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In the past few decades, moduli spaces of curves have become the centre of a rich
confluence of rather disparate areas such as geometry, combinatorics, integrable
systems and theoretical physics. Starting from baby principles, I will describe exactly
what a moduli space is and motivate the study of its intersection theory. The talk
will include a discussion of recent results from my PhD thesis, including a new proof
of a formula of Kontsevich.
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What is a moduli space?

A moduli space parametrises a family of geometric objects.

Different points in a moduli space represent different geometric
objects and nearby points represent objects with similar structure.

Toy example: The moduli space of triangles

Consider a triangle with side lengths a, b and c .

M4 =
{

(a, b, c) ∈ R3
+ | a + b > c , b + c > a, and c + a > b

}

a

bc

y z

y

x

z

x

a = y + z x = b+c−a
2

b = z + x ⇒ y = c+a−b
2

c = x + y z = a+b−c
2

M4 =
{

(x , y , z) ∈ R3
+

}
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What is a moduli space good for?

Baby enumerative geometry question

How many triangles with vertices labelled A, B and C

are isosceles;

have at least one side of length 5; and

have at least one side of length 7?

Define Xiso ⊆M4, the locus of isosceles triangles.
Define X5 ⊆M4, the locus of triangles with a side of length 5.
Define X7 ⊆M4, the locus of triangles with a side of length 7.

Same question

What is |Xiso ∩ X5 ∩ X7|?
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Intuitive intersection theory (a.k.a. cohomology)

An (N − d)-dimensional subset of an N-dimensional space is said to
have codimension d .

A “generic” intersection between subsets with codimension d1 and
codimension d2 has codimension d1 + d2.

A “generic” intersection between m subsets of an N-dimensional
space with codimensions d1 + d2 + · · ·+ dm = N is a set of points.
The number of these points is called an intersection number.

In order to obtain a well-defined intersection number, it is necessary
to “jiggle the picture”, “live in a compact space” and “count with
signs”.

We will use the following (non-standard) notation for intersection
numbers.

X1 · X2 · · ·Xm =

{
|X1 ∩ X2 ∩ . . . ∩ Xm| if finite
0 otherwise
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The geometry of surfaces

TOPOLOGY

Topologists classified (compact, connected, orientable) surfaces by genus.

genus = 0 genus = 1 genus = 2

GEOMETRY

What does a geometer do with a surface? It depends. . .

algebraic geometry complex analysis hyperbolic geometry
algebraic structure complex structure hyperbolic metric
up to isomorphism up to biholomorphism up to isometry

⇓ ⇓ ⇓
algebraic curve Riemann surface hyperbolic surface

. . . but actually it doesn’t, since these objects are all the same!
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Moduli spaces of curves

Mg ,n can be defined as the moduli space of

genus g smooth algebraic curves with n marked points;

genus g Riemann surfaces with n punctures; or

genus g hyperbolic surfaces with n cusps.

The marked points or punctures or cusps are labelled from 1 up to n.

Three technical problems

Problem: Mg ,n does not always exist
Solution: Do not allow (g , n) = (0, 0), (0, 1), (0, 2) or (1, 0)

Problem: Mg ,n is not compact
Solution: Use the Deligne–Mumford compactification Mg ,n

Points in Mg ,n correspond to stable algebraic curves

Problem: Mg ,n is not a manifold
Solution: Treat Mg ,n like an orbifold

Intersection numbers may be rational
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Why do we care about moduli spaces of curves?

MODULI
SPACES

Algebraic
Geometry

Hyperbolic
Geometry

Topology

String
Theory

Matrix
Models

Integrable
Systems

Combinatorics

BECAUSE THEY ARE INTERESTING AND FUN!

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Why do we care about moduli spaces of curves?

MODULI
SPACES

Algebraic
Geometry

Hyperbolic
Geometry

Topology

String
Theory

Matrix
Models

Integrable
Systems

Combinatorics

BECAUSE THEY ARE INTERESTING AND FUN!

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Psi-classes

Important fact

The dimension of Mg ,n is 6g − 6 + 2n.

The psi-classes ψ1, ψ2, . . . , ψn are codimension 2 subsets of Mg ,n.
In the more technical language of cohomology,

ψ1, ψ2, . . . , ψn ∈ H2(Mg ,n,Q).

Choose non-negative integers a1 + a2 + · · ·+ an = 3g − 3 + n and
consider the intersection number of psi-classes

ψa1
1 · ψ

a2
2 · · ·ψ

an
n ∈ Q.

There are various other important subsets of Mg ,n such as κ1.

Examples of psi-class intersection numbers

On M0,5, the intersection number ψ1 · ψ2 is 2.
On M1,1, the intersection number ψ1 is 1

24 .
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Constructing the psi-classes

Mg,n+1

Mg,n

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes

Mg,n+1

Mg,n

π

π : Mg,n+1 →Mg,n is known
as the forgetful map

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes

Mg,n+1

Mg,n

π

π : Mg,n+1 →Mg,n is known
as the forgetful map

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes

Mg,n+1

Mg,n

π

π :Mg,n+1 →Mg,n is known
as the forgetful map

dimDk = 6g − 6 + 2n

codim Dk = 2 in Mg,n+1

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes

Mg,n+1

Mg,n

π

π :Mg,n+1 →Mg,n is known
as the forgetful map

dimDk = 6g − 6 + 2n

codim Dk = 2 in Mg,n+1

dimEk = 6g − 6 + 2n

codim Ek = 2 in Mg,n+1

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes

Mg,n+1

Mg,n

π

π :Mg,n+1 →Mg,n is known
as the forgetful map

dimDk = 6g − 6 + 2n

codim Dk = 2 in Mg,n+1

dimEk = 6g − 6 + 2n

codim Ek = 2 in Mg,n+1

codim Dk ∩ Ek = 4 in Mg,n+1

codim Dk ∩ Ek = 2 in Dk

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



Constructing the psi-classes
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A brief history of Witten’s conjecture

Big question

How do you calculate intersection numbers of psi-classes?

Witten (1991): I conjecture that if we put all of the intersection
numbers of psi-classes into a generating function F , then F satisfies
the infinite sequence of partial differential equations known as the
KdV hierarchy.

Kontsevich (1992): Witten is right! I have a formula which relates
intersection numbers with ribbon graphs.

Okounkov and Pandharipande (2001): Witten is right! We have
a formula which relates intersection numbers with Hurwitz numbers.

Mirzakhani (2004): Witten is right! I have a formula which relates
intersection numbers with volumes of moduli spaces.
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Volumes of moduli spaces

Let Mg ,n(L1, L2, . . . , Ln) be the moduli space of genus g hyperbolic
surfaces with n boundary components of lengths L1, L2, . . . , Ln.

The moduli space Mg ,n(L1, L2, . . . , Ln) has a natural symplectic
structure — so one can measure its volume.

Let Vg ,n(L1, L2, . . . , Ln) be the volume of Mg ,n(L1, L2, . . . , Ln).

Mirzakhani’s recursion

The volumes Vg ,n(L1, L2, . . . , Ln) satisfy the following recursive formula.

2
∂

∂L1
L1Vg,n(L1, . . . , Ln) =

Z ∞
0

Z ∞
0

xy H(x + y , L1) Vg−1,n+1(x, y , L2, . . . , Ln) dx dy

+
X

g1+g2=g
I1tI2=[2,n]

Z ∞
0

Z ∞
0

xy H(x + y , L1) Vg1,|I1|+1(x, LI1
) Vg2,|I2|+1(y , LI2

) dx dy

+
nX

k=2

Z ∞
0

x[H(x, L1 + Lk ) + H(x, L1 − Lk )] Vg,n−1(x, L2, . . . ,bLk , . . . , Ln) dx

One corollary of this formula is that Vg ,n(L1, L2, . . . , Ln) is a polynomial.
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From volumes to intersection numbers

Mirzakhani’s theorem

The volume Vg ,n(L1, L2, . . . , Ln) is given by the following formula.

∑
|a|+m=3g−3+n

(2π2)m ψa1
1 · ψ

a2
2 · · ·ψan

n · κm
1

2|a|a1!a2! . . . an!m!
L2a1

1 L2a2
2 . . . L2an

n .

Mirzakhani’s recursion lets you calculate Vg ,n(L1, L2, . . . , Ln).

Mirzakhani’s theorem says that Vg ,n(L1, L2, . . . , Ln) is a polynomial
whose coefficients store intersection numbers on Mg ,n. The
psi-class intersection numbers are stored in the top degree.

Mirzakhani’s recursion+Mirzakhani’s theorem = Witten’s conjecture

Philosophy: Any meaningful statement about Vg ,n gives a
meaningful statement about intersection numbers on Mg ,n.
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Examples of volume polynomials

V0,3 = 1

V0,4 = 1
2 (L2

1 + L2
2 + L2

3 + L2
4 + 4π2)

V0,5 = 1
8

∑
L4

i + 1
2

∑
L2

i L
2
j + 3π2

∑
L2

i + 10π4

V1,1 = 1
48 (L2

1 + 4π2)

V1,2 = 1
192L4

1 + π2

12 L2
1 + π4

4 + π2

12 L2
2 + 1

192L4
2 + 1

96L2
1L

2
2

V2,1 = 139π4

23040 L4
1 + 169π6

2880 L2
1 + 29π8

192 + 29π2

138240L6
1 + 1

442368L8
1
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New volume polynomial relations

Generalised string equation, generalised dilaton equation and more

The volume polynomials Vg ,n+1 and Vg ,n satisfy the following relations.

Vg ,n+1(L1, . . . , Ln, 2πi) =
n∑

k=1

∫
LkVg ,n dLk (GSE)

∂Vg ,n+1

∂Ln+1
(L1, . . . , Ln, 2πi) = 2πi(2g − 2 + n)Vg ,n (GDE)

∂2Vg ,n+1

∂L2
n+1

(L1, . . . , Ln, 2πi) =
n∑

k=1

Lk
∂Vg ,n

∂Lk
− (4g − 4 + n)Vg ,n

...
∂kVg ,n+1

∂Lk
n+1

(L1, . . . , Ln, 2πi) = [ ??? ] Vg ,n
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Three proofs

Algebraic geometry
Mirzakhani’s theorem translates these results into relations between
intersection numbers on Mg ,n+1 and Mg ,n. Such relations emerge
from analysing the forgetful map π :Mg ,n+1 →Mg ,n.

Mirzakhani’s recursion
Mirzakhani’s recursion determines all volumes Vg ,n(L1, L2, . . . , Ln),
so it should encode these relations in some sense. Interestingly,
these proofs use identities among the Bernoulli numbers.

Hyperbolic geometry?
A purely imaginary length usually corresponds to an angle. So these
results suggest a connection between intersection numbers on Mg ,n

and the geometry of hyperbolic surfaces with cone points.
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What is a ribbon graph?

A ribbon graph of type (g , n) is

a graph with a cyclic ordering of the edges at every vertex

which can be thickened to give a surface of genus g and

n boundary components labelled from 1 up to n.

Trivalent ribbon graph of type (1, 1)

1 1

Trivalent ribbon graphs of type (0, 3)

2 3
1

3 1
2

1 2
3

1

2
3
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Kontsevich’s combinatorial formula explained

Kontsevich’s combinatorial formula

X
|a|=3g−3+n

ψa1
1 · ψa2

2 · · ·ψan
n

nY
k=1

(2ak − 1)!!

s
2ak +1
k

=
X

Γ∈TRGg,n

22g−2+n

|Aut(Γ)|
Y
e∈Γ

1

s`(e) + sr(e)

LHS: polynomial in 1
s1
, 1

s2
, . . . , 1

sn

coefficients store all intersection numbers of psi-classes onMg,n

RHS: rational function in s1, s2, . . . , sn

strange enumeration over trivalent ribbon graphs of type (g , n)

Kontsevich’s combinatorial formula is incredible!
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Kontsevich’s combinatorial formula for g = 0 and n = 3

The LHS is easy.

LHS = ψ0
1 · ψ0

2 · ψ0
3

1

s1s2s3

The RHS has one term for each trivalent ribbon graph of type (0, 3).

RHS =
2

2s1(s1 + s2)(s1 + s3)
+

2

2s2(s2 + s3)(s2 + s1)

+
2

2s3(s3 + s1)(s3 + s2)
+

2

(s1 + s2)(s2 + s3)(s3 + s1)

=
s2s3(s2 + s3) + s3s1(s3 + s1) + s1s2(s1 + s2) + 2s1s2s3

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
(s1 + s2)(s2 + s3)(s3 + s1)

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
1

s1s2s3

Conclusion: ψ0
1 · ψ0

2 · ψ0
3 = 1.
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A new approach to Kontsevich’s combinatorial formula

Kontsevich’s combinatorial formula simplified

INTERSECTION NUMBERS
OF PSI-CLASSES

=⇒ RIBBON
GRAPHS

Sketch proof: Step 1 of 3

INTERSECTION NUMBERS
OF PSI-CLASSES

=⇒ ASYMPTOTICS OF VOLUMES
OF MODULI SPACES

Recall that the intersection numbers of psi-classes are stored in the top
degree coefficients of Vg ,n(L1, L2, . . . , Ln). You can access the top degree
coefficients of a polynomial using asymptotics.

Sketch proof: Step 2 of 3

ASYMPTOTICS OF VOLUMES
OF MODULI SPACES

=⇒ HYPERBOLIC SURFACES WITH
VERY LONG BOUNDARIES

To understand Vg,n(N`1, N`2, . . . , N`n) for large N, one must understand

hyperbolic surfaces with boundaries of lengths N`1, N`2, . . . , N`n for large N.
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A new approach to Kontsevich’s combinatorial formula

Sketch proof: Step 3 of 3

HYPERBOLIC SURFACES WITH
VERY LONG BOUNDARIES

=⇒ RIBBON
GRAPHS

Fact: The Gauss–Bonnet theorem implies that all hyperbolic surfaces of genus
g with n boundary components have the same surface area.

Crucial geometric reasoning: If you take a hyperbolic surface and stretch its

boundary lengths to infinity, then you will obtain a ribbon graph after rescaling.
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A problem about ribbon graphs and determinants

Ribbon graphs and determinants

Consider a trivalent ribbon graph of type (g , n). Colour n of the edges
blue and the remaining edges red. Let A be the matrix formed from the
adjacency between the blue edges and the boundaries. Let B be the
matrix formed from the oriented adjacency between the red edges. Then

det B = 22g−2(det A)2.

The following is a ribbon graph with g = 0 and n = 26.
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A problem about ribbon graphs and determinants

Ribbon graphs and determinants

Consider a trivalent ribbon graph of type (g , n). Colour n of the edges
blue and the remaining edges red. Let A be the matrix formed from the
adjacency between the blue edges and the boundaries. Let B be the
matrix formed from the oriented adjacency between the red edges. Then

det B = 22g−2(det A)2.

The following is a ribbon graph with g = 0 and n = 26.

det B = 22g−2 × (det A)2

256 = 1
4 × 322

Norman Do Intersection theory on moduli spaces of curves via hyperbolic geometry



End matter

Slides
http://www.ms.unimelb.edu.au/˜norm

Article
A tourist’s guide to intersection theory on moduli spaces of curves
To appear in the Australian Mathematical Society Gazette
Volume 35, No. 2 (May 2008) or No. 3 (July 2008)

Seminar
Geometry and Topology seminar on 6 May 2008

Thesis
Coming soon!

Thanks to my supervisors:
Paul Norbury, Craig Hodgson and Iain Aitchison.
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