
THE ASYMPTOTIC WEIL–PETERSSON FORM AND INTERSECTION THEORY ON Mg,n

NORMAN DO

ABSTRACT. Moduli spaces of hyperbolic surfaces with geodesic boundary components of fixed lengths may be
endowed with a symplectic structure via the Weil–Petersson form. We show that, as the boundary lengths are sent
to infinity, the Weil–Petersson form converges to a piecewise linear form first defined by Kontsevich. The proof rests
on the observation that a hyperbolic surface with large boundary lengths resembles a graph after appropriately
scaling the hyperbolic metric. We also include some applications to intersection theory on moduli spaces of curves.

1. INTRODUCTION

LetMg,n(L) denote the moduli space of hyperbolic surfaces1 with genus g and n labelled geodesic boundary
components whose lengths are prescribed by L = (L1, L2, . . . , Ln). This moduli space may be endowed
with a natural symplectic structure via the Weil–Petersson form ω. In this paper, we explore the asymptotic
behaviour of the symplectic structure onMg,n(Nx) as N approaches infinity, for a fixed x = (x1, x2, . . . , xn).
Underlying much of our work is the observation that a hyperbolic surface with large boundary lengths
resembles a graph after appropriately scaling the hyperbolic metric. In particular, one is naturally led to
consider the combinatorial structure known in the literature as a ribbon graph.

A ribbon graph of type (g, n) is essentially the 1-skeleton of a cell decomposition of a genus g surface which
has n faces. We require the vertices to have degree at least three and the faces to be labelled from 1 up to n. A
ribbon graph with a positive real number assigned to each edge is referred to as a metric ribbon graph. The
metric associates to each face a perimeter, which is simply the sum of the numbers appearing around the
boundary of the face.

Let MRGg,n(x) denote the moduli space of metric ribbon graphs of type (g, n) whose perimeters are
prescribed by x = (x1, x2, . . . , xn). This is naturally an orbifold and is sometimes known as the combinatorial
moduli space. Its importance lies in the fact that it is homeomorphic toMg,n(x) via a construction due to
Bowditch and Epstein [2]. In one direction, this construction associates to a hyperbolic surface with boundary
its spine — in other words, the set of points which have at least two equal shortest paths to the boundary.
The spine is topologically an embedded graph which can be interpreted as a metric ribbon graph. The
inverse of this construction produces a hyperbolic surface S(Γ) ∈ Mg,n(x) for every metric ribbon graph
Γ ∈ MRGg,n(x). Given a metric space X, let λX denote the same underlying set with the metric scaled by a
positive real number λ. In this paper, we prove the following result, which formalises our earlier observation
concerning hyperbolic surfaces with large boundary lengths.

Theorem 1. In the Gromov–Hausdorff topology, the following equation holds for every metric ribbon graph Γ.

lim
N→∞

1
N

S(NΓ) = Γ
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1We decree that all surfaces referred to in this paper are to be connected and oriented. In addition, we decree that all algebraic curves

referred to in this paper are to be complex, connected and complete.
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2 NORMAN DO

In order to study the asymptotic behaviour of the Weil–Petersson form, fix x and consider the map

f :MRGg,n(x)→MRGg,n(Nx)→Mg,n(Nx).

This homeomorphism of orbifolds is the composition of two maps — the first scales the ribbon graph metric
by N while the second uses the Bowditch–Epstein construction. The normalised Weil–Petersson form ω

N2

onMg,n(Nx) pulls back via f to a symplectic form on the combinatorial moduli space. By analysing the
hyperbolic geometry of surfaces with large boundary lengths, we obtain the following result.

Theorem 2. In the N → ∞ limit, the symplectic form f ∗ω
N2 converges pointwise to a piecewise linear 2-form ΩL on the

locus of trivalent metric ribbon graphs inMRGg,n(x). Furthermore, this coincides with the piecewise linear 2-form
ΩK introduced by Kontsevich in his proof of the Witten–Kontsevich theorem [6].

Using a result of Mirzakhani [8] which relates the Weil–Petersson form onMg,n(L) to characteristic classes
on the moduli space of curvesMg,n in conjunction with Theorem 2 allows us to give a new proof of the
following identity.

Theorem 3 (Kontsevich’s combinatorial formula). For the moduli space of curvesMg,n, we have the following
equality of rational polynomials in s1, s2, . . . , sn.

∑
|α|=3g−3+n

∫

Mg,n
ψα1

1 ψα2
2 · · ·ψαn

n

n

∏
k=1

(2αk − 1)!!

s2αk+1
k

= ∑
Γ

22g−2+n

|Aut(Γ)| ∏
e∈E(Γ)

1
s`(e) + sr(e)

Here, we use the notation |α| as a shorthand for α1 + α2 + · · ·+ αn. The sum on the right hand side is over the trivalent
ribbon graphs of type (g, n). We write Aut(Γ) and E(Γ) for the automorphism group and edge set of Γ, respectively.
For an edge e, the expressions `(e) and r(e) denote the labels of the faces on its left and right.2

This is the main identity used by Kontsevich in his proof of the Witten–Kontsevich theorem [6]. Our proof of
this result highlights one of the goals of this paper — namely, to bring together the combinatorial methods
pioneered by Kontsevich and the hyperbolic geometry used by Mirzakhani into a coherent narrative.

As a final application, we provide a method for computing intersection numbers of the form
∫

Mg,n
Wψα1

1 ψα2
2 · · ·ψαn

n ,

where W ∈ H∗(Mg,n; Q) is the Poincaré dual to a combinatorial cycle. Combinatorial cycles, first defined by
Kontsevich [6], are represented by closures of subsets of the combinatorial moduli space corresponding to
metric ribbon graphs with a specified degree sequence.

The structure of the paper is as follows.

In Section 2, we discuss the relevant background material. This includes a brief treatment of moduli
spaces of hyperbolic surfaces, the combinatorial moduli space, and intersection theory on moduli
spaces of curves.
In Section 3, we prove several lemmas concerning hyperbolic surfaces with large boundary lengths,
culminating in the proof of Theorem 1.
In Section 4, we consider the asymptotic Weil–Petersson form and give the proof of Theorem 2.
In Section 5, we provide applications of the asymptotic Weil–Petersson form to intersection theory on
moduli spaces of curves. In particular, we prove Theorem 3 and conclude with a discussion of the
method for computing intersection numbers which involve combinatorial cycles.

2Although the left and right of an edge are not well-defined, the expression s`(e) + sr(e) certainly is.
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2. BACKGROUND

2.1. Moduli spaces of hyperbolic surfaces. For a tuple L = (L1, L2, . . . , Ln) of positive real numbers, we
consider the following moduli space.

Mg,n(L) =

{
(S, β1, β2, . . . , βn)

∣∣∣∣∣
S is a hyperbolic surface with genus g and geodesic boundary
components β1, β2, . . . , βn of lengths L1, L2, . . . , Ln

}/
∼

Here, (S, β1, β2, . . . , βn) ∼ (T, γ1, γ2, . . . , γn) if and only if there exists an isometry from S to T which sends
βk to γk for all k. One may extend this definition to the case Lk = 0 by allowing βk to be a hyperbolic cusp.

The methods of Teichmüller theory enable us to construct the moduli spaceMg,n(L) as an orbifold and to
endow it with a natural symplectic structure. We start by fixing a smooth surface Σg,n with genus g and
n boundary components labelled from 1 up to n, where the Euler characteristic χ(Σg,n) = 2− 2g − n is
negative. Now define a marked hyperbolic surface to be a pair (S, f ) where S is a hyperbolic surface and
f : Σg,n → S is a diffeomorphism. We call f the marking and define Teichmüller space as follows.

Tg,n(L) =

{
(S, f )

∣∣∣∣∣
(S, f ) is a marked hyperbolic surface with genus g and
geodesic boundary components of lengths L1, L2, . . . , Ln

}/
∼

Here, (S, f ) ∼ (T, g) if and only if there exists an isometry φ : S → T such that φ ◦ f is isotopic to g. In
essence, Teichmüller space is the space of all deformations of the hyperbolic structure on a surface.

We now define global coordinates on Teichmüller space, known as Fenchel–Nielsen coordinates. Start
by considering a pair of pants decomposition of the surface Σg,n — in other words, a collection of non-
intersecting simple closed curves whose complement is a disjoint union of surfaces with genus 0 and 3
boundary components. For topological reasons, every pair of pants decomposition of Σg,n must consist of
precisely 3g− 3 + n curves. The marking f : Σg,n → S maps a pair of pants decomposition to a collection of
simple closed curves, each of which has a unique geodesic representative in its homotopy class. Denote these
simple closed geodesics by γ1, γ2, . . . , γ3g−3+n and let their lengths be `1, `2, . . . , `3g−3+n, respectively. Cutting
S along γ1, γ2, . . . , γ3g−3+n leaves a disjoint union of hyperbolic pairs of pants. Due to the following basic
result, the length parameters `1, `2, . . . , `3g−3+n provide sufficient information to reconstruct the hyperbolic
structure on each pair of pants in the decomposition.

Proposition 4. Given any three lengths, there exists a unique hyperbolic pair of pants up to isometry with geodesic
boundary components of those lengths. We refer to the three simple geodesic arcs perpendicular to the boundary
components and connecting them pairwise as the seams. Every hyperbolic pair of pants can be decomposed into two
congruent right-angled hexagons by cutting along the seams.

On the other hand, the lengths `1, `2, . . . , `3g−3+n are not sufficient to reconstruct the hyperbolic structure on
all of S, since there are infinitely many ways to glue together the pairs of pants. This extra gluing information
is stored in the twist parameters, which we denote by τ1, τ2, . . . , τ3g−3+n. To construct them, fix a collection
C of disjoint simple curves on Σg,n which are either closed or have endpoints on the boundary. We require
that C meets the curves γ1, γ2, . . . , γ3g−3+n transversely, such that its restriction to any particular pair of
pants consists of three disjoint arcs which connect the boundary components pairwise. Now to construct
the twist parameter τk, note that there could be either one or two curves γ ∈ C such that f (γ) meets γk,
where f is the marking. Homotopic to f (γ), relative to the boundary of X, is a unique length-minimising
piecewise geodesic curve which is entirely contained in the seams of the hyperbolic pairs of pants and the
curves γ1, γ2, . . . , γ3g−3+n. The twist parameter τk is the signed hyperbolic distance that this curve travels
along γk and is well-defined due to Proposition 4.
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Proposition 5. The map which assigns to a marked hyperbolic surface its Fenchel–Nielsen coordinates — in other
words, its length and twist parameters — is a homeomorphism.

Tg,n(L) ∼= R
3g−3+n
+ ×R3g−3+n

There is clearly a projection map Tg,n(L)→Mg,n(L) given by forgetting the marking. In fact, we obtain the
moduli space as a quotient of Teichmüller space by the action of the mapping class group

Modg,n = Diff+(Σg,n)/Diff0(Σg,n).

Here, Diff+ is the group of orientation-preserving diffeomorphisms fixing each boundary component and
Diff0 is the normal subgroup consisting of those diffeomorphisms isotopic to the identity. There is a natural
action of the mapping class group on Teichmüller space described as follows — if [φ] is an element of Modg,n,
then [φ] sends the marked hyperbolic surface (X, f ) to the marked hyperbolic surface (X, f ◦ φ). It turns
out that the action of Modg,n on Tg,n(L) is properly discontinuous, though not necessarily free. Thus, the
quotientMg,n(L) ∼= Tg,n(L)

/
Modg,n is naturally an orbifold.

The Teichmüller space Tg,n(L) can be endowed with the canonical symplectic form

ω =
3g−3+n

∑
k=1

d`k ∧ dτk

using the Fenchel–Nielsen coordinates. Although this is a rather trivial statement, a remarkable fact is
that this construction is invariant under the action of the mapping class group. Therefore, ω descends to a
symplectic form on the quotient, namely the moduli spaceMg,n(L). This is referred to as the Weil–Petersson
form and we will also denote it by ω. Its existence allows for the techniques of symplectic geometry to
be used in the study of moduli spaces. It is important to note that as L varies, the symplectic structure of
Mg,n(L) varies, even though its smooth structure does not.

2.2. Combinatorial moduli space. An important notion in the study of moduli spaces is the combinatorial
structure known in the literature as a ribbon graph or fatgraph. Earlier, we stated that a ribbon graph of type
(g, n) is essentially the 1-skeleton of a cell decomposition of a genus g surface which has n faces. We require
the vertices to have degree at least three and the faces to be labelled from 1 up to n. Note that such a graph
may possibly have loops or multiple edges. The orientation of the surface produces a cyclic ordering of the
oriented edges pointing towards each vertex. Conversely, given the underlying graph and the cyclic ordering
of the oriented edges pointing towards each vertex, the genus of the surface and its cell decomposition may
be recovered. This is accomplished by using the extra structure to thicken the graph into a surface with
boundaries. These boundaries may then be filled in with disks to produce a closed surface.

One usually draws ribbon graphs with the convention that the cyclic ordering of the oriented edges pointing
towards each vertex is induced by the orientation of the page. For example, the following diagram shows a
ribbon graph of type (1, 1) as well as the surface obtained by thickening the graph.
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Occasionally, it is useful to think of a ribbon graph in the following more precise way. Given a 1-skeleton Γ
of a cell decomposition, let X denote the set of its oriented edges and let s0 be the permutation on X which
cyclically permutes all oriented edges pointing towards the same vertex in an anticlockwise manner. Also, let
s1 be the permutation on X which interchanges each pair of oriented edges which correspond to the same
underlying edge. The set X/〈s0〉 is canonically equivalent to the set of vertices of Γ while the set X/〈s1〉
is canonically equivalent to the set of edges of Γ. Furthermore, if we let s2 = s−1

0 s1, then the set X/〈s2〉 is
canonically equivalent to the set of faces of Γ. Therefore, one can alternatively consider a ribbon graph to
be a triple (X, s0, s1) where X is a finite set, s0 is a permutation on X without fixed points or transpositions
and s1 is an involution on X without fixed points. We also require a labelling in the form of a bijection from
X/〈s2〉 to {1, 2, . . . , n}. Define two ribbon graphs (X, s0, s1) and (X, s0, s1) to be isomorphic if and only if
there exists a bijection f : X → X such that f ◦ s0 = s0 ◦ f and f ◦ s1 = s1 ◦ f . We also impose the condition
that f must preserve the labelling of the boundary components. A ribbon graph automorphism is, of course,
an isomorphism from a ribbon graph to itself. The set of automorphisms of a ribbon graph Γ forms a group
which is denoted by Aut(Γ).

As mentioned earlier, a ribbon graph with a positive real number assigned to each edge is referred to as a
metric ribbon graph. The metric associates to each face in the cell decomposition a perimeter, which is simply
the sum of the numbers appearing around the boundary of the face. LetMRGg,n(x) denote the moduli
space of metric ribbon graphs of type (g, n) whose perimeters are prescribed by x = (x1, x2, . . . , xn), where
equivalence of metric ribbon graphs corresponds to isometry of metric spaces. For every ribbon graph Γ of
type (g, n), consider the subsetMRGΓ(x) ⊆ MRGg,n(x) consisting of those metric ribbon graphs whose
underlying ribbon graph is Γ. Note thatMRGΓ(x) can be naturally identified with the following quotient of
a possibly empty polytope by a finite group.

{
e ∈ R

E(Γ)
+

∣∣∣ AΓe = x
}/

Aut(Γ)

Here, e represents the lengths of the edges in the metric ribbon graph while AΓ is the linear map which
represents the adjacency between faces and edges in the cell decomposition corresponding to Γ. Thus,
MRGΓ(x) is an orbifold cell and these naturally glue together via edge degenerations — in other words,
when an edge length goes to zero, the edge contracts to give a ribbon graph with fewer edges. This cell
decomposition forMRGg,n(x) equips it with not only a topology, but also an orbifold structure. The main
reason for consideringMg,n(x), sometimes known as the combinatorial moduli space, is the following.

Proposition 6. The moduli spacesMg,n(x) andMRGg,n(x) are homeomorphic as orbifolds.

This equivalence can be shown via uniformisation and the notion of Jenkins–Strebel quadratic differentials,
as originally noted by Harer, Mumford and Thurston. However, it will be more advantageous for us to
consider the hyperbolic geometric proof due to Bowditch and Epstein [2]. The main idea is to associate to
a hyperbolic surface S with geodesic boundary its spine Γ(S). For every point p ∈ S, let n(p) denote the
number of shortest paths from p to the boundary. Generically, we have n(p) = 1 and we define the spine as

Γ(S) = {p ∈ S | n(p) ≥ 2}.

The locus of points with n(p) = 2 consists of a disjoint union of open geodesic segments. These correspond
precisely to the edges of a graph embedded in S. The locus of points with n(p) ≥ 3 forms a finite set which
corresponds to the set of vertices of the aforementioned graph. In fact, if n(p) ≥ 3, then the corresponding
vertex will have degree n(p). In this way, Γ(S) has the structure of a ribbon graph. Furthermore, it is a
deformation retract of the original hyperbolic surface, so if S has genus g and n boundary components, then
Γ(S) will be a ribbon graph of type (g, n).



6 NORMAN DO

Now for each vertex p of Γ(S), consider the n(p) shortest paths from p to the boundary. We refer to these
geodesic segments as ribs and note that they are perpendicular to the boundary of S. The diagram below
shows part of a hyperbolic surface, along with its spine and ribs. Cutting S along its ribs leaves a collection
of hexagons, each with four right angles and a reflective axis of symmetry along one of the diagonals. In fact,
this diagonal is one of the edges of Γ(S) and we assign to it the length of the side of the hexagon which lies
along the boundary of S. Of course, there are two such sides — however, the reflective symmetry guarantees
that they are equal in length. In this way, Γ(S) becomes a metric ribbon graph of type (g, n). By construction,
the perimeters of Γ(S) correspond precisely with the lengths of the boundary components of S, so we have
a map Γ : Mg,n(x) → MRGg,n(x). Although Bowditch and Epstein considered only the case of cusped
hyperbolic surfaces, one can show that this is in fact a homeomorphism of orbifolds using a proof entirely
analogous to theirs. Further details may be found in [2, 4].

2.3. Intersection theory on moduli spaces of curves. For non-negative integers g and n satisfying the Euler
characteristic condition 2− 2g− n < 0, define the moduli space of curves as follows.

Mg,n =

{
(C, p1, p2, . . . , pn)

∣∣∣∣∣
C is a smooth algebraic curve of genus g
with n distinct points p1, p2, . . . , pn

}/
∼

Here, (C, p1, p2, . . . , pn) ∼ (D, q1, q2, . . . , qn) if and only if there exists an isomorphism from C to D which
sends pk to qk for all k. Of course, one can equivalently consider these algebraic curves as Riemann surfaces
with punctures rather than marked points. The uniformisation theorem then allows us to deduce thatMg,n,
with its natural topology, is diffeomorphic to the moduli space of hyperbolic surfacesMg,n(L) for all L.

It is often more natural to work with the Deligne–Mumford compactification of the moduli space of curves.

Mg,n =

{
(C, p1, p2, . . . , pn)

∣∣∣∣∣
C is a stable algebraic curve of genus g with
n distinct smooth points p1, p2, . . . , pn

}/
∼

An algebraic curve is called stable if it has at worst nodal singularities and a finite automorphism group. The
practical interpretation of this latter condition is that every rational component of the curve must have at least
three points which are nodes or marked points. An important problem concerningMg,n is the calculation of
its intersection theory with respect to certain characteristic classes. The classes that we will consider live in
the cohomology ring H∗(Mg,n) and arise from taking Chern classes of natural complex vector bundles.3

Given a stable genus g curve with n + 1 marked points, one can forget the point labelled n + 1 to obtain
a genus g curve with n marked points. Unfortunately, the resulting curve may not be stable, but gives
rise to a well-defined stable curve after contracting all unstable rational components. This gives a map
π :Mg,n+1 →Mg,n known as the forgetful morphism and which can be interpreted as the universal family
overMg,n. In other words, one can take a stable curve C ∈ Mg,n along with a point p on C and associate
a stable curve inMg,n+1 to the pair (C, p). In particular, the fibre over a point C ∈ Mg,n is essentially the

3Readers with a more algebraic predilection may prefer to think of these classes as living in the Chow ring A∗(Mg,n).
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marked curve described by C. So the point labelled k defines a section σk :Mg,n →Mg,n+1 for k = 1, 2, . . . , n.
The forgetful morphism can be used to pull back cohomology classes, but it will also be useful to push them
forward. This is possible via the Gysin map π∗ : H∗(Mg,n+1) → H∗(Mg,n), a homomorphism of graded
rings with grading −2 which can be described as integration along fibres.

Now consider the vertical cotangent bundle onMg,n+1 with fibre at (C, p) equal to the cotangent line T∗p C.
Unfortunately, this definition is nonsensical when p is a singular point of C. Therefore, it is necessary to
consider the relative dualising sheaf, the unique line bundle onMg,n+1 which extends the vertical cotangent
bundle. More precisely, if we let KX be the canonical line bundle onMg,n+1 and KB be the canonical line
bundle onMg,n, then it can be defined as

L = KX ⊗ π∗K−1
B .

There are natural line bundles onMg,n formed by pulling back L along the sections σk :Mg,n →Mg,n+1 for
k = 1, 2, . . . , n. Taking Chern classes of these line bundles, we obtain the psi-classes

ψk = c1(σ
∗
kL) ∈ H2(Mg,n; Q) for k = 1, 2, . . . , n.

Define the twisted Euler class by e = c1 (L (D1 + D2 + · · ·+ Dn)), where Dk is the divisor on Mg,n+1

representing the image of the section σk. Taking the push-forward of its powers, we obtain the kappa-classes

κm = π∗(em+1) ∈ H2m(Mg,n; Q) for m = 0, 1, 2, . . . , 3g− 3 + n.

In the following, we will only be dealing with κ1, which appears naturally in the study of moduli spaces of
hyperbolic surfaces via the following result of Wolpert [12].

Proposition 7. The Weil–Petersson form ω on the moduli space of hyperbolic surfacesMg,n(0) induces the de Rham
cohomology class

[ω] = 2π2κ1 ∈ H2(Mg,n; R).

3. HYPERBOLIC SURFACES WITH LARGE BOUNDARY LENGTHS

Fix a metric ribbon graph Γ ∈ MRGg,n(x) and let NΓ ∈ MRGg,n(Nx) denote the same underlying ribbon
graph with the metric scaled by a factor of N. We will be interested in the geometry of the hyperbolic surface
S(NΓ) arising from the Bowditch–Epstein construction as N approaches infinity. The Gauss–Bonnet theorem
ensures that the surface area remains constant in the limit. So as the boundary lengths become large, the
surface appears to stretch and resemble a graph with the surface area concentrated around the vertices. One
goal of this section is to formalise this intuitive picture.

The Bowditch–Epstein construction produces the metric ribbon graph NΓ embedded as the spine of the
hyperbolic surface S(NΓ). Previously, we defined a rib to be a shortest path from a vertex of the spine to
the boundary of the surface. Cutting S(NΓ) along its ribs leaves a collection of hexagons — let us call them
edge hexagons — each of which includes a unique edge of NΓ. Given an edge hexagon, one can lift it to
the hyperbolic plane and consider the two sides which are parallel to the edge. We refer to the common
perpendicular between the two corresponding lines as an intercostal.

Lemma 8. If δ(e) denotes the length of the intercostal corresponding to an edge e in NΓ, then

lim
N→∞

δ(e) = 0.
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Proof. The diagram below shows the edge e and its corresponding edge hexagon. The boundary of the
hexagon comprises four ribs which have been drawn as dotted lines and two boundary segments which
have been drawn as solid lines. Note that the intercostal is perpendicular to the two boundary segments and
hence, by symmetry, must also be perpendicular to the edge e. So there are four hyperbolic trirectangles in
the diagram.

θ

N`

a b

δ
2

δ
2

Suppose that the length of the edge e in the metric ribbon graph NΓ is N`. Consider the lower left trirectangle
in the diagram and, without loss of generality, assume that the length marked a satisfies a ≥ N`

2 . By the
standard trigonometric formula for trirectangles — for example, consider the reference [3] — we have the
equation cos θ = sinh a sinh δ

2 . Therefore,

0 ≤ sinh
δ

2
=

cos θ

sinh a
≤ 1

sinh N`
2

and taking the N → ∞ limit leads to the desired result. �

Although the proof of the previous lemma remains valid, the intercostal might not actually intersect the edge,
as depicted in the diagram. However, the next lemma guarantees that this assumption is indeed correct, at
least for N sufficiently large.

Lemma 9. If N is sufficiently large, then the intercostal corresponding to an edge intersects the edge.

Proof. To obtain a contradiction, suppose that the intercostal corresponding to the edge e does not intersect it.
Consider a lift of e to the hyperbolic plane, along with the corresponding intercostal of length δ, the adjacent
boundary components, and the ribs joining e to these boundary components. Let the vertex v closer to the
intercostal be at distance r from the two adjacent boundary components.

X

Y

δ
2

δ
2

r

r e
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There must exist a third lift of a boundary component which is also at distance r from the vertex v. Further-
more, the endpoints of this lift must lie between the points labelled X and Y in the diagram. By Lemma 8,
the length δ converges to zero as N approaches infinity. And as δ converges to zero, it is clear that v cannot
remain equidistant from the three lifts of boundaries without the intercostal intersecting the edge. �

Since we are interested in the N → ∞ limit, we may assume herein that the intercostal corresponding to an
edge is the common perpendicular between opposite sides in the edge hexagon. Cutting S(NΓ) along its
intercostals leaves a collection of right-angled polygons — let us call them vertex polygons — each of which
includes a unique vertex of Γ. Note that, at a vertex of degree d in NΓ, the corresponding vertex polygon has
2d sides.

Lemma 10. In the N → ∞ limit, the angles between adjacent edges at a degree d vertex converge to 2π
d .

Proof. Consider a lift of a vertex polygon to the hyperbolic plane. If the vertex has degree d in NΓ, then
there will be d edges and d ribs which meet there. The vertex polygon is divided into 2d trirectangles by
these edges and ribs. The symmetry in an edge hexagon implies that the two angles labelled α and β in the
diagram below must be equal.

α β γ

It remains to show that the two angles labelled β and γ converge to the same value. However, in the N → ∞
limit, Lemma 8 ensures that the length of each intercostal approaches zero. Therefore the trirectangles which
include the angles labelled β and γ converge to ideal triangles with one right-angle and one ideal vertex.
Since they also share a common side, it follows from basic hyperbolic trigonometry that β and γ converge to
the same value. �

We have deduced that in the N → ∞ limit, a vertex polygon corresponding to a degree d vertex resembles a
regular ideal d-gon. One consequence is that the lengths of the ribs in S(NΓ) at a degree d vertex converge to
the finite value cosh−1

(
1

sin π/d

)
.

Lemma 11. Let γ be a closed geodesic of length `(γ) in Γ. Since NΓ is a deformation retract of the hyperbolic surface
S(NΓ), this defines a unique closed geodesic on S(NΓ). After scaling the hyperbolic metric by 1

N , we obtain a closed
geodesic γN on 1

N S(NΓ) whose length we denote by `(γN). Then we have the equation

lim
N→∞

`(γN) = `(γ).
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Proof. If γ travels along an edge of Γ, then the geodesic γN must travel through the corresponding edge
hexagon in 1

N S(NΓ). The segment of γN which travels through this edge hexagon is at least as long as the
corresponding edge in Γ. One can see this by projecting the segment onto the appropriate side of the hexagon.
Summing up over the edges traversed by γ, we obtain the fact that

`(γN) ≥ `(γ).

On the other hand, if we consider Γ embedded as the spine of 1
N S(NΓ), then the curve γ in the hyperbolic

surface consists of geodesic segments along the edges of Γ. By the triangle inequality, the length of such a
segment in 1

N S(NΓ) exceeds the length of the corresponding edge in Γ by no more than twice the maximum
rib length in 1

N S(NΓ). Summing up over the edges traversed by γ, we obtain the fact that

`(γN) ≤ `(γ) +
2Er
N

.

Here, E is the number of edges traversed by γ and r is the maximum rib length in S(NΓ). However, from the
observation previous to this lemma, r converges to the finite value cosh−1

(
1

sin π/d

)
, where d is the maximum

degree of a vertex in Γ. One then obtains the desired result by taking the N → ∞ limit of the two-sided
inequality

`(γ) ≤ `(γN) ≤ `(γ) +
2Er
N

. �

In Section 4, our focus will be on trivalent metric ribbon graphs — in other words, those whose vertices
all have degree three. For such a metric ribbon graph Γ, the angles between closed geodesics in S(NΓ) are
particularly simple to compute in the N → ∞ limit.

Lemma 12. Let Γ be a trivalent metric ribbon graph and consider two distinct closed geodesics in Γ. Suppose that the
corresponding closed geodesics in S(NΓ) intersect in an angle θ ≤ π

2 . Then we have the equation

lim
N→∞

θ = 0.

Proof. Since Γ is trivalent, each vertex polygon in S(NΓ) is a right-angled hexagon. These hexagons have
three alternating sides which are intercostals and three alternating sides which are boundary segments. If a
closed geodesic enters a vertex polygon via one intercostal, it must exit via another. Therefore, the intersection
of two closed geodesics must resemble one of the following two diagrams.

θ
a

bc

θ

δ

In the diagram on the left, as N approaches infinity, we may assume without loss of generality that the
lengths denoted a and b also approach infinity. Since we know by Lemma 8 that the length of an intercostal
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must converge to 0, so must the length denoted by c in the diagram. The hyperbolic cosine rule states that
cosh c = cosh a cosh b− sinh a sinh b cos θ or equivalently,

cos θ = coth a coth b− cosh c
sinh a sinh b

.

So in the N → ∞ limit, we know that cos θ converges to 1 and θ converges to 0.

In the diagram on the right, as N approaches infinity, Lemma 8 asserts that the length denoted by δ in the
diagram converges to 0. Since the hexagon is right-angled, the two boundary segments adjacent to this
intercostal limit to an ideal vertex. So in the N → ∞ limit, we know that θ converges to 0. �

These results suggest that hyperbolic surfaces with large boundary lengths resemble metric ribbon graphs
after appropriately scaling the hyperbolic metric. A precise statement of this fact can be made by making use
of Gromov–Hausdorff convergence. Given a metric space X, let λX denote the same underlying set with the
metric scaled by a positive real number λ. Theorem 1 states that, in the Gromov–Hausdorff topology, the
following equation holds for every metric ribbon graph Γ.

lim
N→∞

1
N

S(NΓ) = Γ

Proof of Theorem 1. We will require the notion of an ε-GHA or, in other words, an ε-Gromov–Hausdorff
approximation. We say that a map f : X → Y between metric spaces is an ε-GHA if Y is contained in the
ε-neighbourhood of f (X) and

|dX(x1, x2)− dY( f (x1), f (x2))| < ε.

This concept can be used to define a metric on the set of metric spaces which is well-known to be equivalent
to the Gromov–Hausdorff metric.

d(X, Y) = inf {ε > 0 | there exist ε-GHAs f : X → Y and g : Y → X}

Define the map f : Γ→ 1
N S(NΓ) by inclusion as the spine. From the same length estimates used in the proof

of Lemma 11, we obtain

dS( f (x1), f (x2)) ≤ dΓ(x1, x2) ≤ dS( f (x1), f (x2)) +
2Er
N

,

where E is the number of edges traversed by the geodesic from x1 to x2 and r is the maximum rib length in
S(NΓ). As observed earlier, r converges to a finite value while E is clearly bounded above by the number
of edges in Γ. In addition, we know that the r

N -neighbourhood of f (Γ) contains 1
N S(NΓ). Therefore,

f : Γ→ 1
N S(NΓ) is an ε-GHA where ε converges to 0 in the N → ∞ limit.

Now define the map g : 1
N S(NΓ) → Γ in the following way. For a point x ∈ 1

N S(NΓ), extend the shortest
path from the boundary to x until it meets the spine Γ at g(x). From the same length estimates used in the
proof of Lemma 11, we obtain

dΓ(g(x1), g(x2)) ≤ dS(x1, x2) ≤ dΓ(g(x1), g(x2)) +
2Er
N

,

where E is the number of edges traversed by the image of the the geodesic from x1 to x2 and r is the maximum
rib length in S(NΓ). Once again, r converges to a finite value while E is clearly bounded above by the number
of edges in Γ. In addition, we know that the image of g is precisely Γ. Therefore, g : 1

N S(NΓ)→ Γ is an ε-GHA
where ε converges to 0 in the N → ∞ limit. It follows that 1

N S(NΓ) converges to Γ in the Gromov–Hausdorff
topology. �
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4. THE ASYMPTOTIC WEIL–PETERSSON FORM

In order to study the asymptotic behaviour of the Weil–Petersson form, fix x and consider the map

f :MRGg,n(x)→MRGg,n(Nx)→Mg,n(Nx).

This homeomorphism of orbifolds is the composition of two maps — the first scales the ribbon graph metric
by N while the second uses the Bowditch–Epstein construction. The normalised Weil–Petersson form ω

N2 on
Mg,n(Nx) pulls back via f to a symplectic form on the combinatorial moduli space. We will be interested in
the asymptotic behaviour of this symplectic form.

Now fix a trivalent ribbon graph Γ of type (g, n) and consider the setMRGΓ(x) ⊆MRGg,n(x). This is an
open orbifold cell in the cell decomposition for the combinatorial moduli space described in Section 2. The
ribbon graph Γ has exactly 6g− 6 + 3n edges, which we label from 1 up to 6g− 6 + 3n. The lengths of these
edges e1, e2, . . . , e6g−6+3n provide a set of natural coordinates onMRGΓ(x). One goal of this section is to

prove that there exist constants aij which depend on Γ such that f ∗ω
N2 converges to a 2-form onMRGΓ(x) of

the form

lim
N→∞

f ∗ω
N2 = ∑

i<j
aij dei ∧ dej.

Although the Fenchel–Nielsen coordinates are canonical for the Weil–Petersson form, it is useful to instead
consider local coordinates for the moduli space, each of which is the length function associated to some
simple closed curve. The following result due to Wolpert [13] asserts that the Weil–Petersson form has a
reasonably straightforward description in such coordinates.

Proposition 13. Let C1, C2, . . . , C6g−6+2n be distinct simple closed geodesics with lengths `1, `2, . . . , `6g−6+2n in a
hyperbolic surface with genus g and n cusps. If Ci and Cj meet at a point p, let θp denote the angle between the curves,
measured anticlockwise from Ci to Cj. Define the (6g− 6 + 2n)× (6g− 6 + 2n) skew-symmetric matrix X by the
formula

Xij = ∑
p∈Ci∩Cj

cos θp, for i < j.

If X is invertible, then `1, `2, . . . , `6g−6+2n are local coordinates for the moduli space and the Weil–Petersson form is
given by

ω = −∑
i<j

[X−1]ij d`i ∧ d`j.

On closer inspection of Wolpert’s original proof, this result extends without amendment to the case of
hyperbolic surfaces with geodesic boundary. By linearity, it also holds if C1, C2, . . . , C6g−6+2n are simple
geodesic multicurves or, in other words, finite unions of disjoint simple closed geodesics, each with a
positive weight. In order to use this expression for the Weil–Petersson form, we require a natural system
of multicurves to work with. We associate a multicurve C̃k in Γ to the edge labelled k using the following
convention.

Case 1: If the edge labelled k is adjacent to the two distinct faces labelled i and j, then let C̃k be the
curve shown in bold in the diagram below left.
Case 2: If the edge labelled k is adjacent to the face labelled i on both sides, then let C̃k be the union of
the two curves shown in bold in the diagram below right.
Case 3: If the edge labelled k is a loop, then let C̃k be the empty curve.
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i jk

i

i

k

Now given a trivalent metric ribbon graph NΓ ∈ MRGΓ(Nx), the multicurve C̃k on Γ defines a sim-
ple geodesic multicurve Ck on S(NΓ).4 If we denote its length by `k, then we obtain length functions
`1, `2, . . . , `6g−6+3n which can be pulled back to MRGΓ(x). However, we will be more interested in the
normalised length functions ̂̀1, ̂̀2, . . . , ̂̀6g−6+3n defined by ̂̀k =

`k
N . For a particular value of N, it is difficult

to precisely relate this coordinate system with that given by the edge length functions e1, e2, . . . , e6g−6+3n.
However, the picture is much simpler in the N → ∞ limit, where we can use Lemma 11 to deduce the
following.

Case 1: If the edge labelled k is adjacent to the two distinct faces labelled i and j, then

lim
N→∞

̂̀k = xi + xj − 2ek.

Case 2: If the edge labelled k is adjacent to the face labelled i on both sides, then

lim
N→∞

̂̀k = xi − 2ek.

Case 3: If the edge labelled k is a loop, then

lim
N→∞

̂̀k = 0.

The normalised length functions are known to be real analytic functions and, by the work of Wolpert [14], are
also known to have bounded first and second derivatives. Therefore, we may interchange the order of limit
and derivative to obtain

lim
N→∞

d̂̀k = −2dek, for k = 1, 2, . . . , 6g− 6 + 3n.

We now turn our attention to the asymptotic behaviour of the (6g− 6 + 3n)× (6g− 6 + 3n) skew-symmetric
matrix defined by

Xij = ∑
p∈Ci∩Cj

cos θp, for i < j.

Given the trivalent ribbon graph Γ, we define Bij — the oriented adjacency between edge i and edge j — to
be 0 if the edges are not adjacent or equal, and according to the following convention otherwise.

i j

Bij = −1

j i

Bij = +1

i j

Bij = 0

ij

Bij = −2

i j

Bij = +2

4We use Γ to denote both the metric ribbon graph as well as its underlying ribbon graph — hopefully, no confusion should arise
from this abuse of notation.
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This also defines a (6g− 6 + 3n)× (6g− 6 + 3n) skew-symmetric matrix. Note that B is an integer matrix
by construction while X converges to an integer matrix in the N → ∞ limit as a result of Lemma 12. In fact,
these two matrices are related by the following result.

Lemma 14. In the N → ∞ limit, the matrix X converges to −2B.

Proof. Suppose that the two curves C̃i and C̃j traverse a maximal path of consecutive edges in Γ. Then in the
N → ∞ limit, they will contribute +1 to Xij if the diagram resembles the following, −1 if the order of the
curves is reversed, and 0 otherwise.

C̃i C̃j

It is clear that if edges i and j are not adjacent to a common face, then Ci and Cj do not intersect and Xij = 0.
Now suppose that edges i and j do share a common face, but are not adjacent. Then the schematic diagram
below, combined with the previous observation, shows that Ci and Cj meet precisely twice. However, the
two corresponding contributions to Xij have different signs, so Xij = 0 in the N → ∞ limit.

i j

C̃i

i j

C̃j

Now suppose that the oriented adjacency between edges i and j is −1. Then the schematic diagram below,
combined with our previous observation, shows that Ci and Cj meet precisely twice. The two corresponding
contributions to Xij are positive, so Xij = 2 in the N → ∞ limit. The same argument can be used to prove
that if the oriented adjacency between edges i and j is +1, then we have Xij = −2 in the N → ∞ limit.

i j

C̃i

i j

C̃j

The few additional cases which may arise include when the oriented adjacency is ±2 and when vertices,
edges or faces in the diagrams above coincide. However, these may be handled in an entirely analogous
manner which is not worthy of reproduction here. �

Lemma 15. The matrix B has rank 6g− 6 + 2n.

Proof. We consider RE(Γ) to be the real vector space with basis {E1, E2, . . . , E6g−6+3n}, the set of edges of Γ.
Then the matrix B represents the linear map RE(Γ) → RE(Γ) which describes the oriented adjacency between
edges in Γ.
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We also consider Rn to be the real vector space with basis {F1, F2, . . . , Fn}, the set of faces in the cell de-
composition corresponding to Γ. In Section 2, we defined AΓ : RE(Γ) → Rn to be the linear map which
represents adjacency between the faces and edges of Γ. The transpose At : Rn → RE(Γ) is the linear map
which sends a face to the sum of the edges adjacent to that face, counted with multiplicity. We will show that
the composition of these two linear maps satisfies B ◦ At = 0.

Suppose that F is a face which is adjacent to the m not necessarily distinct edges E1, E2, . . . , Em, as shown in
the diagram below. Furthermore, suppose that the edges Ek and Ek+1 are also adjacent to the edge Ek, where
the subscripts are taken modulo m. The following calculation shows that B ◦ At = 0 holds on a basis for Rn,
so we have im At ⊆ ker B.

E1

E2

E3

E4 E5

Em
E1

E2

E3

E4

E5

Em

F

B ◦ At(F)

= B(E1 + E2 + · · ·+ Em)

= ∑ B(Ek)

= ∑(Ek−1 − Ek−1 + Ek − Ek+1)

= ∑ Ek−1 −∑ Ek−1 + ∑ Ek −∑ Ek+1

= 0

Now if ∑ akEk ∈ ker B, then ai−1 + ai − ai−1 = ai + ai+1 − ai for all i. So to the face F, we can associate the
well-defined value

b =
a1 + a2 − a1

2
=

a2 + a3 − a2

2
= · · · = am + a1 − am

2
.

Since B(∑ bkFk) = ∑ akEk, we have ker B ⊆ im At. In particular, we have established that ker B = im At.

Now if ∑ bkFk ∈ ker AT and Fi and Fj are adjacent faces, then bi + bj = 0. So if the faces Fi, Fj, Fk meet at a
vertex, then bi + bj = bj + bk = bk + bi = 0, which implies that bi = bj = bk = 0. Since Γ is connected, we
deduce that ker At = 0. Now invoke the rank–nullity theorem to conclude that dim(im B) = 6g− 6+ 2n. �

The previous lemma asserts that we may relabel the edges of Γ in such a way that the matrix B̂ formed
by taking the first 6g− 6 + 2n rows and 6g− 6 + 2n columns of B is invertible. The matrix X̂ is defined
analogously from the matrix X.

We are now in a position to prove Theorem 2 which states that, in the N → ∞ limit, the symplectic form
f ∗ω
N2 converges pointwise to a piecewise linear 2-form ΩL on the locus of trivalent metric ribbon graphs in
MRGg,n(x). Furthermore, this coincides with the piecewise linear 2-form ΩK introduced by Kontsevich in
his proof of the Witten–Kontsevich theorem [6].

Proof of Theorem 2. We have shown that in the N → ∞ limit, X = −2B and d̂̀k = −2dek. Now use Proposi-
tion 13 to obtain

lim
N→∞

f ∗ω
N2 = − lim

N→∞
∑
i<j

[X̂−1]ij d̂̀i ∧ d̂̀j = 2 ∑
i<j

[B̂−1]ij dei ∧ dej.

So for every trivalent ribbon graph Γ, the symplectic form f ∗ω
N2 converges pointwise onMRGΓ(x). Further-

more, the limiting 2-form has constant coefficients with respect to the local coordinates e1, e2, . . . , e6g−6+3n.
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Therefore, the asymptotic Weil–Petersson form ΩL is a piecewise linear 2-form on the locus of trivalent metric
ribbon graphs inMRGg,n(x).

Kontsevich defines a piecewise linear 2-form ΩK on the locus of trivalent metric ribbon graphs inMRGg,n(x)
in the following way. For each face of Γ, choose one distinguished edge adjacent to that face. This allows us
to turn the cyclic ordering of the edges around a face into a total ordering by declaring the distinguished
edge to be first. Now define the matrix K according to the following rule.

Kij = ∑
faces





+1 if edge i comes before edge j
−1 if edge i comes after edge j
0 if edge i or edge j is not adjacent to the face

Since K is skew-symmetric, it can be used to define the 2-form

ΩK =
1
4 ∑

i<j
Kij dei ∧ dej.

One can prove that ΩK is well-defined and non-degenerate onMRGΓ(x) for a trivalent ribbon graph Γ. We
define a vector field onMRGΓ(x) corresponding to edge i by

Ti = ∑
j

Bij
∂

∂ej
.

Then a straightforward computation shows that

ιTi ΩK = −2dei and ΩK(Ti, Tj) = −2Bij.

On the other hand, results of Wolpert [13] assert that onMg,n(Nx), the Fenchel–Nielsen coordinates satisfy

ιτi ω = −d`i and ω(τi, τj) = Xij.

Using the fact that X = −2B and d̂̀k = −2dek in the N → ∞ limit, it follows that ΩK and ΩL are equal on
the locus of trivalent metric ribbon graphs inMRGg,n(x). �

An alternative proof of this result appears in the work of Mondello [9]. Among other differences, Mondello
uses Penner coordinates to analyse the Weil–Petersson Poisson structure on Teichmüller space and produces
Theorem 2 as a byproduct. It seems that our choice of coordinates is more well-suited for the purpose of
analysing the asymptotic behaviour of the Weil–Petersson symplectic form. We believe that it offers a more
intuitive and less computational proof of Theorem 2.

5. APPLICATIONS TO INTERSECTION THEORY ON MODULI SPACES OF CURVES

5.1. Witten–Kontsevich theorem. One of the landmark results concerning intersection theory on moduli
spaces of curves is the Witten–Kontsevich theorem, which governs psi-class intersection numbers

∫

Mg,n
ψα1

1 ψα2
2 . . . ψαn

n ∈ Q.

In his foundational paper [11], Witten conjectured that a particular generating function for these numbers is a
tau function for the Korteweg–de Vries integrable hierarchy. This gives an effective recursion for calculating
all psi-class intersection numbers. An equivalent formulation of the conjecture states that the generating
function for psi-class intersection numbers satisfies certain Virasoro constraints.

Kontsevich’s proof [6] of Witten’s conjecture uses combinatorial polygon bundles over the combinatorial
moduli space in order to represent the psi-classes. He writes down the 2-form ΩK and determines the
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corresponding volume of the combinatorial moduli space. Taking the Laplace transform of the Kontsevich
volume results in the combinatorial formula stated as Theorem 3. This identity reduces the calculation of
psi-class intersection numbers onMg,n to a certain weighted enumeration of trivalent ribbon graphs of type
(g, n). From this point, Kontsevich introduced a matrix integral to handle the ribbon graph enumeration and
the known relationship between matrix integrals and integrable hierarchies allowed him to deduce Witten’s
conjecture.

More recently, Mirzakhani [7, 8] has found an alternative proof of the Witten–Kontsevich theorem by
calculating volumes of moduli spaces of hyperbolic surfaces with respect to the Weil–Petersson form.

Vg,n(L) =
∫

Mg,n(L)

ω3g−3+n

(3g− 3 + n)!

She uses a generalisation of McShane’s identity concerning the length spectrum of a hyperbolic surface to
produce a method for integrating over moduli spaces of hyperbolic surfaces. In particular, she is able to
write down a recursive formula for the Weil–Petersson volumes. On the other hand, Mirzakhani employs the
method of symplectic reduction to generalise Proposition 7 in the following way.

Proposition 16. The Weil–Petersson form ω on the moduli space of hyperbolic surfacesMg,n(L) induces the de Rham
cohomology class

[ω] = 2π2κ1 +
1
2

L2
1ψ1 +

1
2

L2
2ψ2 + · · ·+

1
2

L2
nψn ∈ H2(Mg,n; R).

A direct corollary of this result is the fact that the Weil–Petersson volume ofMg,n(L) is given by the expression

Vg,n(L) = ∑
|α|+m=3g−3+n

(2π2)m ∫
Mg,n

ψα1
1 ψα2

2 · · ·ψαn
n κm

1

2|α|α1!α2! · · · αn!m!
L2α1

1 L2α2
2 · · · L2αn

n .

Combining her volume calculation with this result yields a recursive formula for the psi-class intersection
numbers. Thus, Mirzakhani is able to deduce the Witten–Kontsevich theorem. Her proof is particularly
striking since it directly verifies the Virasoro constraints, completely bypasses the theory of matrix integrals,
and uses hyperbolic geometry in a fundamental way.

Theorem 3, which we refer to as Kontsevich’s combinatorial formula, states that for the moduli space of
curvesMg,n, we have the following equality of rational polynomials in s1, s2, . . . , sn.

∑
|α|=3g−3+n

∫

Mg,n
ψα1

1 ψα2
2 · · ·ψαn

n

n

∏
k=1

(2αk − 1)!!

s2αk+1
k

= ∑
Γ

22g−2+n

|Aut(Γ)| ∏
e∈E(Γ)

1
s`(e) + sr(e)

Here, we use the notation |α| as a shorthand for α1 + α2 + · · ·+ αn. The sum on the right hand side is over
the trivalent ribbon graphs of type (g, n). We write Aut(Γ) and E(Γ) for the automorphism group and edge
set of Γ, respectively. For an edge e, the expressions `(e) and r(e) denote the labels of the faces on its left and
right.

Proof of Theorem 3. By Proposition 16, we can write the asymptotics of the Weil–Peterson volume as

lim
N→∞

Vg,n(Nx)
N6g−6+2n = ∑

|α|=3g−3+n

∫
Mg,n

ψα1
1 ψα2

2 · · ·ψαn
n

23g−3+nα1!α2! · · · αn!
x2α1

1 x2α2
2 · · · x2αn

n .
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We may alternatively express the asymptotics of the Weil–Peterson volume in the following way.

lim
N→∞

Vg,n(Nx)
N6g−6+2n =

1
(3g− 3 + n)!

lim
N→∞

∫

Mg,n(Nx)

( ω

N2

)3g−3+n

=
1

(3g− 3 + n)!

∫

MRGg,n(x)

(
lim

N→∞

f ∗ω
N2

)3g−3+n

=
∫

MRGg,n(x)

Ω3g−3+n
K

(3g− 3 + n)!

To obtain the second line from the first, we invoke the Lebesgue dominated convergence theorem to move
the limit inside the integral. And to obtain the third line from the second, we have used Theorem 2.

After equating these two expressions and taking the Laplace transform, we arrive at the following equation.

∑
|α|=3g−3+n

∫

Mg,n
ψα1

1 ψα2
2 · · ·ψαn

n

n

∏
k=1

(2αk − 1)!!

s2αk+1
k

= 23g−3+n L
{∫

MRGg,n(x)

Ω3g−3+n
K

(3g− 3 + n)!

}
.

The left hand side coincides with that of Kontsevich’s combinatorial formula. The right hand side naturally
splits as a sum, since the cell decomposition forMRGg,n(x) possesses one top-dimensional cell for each
trivalent ribbon graph of type (g, n). Using the edge lengths as local coordinates, we find that each top-
dimensional cell is naturally a convex polytope inside which the volume form is constant. By explicitly
performing the volume calculation, we obtain Kontsevich’s combinatorial formula. We refer the reader to
Kontsevich’s original paper [6] for the precise details of the volume calculation. �

We have shown that the Kontsevich volumes arise as the asymptotics of the Weil–Petersson volumes.
This provides a new proof of the Witten–Kontsevich theorem and makes explicit the connection between
the work of Kontsevich [6] and Mirzakhani [7, 8]. The strength of our approach lies in the fact that it
avoids the complications inherent in the groundbreaking work of Kontsevich — namely, the non-standard
compactification of the moduli space of curves and the justification of how psi-classes arise from integrating
over the combinatorial moduli space.

5.2. A recursive formula for Kontsevich volumes. There is further mileage to be gained from the viewpoint
that Kontsevich volumes arise as the asymptotics of the Weil–Petersson volumes. For example, one expects
the existence of a recursive formula for the Kontsevich volumes whose proof is modelled on Mirzakhani’s
calculation of the Weil–Petersson volumes — indeed, such a recursion appears in [1]. Since their viewpoint is
similar to ours and their results complementary, it is apt to include their main theorem here for comparison.
Consider the Kontsevich volume multiplied by the product of the perimeters

Wg,n(L) = L1L2 · · · Ln

∫

MRGg,n(L)

Ω3g−3+n
K

(3g− 3 + n)!
.

Theorem 17. Let S = {1, 2, . . . , n} and for an index set I = {i1, i2, . . . ik}, let LI = (Li1 , Li2 , . . . , Lik ). Then we
have the following recursive formula for Kontsevich volumes.

Wg,n+1(L0, LS) =
n

∑
k=1

Lk

[∫ L0−Lk

0
(L0 − x)Wg,n(x, LS\{k}) dx +

∫ L0+Lk

L0−Lk

L0 + Lk − x
2

Wg,n(x, LS\{k}) dx
]

+
∫∫

0≤x+y≤L0

L0 − x− y
2

[
Wg−1,n+1(x, y, LS) + ∑

g1+g2=g
∑

I1tI2=S
Wg1,|I1|+1(x, LI1)Wg2,|I2|+1(y, LI2)

]
dx dy
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As expected, this equation bears a striking resemblance to Mirzakhani’s recursive formula for Weil–Petersson
volumes [7]. It can be used to compute all of the Kontsevich volumes from the base cases

W0,3(L1, L2, L3) = L1L2L3 and W1,1(L1) =
1
48

L3
1.

Furthermore, if one considers the differential version of this formula, then the result is precisely the Virasoro
constraint for the Witten–Kontsevich theorem. This provides yet another path to the Witten–Kontsevich
theorem. Finally, we remark that the Laplace transform of this recursive formula is the topological recursion
of Eynard and Orantin [5] applied to the spectral curve x = 1

2 y2.

5.3. Combinatorial cycles. Witten introduced cycles in the combinatorial moduli space in the following way.
Consider the closure of the subset ofMRGg,n(L) consisting of metric ribbon graphs with one vertex of degree
2k + 3. This defines a homology class Wk(L) ∈ H2k(MRGg,n(L); Q) which in turn defines a cohomology
class Wk ∈ H2k(Mg,n; Q) via Poincaré duality. In particular, this cohomology class is independent of the
initial choice of L. Subsequently, Kontsevich introduced more general cycles Wm(L) ∈ H∗(MRGg,n(L); Q),
where m = (m0, m1, m2, . . .) is a sequence of non-negative integers. These arise by taking the closure of the
subset ofMRGg,n(L) consisting of metric ribbon graphs with mk vertices of degree 2k + 3 for each k. These
are often referred to as combinatorial cycles and they define cohomology classes Wm ∈ H∗(Mg,n; Q) via
Poincaré duality.

As above, we would like to perform a volume calculation with respect to the asymptotic Weil–Petersson
form, but now over a combinatorial cycle rather than the whole combinatorial moduli space. For example,
one can integrate over the cycle Wm(Nx) ⊆MRGg,n(Nx) of codimension 2d and obtain

lim
N→∞

1
N6g−6+2n−2d

∫

Wm(Nx)

ω3g−3+n−d

(3g− 3 + n− d)!
.

By Proposition 16, this expression is equal to

∑
|α|=3g−3+n−d

∫

Mg,n
Wmψα1

1 ψα2
2 · · ·ψαn

n
x2α1

1 x2α2
2 · · · x2αn

n

23g−3+n−dα1!α2! · · · αn!
.

On the other hand, one may compute the volume explicitly by calculating the asymptotic Weil–Petersson
form on the combinatorial cycle. One way to do this is to choose 6g− 6 + 2n geodesic multicurves whose
lengths locally parametrise the moduli space. By Lemma 11, these lengths converge to a linear combination
of the edge lengths in the metric ribbon graph in the N → ∞ limit. In the trivalent case, we observed
earlier that all angles between closed geodesics converge to 0 or π. In the case of higher degree vertices,
the limiting angles may still be computed, using the observation that the vertex polygons converge to
regular ideal polygons. Armed with this information, one may then invoke Proposition 13 to write down
an explicit formula for the asymptotic Weil–Petersson form on the combinatorial cycle. Following the proof
of Kontsevich’s combinatorial formula, one then expects the volume calculation to split naturally as a sum
over the ribbon graphs of type (g, n) with mk vertices of degree 2k + 3 for each k. Equating these two volume
calculations with respect to the asymptotic Weil–Petersson form over the Witten cycle then yields an identity
which relates intersection numbers onMg,n to a certain weighted enumeration of ribbon graphs. In fact, this
provides a method for computing intersection numbers of the form

∫

Mg,n
Wψα1

1 ψα2
2 · · ·ψαn

n ,

where W ∈ H∗(Mg,n; Q) is the Poincaré dual to a combinatorial cycle.
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Example 18. Consider the Witten cycle W1(Nx1, Nx2) ⊆ MRG1,2(Nx1, Nx2) defined by the set of metric
ribbon graphs with at least one vertex of degree at least five. There are eight ribbon graphs of type (1, 2) with
one vertex of degree five and one vertex of degree three — two for each of the diagrams below corresponding
to the two ways to label the faces. Note that each of these ribbon graphs has trivial automorphism group.

e1 e2 e3

e4

We are interested in calculating the Laplace transform of the volume

L
{

lim
N→∞

1
N2

∫

W1(Nx1,Nx2)
ω

}
= L

{∫

W1(x1,x2)
Ω
}

,

where Ω represents the asymptotic Weil–Petersson form over the Witten cycle W1(x1, x2). Each of the eight
metric ribbon graphs defines a top-dimensional cell in W1(x1, x2), so we obtain a contribution to the volume
from each. For example, let us explicitly determine the contribution from the leftmost ribbon graph Γ above,
where the face with two edges along its boundary is labelled 1 while the face with six edges along its boundary
is labelled 2. In order to write down the asymptotic Weil–Petersson form, we look for four simple closed
multicurves on Γ whose geodesic representatives have lengths which locally parametrise Teichmüller space.
For example, one may choose the following, which have been described as a cyclic sequence of oriented
edges.

C1 = [e2, e4, e2, e3, e4, e3]

C2 = [e1, e4, e1, e3, e4, e3]

C3 = [e1, e4, e2] ∪ [e4]

C4 = [e1, e4, e2, e3, e4, e1, e2, e3]

Their normalised lengths ̂̀k =
`k
N satisfy the following equations.

̂̀1 = 2e2 + 2e3 + 2e4 = x1 + x2 − 2e1
̂̀2 = 2e1 + 2e3 + 2e4 = x1 + x2 − 2e2
̂̀3 = e1 + e2 + 2e4 = x2 − 2e3
̂̀4 = 2e1 + 2e2 + 2e3 + 2e4 = x1 + x2

⇒

d̂̀1 = −2de1

d̂̀2 = −2de2

d̂̀3 = −2de3

d̂̀4 = 0

In order to use Wolpert’s expression for the Weil–Petersson form, it is also necessary to calculate the angles
between the four multicurves in the N → ∞ limit. We do this using the observation that the vertex polygons
converge to regular ideal polygons. For example, when two curves intersect at a degree five vertex of Γ, the
angle between the corresponding curves in S(NΓ) converges to the angle θ indicated in the diagram below,
where P1P2P3P4P5 is an ideal regular pentagon. Using standard hyperbolic trigonometry, one can calculate
that cos θ =

√
5− 2.
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P1

P2

P3 P4

P5

θ

We may now invoke Proposition 13 which requires us to calculate the following two matrices.

X =




0
√

5− 1 −2 −2
1−
√

5 0 2
√

5− 1
2 −2 0 1−

√
5

2 1−
√

5
√

5− 1 0


 ⇒ X−1 =

1
8




0 −1−
√

5 −1−
√

5 3 +
√

5
1 +
√

5 0 −3−
√

5 3 +
√

5
1 +
√

5 3 +
√

5 0 1 +
√

5
−3−

√
5 3−

√
5 −1−

√
5 0




The asymptotic Weil–Petersson form over the Witten cycle W1(x1, x2) can now be expressed as follows.

Ω = −∑
i<j

[X−1]ij d̂̀i ∧ d̂̀j =
1 +
√

5
2

de1 ∧ de2 +
1 +
√

5
2

de1 ∧ de3 +
3 +
√

5
2

de2 ∧ de3 = de2 ∧ de3

Here, we have used the fact that de2 = −de1, since e1 + e2 = x1 is a constant.

After integrating over the convex polytope defined by Γ, one obtains

L
{∫

AΓe=x
de2 ∧ de3

}
=

1
2(s1 + s2)2s2

2
.

Here, the matrix AΓ is the adjacency between faces and edges in the ribbon graph Γ. Furthermore, s1 and s2

are the Laplace transform variables of x1 and x2, respectively. For each of the eight ribbon graphs above, one
obtains a similar contribution to the Laplace transform of the volume. The sum of the eight contributions
simplifies rather remarkably in the following way.

1
2(s1+s2)2s2

2
+ 1

4(s1+s2)s3
2

+ 1
4(s1+s2)s3

2
+ 1

(s1+s2)3s2

+ 1
2(s1+s2)2s2

1
+ 1

4(s1+s2)s3
1

+ 1
4(s1+s2)s3

1
+ 1

(s1+s2)3s1

=
1

2s1s3
2
+

1
2s3

1s2

Comparing this calculation to

lim
N→∞

1
N2

∫

W1(Nx)
ω =

x2
1

2

∫

M1,2

W1ψ1 +
x2

2
2

∫

M1,2

W1ψ2,

one obtains ∫

M1,2

W1ψ1 =
∫

M1,2

W1ψ2 = 1.

This result is easily verified by using W1 = 12κ1, a fact first proved by Penner [10].
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