1,1) + 20π4m(2) + 80π4m(1,1) +
910π6

3 m(1) +
2758π8

3

1 1 1
48m(1) +

π2

12

2 1
192m(2) +

1
96m(1,1) +

π2

12m(1) +
π4

4

3 1
1152m(3) +

1
192m(2,1) +

1
96m(1,1,1) +

π2

24m(2) +
π2

8 m(1,1) +
13π4

24 m(1) +
14π6

9

4 1
9216m(4) +

1
768m(3,1) +

1
384m(2,2) +

1
128m(2,1,1) +

1
64m(1,1,1,1) +

7π2

576m(3)

+π
2

12m(2,1) +
π2

4 m(1,1,1) +
41π4

96 m(2) +
17π4

12 m(1,1) +
187π6

36 m(1) +
529π8

36

5 1
92160m(5) +

1
4608m(4,1) +

7
9216m(3,2) +

1
384m(3,1,1) +

1
192m(2,2,1)

+ 1
64m(2,1,1,1) +

1
32m(1,1,1,1,1) +

11π2

4608m(4) +
35π2

1152m(3,1) +
π2

16m(2,2)

+ 5π2

24 m(2,1,1) +
5π2

8 m(1,1,1,1) +
13π4

72 m(3) +
253π4

192 m(2,1) +
35π4

8 m(1,1,1)

+ 809π6

144 m(2) +
703π6

36 m(1,1) +
4771π8

72 m(1) +
16751π10

90

2 0 43π6

2160

1 1
442368m(4) +

29π2

138240m(3) +
139π4

23040m(2) +
169π6

2880 m(1) +
29π8

192

2 1
4423680m(5) +

1
294912m(4,1) +

29
2211840m(3,2) +

11π2

276480m(4) +
29π2

69120m(3,1)

+ 7π2

7680m(2,2) +
19π4

7680m(3) +
181π4

11520m(2,1) +
551π6

8640 m(2) +
7π6

36 m(1,1)

+ 1085π8

1728 m(1) +
787π10

480

3 1
53084160m(6) +

1
2211840m(5,1) +

11
4423680m(4,2) +

1
147456m(4,1,1)

+ 29
6635520m(3,3) +

29
1105920m(3,2,1) +

7
122880m(2,2,2) +

π2

172800m(5)

+ 11π2

110592m(4,1) +
5π2

13824m(3,2) +
29π2

27648m(3,1,1) +
7π2

3072m(2,2,1) +
41π4

61440m(4)

+ 211π4

27648m(3,1) +
37π4

2304m(2,2) +
223π4

4608 m(2,1,1) +
77π6

2160m(3) +
827π6

3456 m(2,1)

+ 419π6

576 m(1,1,1) +
30403π8

34560 m(2) +
611π8

216 m(1,1) +
75767π10

8640 m(1) +
1498069π12

64800

3 0 176557π12

1209600

1 1
53508833280m(7) +

77π2

9555148800m(6) +
3781π4

2786918400m(5) +
47209π6

418037760m(4)

+ 127189π8

26127360m(3) +
8983379π10

87091200 m(2) +
8497697π12

9331200 m(1) +
9292841π14

4082400

2 1
856141332480m(8) +

1
21403533312m(7,1) +

77
152882380800m(6,2)

+ 503
267544166400m(5,3) +

607
214035333120m(4,4) +

17π2

22295347200m(7)

+ 77π2

3185049600m(6,1) +
17π2

88473600m(5,2) +
1121π2

2229534720m(4,3) +
1499π4

7431782400m(6)

+ 899π4

185794560m(5,1) +
10009π4

371589120m(4,2) +
191π4

4128768m(3,3) +
3859π6

139345920m(5)

+ 33053π6

69672960m(4,1) +
120191π6

69672960m(3,2) +
195697π8

92897280m(4) +
110903π8

4644864 m(3,1)

+ 6977π8

138240m(2,2) +
37817π10

430080 m(3) +
2428117π10

4147200 m(2,1) +
5803333π12

3110400 m(2)

+ 18444319π12

3110400 m(1,1) +
20444023π14

1209600 m(1) +
2800144027π16

65318400
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g n Vg,n(L1,L2, . . . ,Ln)

4 0 1959225867017π18

493807104000

1 1
29588244450508800m(10) +

149π2

3698530556313600m(9) +
48689π4

2397195730944000m(8)

+ 50713π6

8989483991040m(7) +
30279589π8

32105299968000m(6) +
43440449π10

445906944000m(5)

+ 274101371π12

44590694400 m(4) +
66210015481π14

292626432000 m(3) +
221508280867π16

50164531200 m(2)

+ 74706907467169π18

1975228416000 m(1) +
92480712720869π20

987614208000

5 0 84374265930915479π24

355541114880000

1 1
48742490377990176768000m(13) +

7π2

133907940598874112000m(12)

+ 1823π4

31067656673034240000m(11) +
296531π6

7766914168258560000m(10)

+ 68114707π8

4271802792542208000m(9) +
2123300941π10

474644754726912000m(8) +
42408901133π12

49442161950720000m(7)

+ 19817320001π14

176579149824000m(6) +
11171220559409π16

1135151677440000 m(5) +
62028372646367π18

111244864389120 m(4)

+ 202087901261599π20

10534551552000 m(3) +
626693680890100121π22

1738201006080000 m(2)

+ 881728936440038779π24

289700167680000 m(1) +
21185241498983729441π26

2824576634880000

References

[1] W. Abikoff. The real analytic theory of Teichmüller space. Lecture Notes in
Mathematics, 820, Springer, Berlin, 1980. ← 226

[2] H. Akiyoshi, H. Miyachi, and M. Sakuma. Variations of McShane’s identity
for punctured surface groups. In: Spaces of Kleinian groups, 151–185. London
Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006.
← 237

[3] A. Basmajian. The orthogonal spectrum of a hyperbolic manifold. Amer. J.
Math., 115 (5), 1139–1159, 1993. ← 238

[4] L. Bers. An inequality for Riemann surfaces. In: Differential geometry and complex
analysis, 87–93, Springer, Berlin, 1985. ← 229

[5] J. S. Birman and C. Series. Geodesics with bounded intersection number on
surfaces are sparsely distributed. Topology, 24 (2), 217–225, 1985. ← 236

[6] M. Boggi and M. Pikaart. Galois covers of moduli of curves. Compositio Math.,
120 (2), 171–191, 2000. ← 224

[7] B. H. Bowditch. A proof of McShane’s identity via Markoff triples. Bull. London
Math. Soc., 28(1), 73–78, 1996. ← 237

[8] B. H. Bowditch and D. B. A. Epstein. Natural triangulations associated to a
surface. Topology, 27 (1), 91–117, 1988. ← 228

[9] M. Bridgeman and J. Kahn. Hyperbolic volume of manifolds with geodesic
boundary and orthospectra. Geom. Funct. Anal., 20 (5), 1210–1230, 2010.
← 238



256 Moduli spaces of hyperbolic surfaces

[10] P. Buser. Geometry and spectra of compact Riemann surfaces. Progress in
Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992. ← 221, 237

[11] D. Calegari. Chimneys, leopard spots and the identities of Basmajian and
Bridgeman. Algebr. Geom. Topol., 10 (3), 1857–1863, 2010. ← 238

[12] N. Do. Intersection theory on moduli spaces of curves via hyperbolic geometry. PhD
thesis, The University of Melbourne, 2008. ← 228, 244

[13] N. Do. The asymptotic Weil–Petersson form and intersection theory on Mg,n.
arXiv:1010.4126v1 [math.GT] ← 219, 220, 249

[14] N. Do and P. Norbury. Weil-Petersson volumes and cone surfaces. Geom.
Dedicata, 141, 93–107, 2009. ← 219, 220, 244, 245

[15] B. Eynard and N. Orantin. Topological recursion in enumerative geometry and
random matrices. J. Phys. A, 42 (29), 117, 2009. ← 245

[16] S. Grushevsky. An explicit upper bound for Weil-Petersson volumes of the
moduli spaces of punctured Riemann surfaces. Math. Ann., 321 (1), 1–13,
2001. ← 247

[17] V. Guillemin. Moment maps and combinatorial invariants of Hamiltonian
Tn-spaces. Progress in Mathematics, 122, Birkhäuser Boston Inc., Boston, MA,
1994. ← 231

[18] J. Harris and I. Morrison. Moduli of curves. Graduate Texts in Mathematics, 187,
Springer-Verlag, New York, 1998. ← 250

[19] R. Kaufmann, Y. Manin, and D. Zagier. Higher Weil-Petersson volumes of
moduli spaces of stable n-pointed curves. Comm. Math. Phys., 181 (3), 763–
787, 1996. ← 233

[20] M. E. Kazarian and S. K. Lando. An algebro-geometric proof of Witten’s conjec-
ture. J. Amer. Math. Soc., 20 (4), 1079–1089, 2007. ← 253

[21] Y.-S. Kim and K. Liu. A simple proof of Witten conjecture through localization.
arXiv:math/0508384v2 [math.AG] ← 253

[22] M. Kontsevich. Intersection theory on the moduli space of curves and the
matrix Airy function. Comm. Math. Phys., 147(1), 1–23, 1992. ← 219, 228,
249, 250, 253

[23] K. Liu and H. Xu. Recursion formulae of higher Weil-Petersson volumes. Int.
Math. Res. Not. IMRN, 5, 835–859, 2009. ← 244

[24] K. Liu and H. Xu. Mirzakharni’s recursion formula is equivalent to the Witten-
Kontsevich theorem. Astérisque, 328, 2009; 223–235, 2010. ← 243

[25] F. Luo and S.-P. Tan. A dilogarithm identity on moduli spaces of curves.
arXiv:1102.2133v2 [math.GT] ← 238

[26] Y. I. Manin and P. Zograf. Invertible cohomological field theories and Weil-
Petersson volumes. Ann. Inst. Fourier (Grenoble), 50 (2), 519–535, 2000.
← 247

[27] G. McShane. Simple geodesics and a series constant over Teichmuller space.
Invent. Math., 132 (3), 607–632, 1998. ← 234, 235

http://arxiv.org/abs/1010.4126
http://arxiv.org/abs/math/0508384
http://arxiv.org/abs/1102.2133


Norman Do 257

[28] G. McShane. Simple geodesics on surfaces of genus 2. Ann. Acad. Sci. Fenn.
Math., 31(1), 31–38, 2006. ← 238

[29] M. Mirzakhani. Simple geodesics andWeil-Petersson volumes of moduli spaces
of bordered Riemann surfaces. Invent. Math., 167 (1), 179–222, 2007. ← 219,
233, 235, 236, 238, 249

[30] M. Mirzakhani. Weil-Petersson volumes and intersection theory on the moduli
space of curves. J. Amer. Math. Soc., 20 (1), 1–23 (electronic), 2007. ← 218,
219, 230, 231, 233, 243, 249, 253

[31] M.Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic
surfaces. Ann. of Math. (2), 168 (1), 97–125, 2008. ← 243

[32] M. Mirzakhani. Growth of Weil–Petersson volumes and random hyperbolic
surfaces of large genus.
arXiv:1012.2167v1 [math.GN]. ← 219, 220, 246, 247

[33] G. Mondello. Triangulated Riemann surfaces with boundary and the Weil-
Petersson Poisson structure. J. Differential Geom., 81 (2), 391–436, 2009.
← 249

[34] M. Mulase and B. Safnuk. Mirzakhani’s recursion relations, Virasoro constraints
and the KdV hierarchy. Indian J. Math., 50 (1), 189–218, 2008. ← 243

[35] T. Nakanishi and M. Näätänen. Areas of two-dimensional moduli spaces. Proc.
Amer. Math. Soc., 129(11), 3241–3252 (electronic), 2001. ← 230

[36] A. Okounkov and R. Pandharipande. Gromov-Witten theory, Hurwitz numbers,
and matrix models, in: Algebraic geometry—Seattle 2005. Part 1, 325–414. Proc.
Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009. ← 253

[37] A. Papadopoulos. (Ed.) Handbook of Teichmüller theory. Vol. I. IRMA Lectures
in Mathematics and Theoretical Physics, 11, European Mathematical Society
(EMS), Zürich, 2007. ← 225

[38] A. Papadopoulos. (Ed.) Handbook of Teichmüller theory. Vol. II. IRMA Lectures
in Mathematics and Theoretical Physics, 13, European Mathematical Society
(EMS), Zürich, 2009. ← 225

[39] R. C. Penner. Weil-Petersson volumes. J. Differential Geom., 35 (3), 559–608,
1992. ← 229, 247

[40] G. Schumacher and S. Trapani. Estimates ofWeil-Petersson volumes via effective
divisors. Comm. Math. Phys., 222 (1), 1–7, 2001. ← 247

[41] A. Cannas da Silva. Lectures on symplectic geometry. Lecture Notes in Mathe-
matics, 1764, Springer-Verlag, Berlin, 2001. ← 231

[42] S. P. Tan, Y. L. Wong, and Y. Zhang. Generalizations of McShane’s iden-
tity to hyperbolic cone-surfaces. J. Differential Geom., 72 (1), 73–112, 2006.
← 238, 244

[43] S. P. Tan, Y. L. Wong, and Y. Zhang. Necessary and sufficient conditions for
McShane’s identity and variations. Geom. Dedicata, 119, 199–217, 2006.
← 238

http://arxiv.org/abs/1012.2167


258 Moduli spaces of hyperbolic surfaces

[44] S. P. Tan, Y. L. Wong, and Y. Zhang. McShane’s identity for classical Schottky
groups. Pacific J. Math., 237(1), 183–200, 2008. ← 238

[45] W. P. Thurston. Three-dimensional geometry and topology, Vol. 1. Princeton
Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997.
← 224

[46] R. Vakil. The moduli space of curves and its tautological ring. Notices Amer.
Math. Soc., 50(6), 647–658, 2003. ← 250

[47] R. Vakil. The moduli space of curves and Gromov-Witten theory, in: Enumera-
tive invariants in algebraic geometry and string theory, 143–198. Lecture Notes
in Math., 1947, Springer, Berlin, 2008. ← 250

[48] E. Witten. Two-dimensional gravity and intersection theory on moduli space,
in: Surveys in differential geometry (Cambridge, MA, 1990), 243–310. Lehigh
Univ., Bethlehem, PA, 1991. ← 252, 253

[49] S. Wolpert. On the homology of the moduli space of stable curves. Ann. of
Math. (2), 118 (3), 491–523, 1983. ← 229

[50] S. Wolpert. On the Kähler form of the moduli space of once punctured tori.
Comment. Math. Helv., 58 (2), 246–256, 1983. ← 229

[51] S. Wolpert. On the Weil-Petersson geometry of the moduli space of curves.
Amer. J. Math., 107 (4), 969–997, 1985. ← 226, 229, 250

[52] P. Zograf. The Weil-Petersson volume of the moduli space of punctured spheres,
in: Mapping class groups and moduli spaces of Riemann surfaces (Göttingen,
1991/Seattle, WA, 1991), 367–372. Contemp. Math., 150, Amer. Math. Soc.,
Providence, RI, 1993. ← 219, 230

[53] P. Zograf. On the large genus asymptotics of Weil–Petersson volumes.
arXiv:0812.0544v1 [math.AG]. ← 246

Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
Current address: School of Mathematical Sciences, Monash University, Victoria 3800, Australia
E-mail address: normdo@gmail.com

http://arxiv.org/abs/0812.0544

