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A tourist’s guide to intersection theory
on moduli spaces of curves

Norman Do∗

Abstract

In the past few decades, moduli spaces of curves have become increasingly
prominent and important in mathematics. In fact, the study of moduli spaces
lies at the centre of a rich confluence of rather disparate areas such as ge-
ometry, combinatorics and string theory. Starting from baby principles, I
will describe exactly what a moduli space is and motivate the study of its
intersection theory. This scenic tour will guide us towards a discussion of
Kontsevich’s combinatorial formula, including a description of a new proof.

What is a moduli space and what is it good for?

Let us begin our journey into the world of moduli spaces with the following two
statements.

• A moduli space parametrises a family of geometric objects.
• Different points in a moduli space represent different geometric objects and

nearby points represent objects with similar structure.

Rather than elaborate on these cryptic remarks, perhaps the best way forward is
to consider the following example. Although of no great interest in itself, it will
give us a taste of what a moduli space is and what it is good for.

Toy example. Let M� be the moduli space of triangles whose vertices are
labelled A, B and C. Therefore, every point in M� should correspond to a par-
ticular triangle. If we denote the side lengths by a = BC, b = CA and c = AB,
then the triangle can be uniquely described by the triple (a, b, c). However,
not all triples of positive real numbers give rise to a triangle. Indeed, a neces-
sary and sufficient condition is that the three numbers must satisfy the triangle
inequalities. So we can describe the moduli space of triangles as follows.

M� = {(a, b, c) ∈ R3
+ | a+ b > c, b+ c > a, and c+ a > b} .

Standing at a point in the moduli space corresponds to thinking about a particular
triangle. On the other hand, moving through the moduli space corresponds to
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continuously deforming the triangle1. We will use this toy example of a moduli
space to consider a baby problem from enumerative geometry.

How many triangles with vertices labelled A, B and C are isosceles,
have at least one side of length 5, and have at least one side of length 7?

I have called this a baby problem because it is really quite simple. What is inter-
esting, however, is the way in which a moduli space enthusiast would think about
it. We start by defining the following three subsets of M�.

• Let Xiso ⊆ M� be the locus of isosceles triangles.
• Let X5 ⊆ M� be the locus of triangles with at least one side of length 5.
• Let X7 ⊆ M� be the locus of triangles with at least one side of length 7.

Given these definitions, our baby problem can be rephrased as follows.

How many points are in the set Xiso ∩X5 ∩X7?

So we have translated our original question about counting triangles to one con-
cerning subsets of the moduli space of triangles. What we have gained from doing
so is not an easier path to the solution, but a deeper geometric perspective on the
matter. And it is this perspective that has motivated the exploration of moduli
spaces in general, and moduli spaces of curves in particular.

Intuitive intersection theory

Playing with our toy example led us to consider intersections of certain subsets
lying in a larger space. Such matters belong to the realm of geometry known,
unsurprisingly, as intersection theory. Despite arising from such simple consid-
erations, intersection theory is both deep and technical. In this article, we will
content ourselves with a brief review of the underlying intuition.

We begin by defining the codimension of a D-dimensional subset of an N -dimen-
sional space to be the number N − D. For example, a line in the plane has co-
dimension 1, while a line in space has codimension 2. Now we can state one of the
most fundamental facts about intersection theory.

Fundamental fact. A generic intersection between two subsets with codimensions
D1 and D2 has codimension D1+D2. It follows that a generic intersection between
m subsets with codimensions D1, D2, . . . , Dm has codimension D1+D2+ · · ·+Dm.

For example,
• a line in the plane (codimension 1) will generically intersect another line (co-

dimension 1) in a point (codimension 2);
• a line in space (codimension 2) will generically intersect a plane (codimension 1)

in a point (codimension 3); and
• a plane in space (codimension 1) will generically intersect another plane (co-

dimension 1) in a line (codimension 2).

1At this point in time, the keen reader may like to consider why we bothered to label the vertices
of the triangle A, B and C. What would happen if we left the vertices unlabelled?
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By now, you might be wondering what I mean by the word ‘generic’. I have
carefully used it to deal with certain cases which would otherwise render our fun-
damental fact blatantly false. For example, two copies of the same line in the plane
do not meet in a point, as expected. One way to get around this fact is simply to
‘jiggle the picture’. A slight perturbation of the subsets will then leave us with a
generic intersection with the expected codimension2.

One important case is when we have m subsets of an N -dimensional space with
codimensions D1 +D2 + · · · +Dm = N . Then their intersection is a set of points
and the number of these points is called an intersection number. We will use the
following non-standard notation for intersection numbers.

X1 ·X2 · · ·Xm = the number of points in the set X1 ∩X2 ∩ . . . ∩Xm .

An introduction to moduli spaces of curves

A long time ago, topologists showed that (closed, connected, orientable) surfaces
are classified by their genus, or more informally, their number of holes.

genus = 0 genus = 1 genus = 2

However, someone interested in geometry, rather than topology, would want to
know more. They would consider the question, ‘What can one do to a surface?’
If you asked an algebraic geometer, they would be interested in putting an alge-
braic structure on a given surface. In other words, they would represent it as the
complex solution set to a polynomial in two variables.

C = {(x, y) ∈ C2 | P (x, y) = 0}.
Such sets can be considered up to a certain equivalence relation and the resulting
equivalence classes are known as algebraic curves.

On the other hand, a mathematician interested in hyperbolic geometry, complex
analysis or differential geometry would consider putting other structures on a
surface. The following table summarises the different approaches and the three
resulting objects — namely, algebraic curves, hyperbolic surfaces and Riemann
surfaces.

A surprising fact is that no matter which of these structures you choose to put on a
surface, you essentially get the same result. More precisely, there is a natural dic-
tionary correspondence between the set of algebraic curves3, the set of hyperbolic
surfaces and the set of Riemann surfaces!

2This is analogous to the geometric notion of points being in general position. For example, a
finite set of points in the plane is said to be in general position if no three lie on a line. A set of
points which is not in general position can be made so by a slight perturbation.
3To be more precise still, we should really be talking about smooth algebraic structures and
smooth algebraic curves.
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Area Structure Equivalence Class

algebraic geometry algebraic structure isomorphism algebraic curve
hyperbolic geometry hyperbolic structure isometry hyperbolic surface
complex analysis complex structure biholomorphism Riemann surface
differential geometry Riemannian metric conformal equivalence Riemann surface

We are now ready to define moduli spaces of curves as follows4.

Mg,n = the moduli space of algebraic curves with genus g and n marked points,
= the moduli space of hyperbolic surfaces with genus g and n cusps,
= the moduli space of Riemann surfaces with genus g and n marked points.

Standing at a point in Mg,n corresponds to thinking about a particular algebraic
curve with genus g and some marked points on it labelled from 1 up to n. On
the other hand, moving through Mg,n corresponds to continuously deforming the
algebraic curve and/or continuously moving these marked points. Unfortunately,
there are three somewhat technical issues we must deal with before progressing.

• Problem: The space Mg,n does not always exist.
Solution: There are just a handful of problem cases which we must exclude:
(g, n) = (0, 0), (0, 1), (0, 2) and (1, 0). However, all other non-negative integer
values for g and n do give us bona fide moduli spaces.

• Problem: The space Mg,n is not compact.
Solution: Compact spaces are generally more tractable than those which are
not. Fortunately, there are many ways to compactify Mg,n by throwing in
some extra points5. The most natural compactification is due to David Mum-
ford and Pierre Deligne and involves considering Mg,n, the moduli space of
stable curves with genus g and n marked points. Stable curves are constructed
by picking a set of smooth algebraic curves with marked points and gluing
them together at pairs of marked points. From this definition, it should be
clear that Mg,n ⊆ Mg,n.

• Problem: The space Mg,n is not a manifold.
Solution: We are forced to treat the space Mg,n as an orbifold. Although the
definition of an orbifold is quite technical, we need only keep in mind that
there are certain subsets of the space which correspond to ‘fractional points’.
In particular, there may be points which correspond to 1

2 points, 1
3 points, 1

4
points, and so on. The upshot of all this is that when counting intersection
numbers, we must expect them to be rational, rather than integral. Despite
seeming counterintuitive, this is the only way that we can accommodate an
intersection theory which obeys the rules that are consistent with our intuition.

One of the earliest results on moduli spaces of curves is the following, which was
essentially known to Riemann himself.

4Note that a cusp is basically a puncture on a hyperbolic surface which has been ‘pulled out
to infinity’. In the natural dictionary correspondence between algebraic curves and hyperbolic
surfaces, a marked point translates to a cusp.
5As an example of compactification, note that the moduli space of triangles discussed earlier can
be compactified by including degenerate triangles formed by three collinear points and triangles
with sides of length 0.
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Fact. The dimension of the moduli space Mg,n is 6g − 6 + 2n.

This shows that moduli spaces of curves can be of arbitrarily high, though nec-
essarily even, dimension. As a result, they can be very difficult to visualise. The
difficulty is compounded by the fact that the structure of Mg,n is also extremely
complicated in general.

Intersection numbers on moduli spaces of curves

Since we are interested in the intersection theory of moduli spaces of curves, we
need to find some particular subsets of Mg,n to intersect with each other. It turns
out that on Mg,n, there are n natural cohomology classes, one for each of the
marked points.

ψ1, ψ2, . . . , ψn ∈ H2(Mg,n,Q) .

Now it doesn’t matter if you don’t know what cohomology is because, trans-
lated into the language of intuitive intersection theory, what this means is that
ψ1, ψ2, . . . , ψn correspond to subsets of Mg,n of codimension two. Therefore, if we
pick non-negative integers a1 + a2 + · · · + an = 1

2 dim Mg,n = 3g − 3 + n, then we
can form the intersection number

ψa1
1 · ψa2

2 · · ·ψan
n ∈ Q.

This means that we should take a1 copies of ψ1, a2 copies of ψ2, and so on, that
we should jiggle everything so that the subsets intersect generically, and that we
should count the number of points of intersection, keeping in mind that some
points are fractional. We call ψ1, ψ2, . . . , ψn psi-classes and refer to the numbers
ψa1

1 ·ψa2
2 · · ·ψan

n as intersection numbers of psi-classes. For example, the intersec-
tion number ψ1 ·ψ2 on M0,5 is 2 while the intersection number ψ1 on M1,1 is 1

24 .
In general, these intersection numbers of psi-classes are very tough to calculate.

But before we get too carried away with moduli spaces of curves and intersection
numbers of psi-classes, it would be remiss not to mention why anyone would want
to study them. From the way that we have motivated this discussion, one can see
that moduli spaces of curves are of fundamental importance in algebraic geometry,
hyperbolic geometry and topology. A deeper look reveals interesting connections
with seemingly unrelated areas such as combinatorics, integrable systems and ma-
trix models. However, one of the most amazing places where moduli spaces can be
found is in string theory. In fact, the area of moduli spaces provides us with one
of the most fascinating illustrations of the symbiosis between pure mathematics
and theoretical physics.

One of the landmark results on moduli spaces of curves is a conjecture first posed
by Edward Witten. The conjecture involves the intersection numbers of psi-classes
and, amazingly, arose from the study of a particular model of two-dimensional
quantum gravity. The following is a very brief history of Witten’s conjecture and
some of the various proofs that have emerged over the years.

• In 1991, Edward Witten gave a conjectural recursive formula to generate all
intersection numbers of psi-classes. More precisely, he claimed that a natural
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generating function for the intersection numbers of psi-classes satisfies a series
of differential equations known as the KdV hierarchy6 [5].

• In 1992, Maxim Kontsevich found a formula which relates intersection num-
bers of psi-classes with combinatorial objects known as ribbon graphs. He
then deduced Witten’s conjecture from this by using the analysis of a related
matrix model [2].

• In 2001, Andrei Okounkov and Rahul Pandharipande found another proof of
Witten’s conjecture by relating intersection numbers of psi-classes with Hur-
witz numbers. Hurwitz numbers arise in the enumeration of branched covers
of the sphere and in counting factorisations of permutations into transposi-
tions [4].

• In 2004, Maryam Mirzakhani found yet another proof of Witten’s conjecture
by relating intersection numbers of psi-classes with volumes of moduli spaces
of hyperbolic surfaces [3].

• My own contribution to the area consists of a new proof of Kontsevich’s com-
binatorial formula using the volumes of moduli spaces of hyperbolic surfaces
considered by Mirzakhani. This gives a new path to Witten’s conjecture by
drawing together two previously unrelated proofs [1].

Further testament to the importance of moduli spaces of curves is the fact that five
of the mathematicians we have mentioned — namely Mumford, Deligne, Witten,
Kontsevich and Okounkov — are all recipients of the prestigious Fields medal.

Kontsevich’s combinatorial formula explained

We have already mentioned that Kontsevich’s proof of Witten’s conjecture relies
on a combinatorial formula involving ribbon graphs. We define a ribbon graph of
type (g, n) to be a graph with a cyclic ordering of the edges meeting at every vertex
which can be thickened to give a surface with genus g and n boundaries labelled
from 1 up to n.

For example, consider the following diagram which shows a ribbon graph of type
(1, 1) on the left. It has three edges which meet in the same cyclic orientation at
the two vertices. To thicken the ribbon graph, imagine that it is a railing being
held on to by an incompetent ice skater. As they work their way around the
ribbon graph, they carve out the edges of the thickened graph, as shown on the
right. Gluing ribbons onto the edges of the graph in the manner shown yields a
surface with exactly one boundary. Although it is not immediately obvious, the
surface actually has genus one.

As another example, we have the following four ribbon graphs. Note that they
are all trivalent, meaning that all vertices have degree three. In fact, they are the
only trivalent ribbon graphs of type (0, 3). The three boundary components are
labelled with the numbers 1, 2, 3 and come from the fact that this time we require
three incompetent ice skaters to traverse both sides of every edge. To understand

6The KdV (Korteweg–de Vries) equation is a non-linear partial differential equation which first
appeared in the study of shallow water waves and has generated a tremendous amount of math-
ematical interest over the past few decades. It seems to me both interesting and surprising
that this equation from classical physics is central to Witten’s conjecture, which originated from
theoretical physics.



A tourist’s guide to intersection theory on moduli spaces of curves 109

1 1

the effect of the cyclic orientations of the edges, consider the ribbon graph on the
far right. As a graph, it is isomorphic to the example above since both contain
three edges connecting two vertices. However, it is a different ribbon graph since
after being thickened, one obtains a surface with genus zero and three boundaries.

1 2
3

2 3
1

3 1
2

1

2
3

Now without further ado, let me introduce Kontsevich’s combinatorial formula,
which at first glance appears to be an obfuscated mess of mathematical symbols.

Kontsevich’s combinatorial formula. The intersection numbers of psi-
classes on Mg,n satisfy the following equation:∑
|a|=3g−3+n

ψa1
1 ·ψa2

2 · · ·ψan
n

n∏
k=1

(2ak − 1)!!
s2ak+1

k

=
∑

G∈Rg,n

22g−2+n

|Aut(G)|
∏
e∈G

1
s�(e) + sr(e)

.

We will attempt to unravel this seemingly complicated formula and make sense of
what it has to offer.

• The left-hand side is a polynomial in 1
s1
, 1

s2
, . . . , 1

sn
and its coefficients store

all intersection numbers of psi-classes on Mg,n.
• The right-hand side is a rational function in s1, s2, . . . , sn obtained by a strange

enumeration.
• On the outside is a sum over all trivalent ribbon graphs G of type (g, n).
• On the inside is a product over the edges of G — here, �(e) and r(e) denote

the labels of the boundaries on each side of e.
• In between is a constant involving |Aut(G)|, which denotes the number of

automorphisms of the ribbon graph G.

Therefore, if we wanted to calculate the psi-class intersection numbers on Mg,n,
we simply need to list all of the trivalent ribbon graphs of type (g, n) and write
down the corresponding terms in the summation on the right-hand side of Kont-
sevich’s combinatorial formula. The result should be a polynomial from which
we can simply read off the psi-class intersection numbers. A priori, it seems that
Kontsevich’s combinatorial formula could not possibly be true since the left-hand
side is polynomial in nature, while the right-hand side does not appear to be a
polynomial at all! Seeing is believing, so let us consider a particular example.

Example. In the very simple case of g = 0 and n = 3, the left-hand side contains
only one term.

LHS = ψ0
1 · ψ0

2 · ψ0
3

1
s1s2s3

.
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For the right-hand side, consider the leftmost of the four trivalent ribbon graphs
of type (0, 3) pictured earlier. One of its edges is adjacent to the boundary la-
belled 1 and the boundary labelled 3. Therefore, Kontsevich’s combinatorial for-
mula tells us to write down the expression 1/(s1 + s3). Doing this for all three
edges and multiplying the corresponding expressions together gives us the term
1/(2s3(s1 + s3)(s2 + s3)).

The next step is to add up these expressions over all four trivalent ribbon graphs
of type (0, 3), each multiplied by the appropriate constant.

RHS =
2

2s3(s1 + s3)(s2 + s3)
+

2
2s1(s2 + s1)(s3 + s1)

+
2

2s2(s3 + s2)(s1 + s2)
+

2
(s1 + s2)(s2 + s3)(s3 + s1)

=
s1s2(s1 + s2) + s2s3(s2 + s3) + s3s1(s3 + s1) + 2s1s2s3

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
(s1 + s2)(s2 + s3)(s3 + s1)

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
1

s1s2s3
.

Finally, equating the left- and right-hand sides allows us to conclude that ψ0
1 ·ψ0

2 ·
ψ0

3 = 1.

Unfortunately, all this hard work has been for nought since the intersection number
ψ0

1 ·ψ0
2 ·ψ0

3 represents an intersection of zero subsets and is equal to one by defini-
tion! However, Kontsevich’s combinatorial formula did give us the correct answer,
and one can observe that there was some algebraic magic required to show that
the left-hand side, which was inherently polynomial, was equal to the right-hand
side, which was not. You can take my word for it that Kontsevich’s combinatorial
formula continues to hold for larger values of g and n and that the algebraic magic
is even more striking.

A new proof of Kontsevich’s combinatorial formula

An accurate blow-by-blow account of the proof of Kontsevich’s combinatorial for-
mula would inflate the size of this already lengthy article several times (cf. my
PhD thesis). Given the constraints and nature of this exposition, let us content
ourselves with understanding how intersection numbers of psi-classes are related
to ribbon graphs.

Kontsevich’s combinatorial formula simplified

INTERSECTION NUMBERS 
OF PSI-CLASSES

RIBBON 
GRAPHS
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Very sketchy proof: Step 1

ASYMPTOTICS OF VOLUMES 
OF MODULI SPACES

INTERSECTION NUMBERS 
OF PSI-CLASSES

Earlier it was noted that we have some choice in whether we want to consider the
moduli space of algebraic curves, Riemann surfaces or hyperbolic surfaces. One of
the distinct advantages of working with hyperbolic surfaces is that we can open
up each cusp to give a boundary whose length can be any positive real number.
This allows us to define Mg,n(�1, �2, . . . , �n) to be the moduli space of hyperbolic
surfaces with genus g and n boundaries of lengths �1, �2, . . . , �n.

For all choices of �1, �2, . . . , �n, these spaces are naturally endowed with a sym-
plectic structure known as the Weil–Petersson symplectic form. What this means
is that we can assign a volume to these moduli spaces, a calculation which was
recently accomplished by Mirzakhani. Essentially, she proved that the volume
Vg,n(�1, �2, . . . , �n) of Mg,n(�1, �2, . . . , �n) is a polynomial in �1, �2, . . . , �n of degree
6g − 6 + 2n. Furthermore, its top degree coefficients store all of the intersection
numbers of psi-classes on Mg,n, the very numbers that we wish to know.

So how does one access the top degree coefficients of a polynomial? The an-
swer is to look at its asymptotics — more precisely, we consider the behaviour of
Vg,n(T�1, T �2, . . . , T �n) as T approaches infinity.

Very sketchy proof: Step 2

ASYMPTOTICS OF VOLUMES
OF MODULI SPACES

HYPERBOLIC SURFACES WITH
VERY LONG BOUNDARIES

The connection here is simple. To understand Vg,n(T�1, T �2, . . . , T �n) for very
large values of T , of course, one must first understand hyperbolic surfaces with
boundaries of lengths T�1, T �2, . . . , T �n for very large values of T .

Very sketchy proof: Step 3

HYPERBOLIC SURFACES WITH 
VERY LONG BOUNDARIES

RIBBON 
GRAPHS

The final piece of the puzzle is to relate hyperbolic surfaces with very long bound-
aries and ribbon graphs. By the Gauss–Bonnet theorem, a fundamental tool in
geometry, all hyperbolic surfaces with genus g and n boundaries have the same
surface area. If we begin to ‘stretch out’ the boundaries to make them longer,
the surface area condition forces the surface to become skinny. Now suppose that
while we are stretching out the boundaries, we also simultaneously ‘zoom out’ so
that the surface remains in our field of vision. After performing this stretch-and-
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zoom ad infinitum, we obtain a very skinny surface indeed. And what does a very
skinny surface look like? A ribbon graph, of course!
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