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CONSTANT CURIOSITY

Norm Do

Not all numbers were created equal. Mathematically minded folk are all aware
of the ubiquity of Archimedes’ constant π, the importance of Euler’s constant e
and the beauty of the golden ratio φ. However, let’s spare a thought for a few
of the lesser known mathematical constants — ones which might not permeate
the various fields of mathematics but have nevertheless been immortalized in the
mathematical literature in one way or another. In this seminar, we’ll consider a few
of these numerical curios and their rise to fame.
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The Fibonacci sequence

Consider the following sequence of positive integers.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

The Fibonacci sequence

The Fibonacci sequence is defined by the rules
F1 = 1,
F2 = 1
Fn+1 = Fn + Fn−1 for n > 1.
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How large are Fibonacci numbers?

Binet’s formula

Fn =
1√
5

[(
1 +
√

5
2

)n

−

(
1−
√

5
2

)n]

For really humongous n, we know the following fact.

Fn ≈
1√
5

(
1 +
√

5
2

)n

The Fibonacci sequence grows exponentially and its
growth factor is the golden ratio.

lim
n→∞

n
√

Fn =
1 +
√

5
2
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Vibonacci sequences

Now let’s spice up the Fibonacci sequence with a bit of
randomness!

Vibonacci sequences

A Vibonacci sequence is defined by the rules
V1 = 1,
V2 = 1,
Vn+1 = Vn ± Vn−1 for n > 1,

where the sign is chosen by the flip of a coin for each n.
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Examples of Vibonacci sequences

All heads (HHHHHHHHHH. . . )
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

All tails (TTTTTTTTTT. . . )
1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, . . .

Random (TTHHHHTHHH. . . )
1, 1, 0, -1, -1, -2, -3, -5, -2, -7, -9, -16, -7, 9, 16, 25,
41, 66, 25, 91, 66, -25, -91, -116, -25, 91, 116, 25, -91,
-116, -25, 91, 116, 25, -91, -116, -207, -323, -530, . . .

It seems like the signs are switching willy-nilly and that the
magnitudes are growing larger and larger, on average.
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How large are Vibonacci numbers?

Viswanath’s theorem

If V1, V2, V3, . . . is a Vibonacci sequence, then almost surely

lim
n→∞

n
√
|Vn| = 1.13198824 . . . .

By the phrase almost surely, we mean with probability 1.

What is the number 1.3198824 . . .?

Simple answer: It’s Viswanath’s constant!

Honest answer: We don’t know! You might think that
Viswanath’s constant is related to the golden ratio, but no
one has ever found such a relationship.

Viswanath’s theorem tells us that there’s some semblance of
order appearing in all the randomness!
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A generalization of Vibonacci sequences

The Embree-Trefethen theorem

Consider a sequence defined by the rules
X1 = 1,
X2 = 1,
Xn+1 = Xn ± bXn−1 for n > 1,

where the sign is chosen by the flip of a coin for each n. Then
there exists a positive real number V (b) such that almost surely

lim
n→∞

n
√
|Xn| = V (b).

In this notation, Viswanath’s constant is simply V (1).

Computational evidence suggests that the function V is
very crazy — in fact, it’s probably a fractal!
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The randomness of primes

The primes are somewhat elusive beasts among the
menagerie of natural numbers.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

The largest known prime is the number 243,112,609 − 1.

Here are three unsolved prime problems. . .

Twin prime conjecture: Are there infinitely many pairs of
primes which differ by 2?

Goldbach conjecture: Can every even integer greater than
2 be written as the sum of two primes?

Riemann hypothesis Do all of the non-trivial zeroes of the
Riemann zeta function lie on the line Re(s) = 1

2?
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A crazy formula for primes

The set of positive values taken on by the following bizarre
polynomial in 26 variables is precisely the set of primes, where
the variables a, b, c, . . . , z vary over the non-negative integers.

(k +2)(1−(wz +h+ j−q)2−((gk +2g +k +1)(h+
j)+h−z)2− (2n+p +q +z−e)2− (16(k +1)3(k +
2)(n+1)2 +1− f 2)2−(e3(e+2)(a+1)2 +1−o2)2−
((a2−1)y2 +1−x2)2− (16r2y4(a2−1)+1−u2)2−
(((a+u2(u2−a))2−1)(n+4dy)2 +1−(x +cu)2)2−
(n + l + v − y)2− ((a2− 1)l2 + 1−m2)2− (ai + k +
1− l− i)2−(p+ l(a−n−1)+b(2an+2a−n2−2n−
2)−m)2−(q +y(a−p−1)+s(2ap+2a−p2−2p−
2)− x)2 − (z + pl(a− p) + t(2ap− p2 − 1)− pm)2)
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A simple formula for primes

What if we’re not so fussy? Instead of generating all
primes, is there a formula which generates only primes?

Euler realized that the polynomial n2 + n + 41 generates
primes for n = 0, 1, 2, . . . , 39.

Mills’ theorem

There exists a positive constant M such that the expression⌊
M3n

⌋
yields only primes for all positive integers n.
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Mills’ constant

So why can’t we use Mills’ theorem to find large primes?
Because Mills didn’t tell us what M is!

If the Riemann Hypothesis is true (and most
mathematicians believe that it is), then the smallest value
of M which works in Mills’ theorem is

M = 1.3063778838630806904686144 . . . .

What is the number 1.3063778838630806904686144 . . .?

Simple answer: It’s Mills’ constant!

Honest answer: We don’t know!
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Where does Mills’ constant come from?

A recipe for Mills’ constant

Let P1 = 2.
For every positive integer n, let Pn+1 be the next prime
after P3

n .
For every positive integer n, let Qn = 3n√

Pn.
The numbers Q1, Q2, Q3, . . . are increasing and converge
to Mills’ constant.

If the Riemann hypothesis is true (and most mathematicians
believe that it is), then there is a prime between any two
consecutive perfect cubes. Then for every positive integer n,
we have

bM3nc = Pn.
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What comes next?

1
11
21

1211
111221
312211

13112221
1113213211

31131211131221
13211311123113112211

...

Each sequence describes the
digits appearing in the
previous sequence.

So, for example, to generate
the sequence after 312211,
we scan along its digits and
note that it consists of one 3,
one 1, two 2s and two 1s.

So the next term is 13112221.

For obvious reasons, these are called look-and-say sequences.
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How long are look-and-say sequences?

Let Cn denote the number of digits in the nth look-and-say
sequence. These numbers seem to grow larger and larger,
on average.

1, 2, 2, 4, 6, 6, 8, 10, 14, 20, . . .

Does lim n
√

Cn exist and, if so, what is it?

Conway’s theorem

The limit
C = lim

n→∞
n
√

Cn

exists and is approximately 1.30357726903429639125 . . ..
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Conway’s constant

What is the number 1.30357726903429639125 . . .?

Simple answer: It’s Conway’s constant!

Honest answer: It’s the unique positive real root of the
following irreducible polynomial.

x71− x69− 2x68− x67 + 2x66 + 2x65 + x64− x63− x62−
x61−x60−x59+2x58+5x57+3x56−2x55−10x54−3x53−
2x52+6x51+6x50+x49+9x48−3x47−7x46−8x45−8x44+
10x43 +6x42 +8x41−5x40−12x39 +7x38−7x37 +7x36 +
x35− 3x34 + 10x33 + x32− 6x31− 2x30− 10x29− 3x28 +
2x27 +9x26−3x25 +14x24−8x23−7x21 +9x20 +3x19−
4x18−10x17−7x16+12x15+7x14+2x13−12x12−4x11−
2x10 + 5x9 + x7−7x6 + 7x5−4x4 + 12x3−6x2 + 3x −6

This has to be one of the most bizarre of the algebraic numbers
to appear in the mathematical literature!
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Audioactive decay

Conway’s idea: Often, a string of digits can be broken
down into substrings which evolve via the look-and-say
rule without interfering with each other.

From the eighth term onwards, every look-and-say
sequence is comprised of a combination of 92 substrings
which never interfere with each other.
Conway calls these substrings the atomic elements and
calls the process of applying the look-and-say rule
audioactive decay.

Atomic Number Element String
1 Hydrogen 22
2 Helium 13112221133211322112211213322112
3 Lithium 312211322212221121123222122
4 Beryllium 111312211312113221133211322112211213322112
5 Boron 1321132122211322212221121123222112
.
.
.

.

.

.
.
.
.

92 Uranium 3
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Continued fractions

Representing a real number in decimal notation is
somewhat unnatural.

A more natural hands-free approach is to represent a real
number a by its continued fraction.

a = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

Here a0 = bac and a1, a2, a3, . . . is a sequence of positive
integers which is finite if a is rational and infinite if a is
irrational.

Let’s write continued fractions using the more compact
notation a = [a0; a1, a2, a3, . . .].
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Khinchin’s constant

What can be said about the behaviour of the sequence
a1, a2, a3, . . . for a randomly chosen real number a?

Khinchin’s theorem

For almost all real numbers a = [a0; a1, a2, a3, . . .], the limit

lim
n→∞

n
√

a1a2 . . . an

exists and is always equal to 2.6854520010 . . ..

By the phrase almost all, we mean with probability 1 — more
precisely, we mean that the set of numbers for which Khinchin’s
theorem does not hold has Lebesgue measure zero.

What is the number 2.6854520010 . . .?
Simple answer: It’s Khinchin’s constant!

Honest answer: It’s
∏∞

k=1

(
1 + 1

k2+2k

)log2 k
.
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Why is Khinchin’s theorem surprising?

Any conceivable sequence of positive integers a1, a2, . . .
corresponds to some real number a.

In fact, for many positive integer sequences, the limit

lim
n→∞

n
√

a1a2 . . . an

might not even exist and, even if it does, the probability that
it’s equal to Khinchin’s constant is zero.

It’s easy to find real numbers which don’t obey Khinchin’s
theorem — rational numbers, solutions to integer quadratic
equations and the number e.

No one has managed to find a single number which does
obey Khinchin’s theorem without constructing it using its
continued fraction!
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The end

Many thanks to the organizers of SUMM for inviting me to
speak and to you for staying awake while I’ve been speaking!

For more information, feel free to
read my articles at http://www.math.mcgill.ca/ndo,
email me at ndo@math.mcgill.ca, or
see me after the show.
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