# Intersection theory on moduli spaces of curves via hyperbolic geometry 

Norman Do

The University of Melbourne
In the past few decades, moduli spaces of curves have become the centre of a rich confluence of rather disparate areas such as geometry, combinatorics, integrable systems and theoretical physics. Starting from baby principles, I will describe exactly what a moduli space is and motivate the study of its intersection theory. The talk will include a discussion of recent results from my PhD thesis, including a new proof of a formula of Kontsevich.

8 April 2008

## What is a moduli space?

- A moduli space parametrises a family of geometric objects.
- Different points in a moduli space represent different geometric objects and nearby points represent objects with similar structure.


## Toy example: The moduli space of triangles

Consider a triangle with side lengths $a, b$ and $c$.

$$
\mathcal{M}_{\triangle}=\left\{(a, b, c) \in \mathbb{R}_{+}^{3} \mid a+b>c, b+c>a, \text { and } c+a>b\right\}
$$

## What is a moduli space good for?

## Baby enumerative geometry question

How many triangles with vertices labelled $A, B$ and $C$

- are isosceles;
- have at least one side of length 5 ; and
- have at least one side of length 7 ?

Define $X_{\text {iso }} \subseteq \mathcal{M}_{\triangle}$, the locus of isosceles triangles.
Define $X_{5} \subseteq \mathcal{M}_{\triangle}$, the locus of triangles with a side of length 5 . Define $X_{7} \subseteq \mathcal{M}_{\triangle}$, the locus of triangles with a side of length 7 .

## Same question

What is $\left|X_{\text {iso }} \cap X_{5} \cap X_{7}\right|$ ?

## Intuitive intersection theory (a.k.a. cohomology)

- An $(N-d)$-dimensional subset of an $N$-dimensional space is said to have codimension $d$.
- A "generic" intersection between subsets with codimension $d_{1}$ and codimension $d_{2}$ has codimension $d_{1}+d_{2}$.
- A "generic" intersection between $m$ subsets of an $N$-dimensional space with codimensions $d_{1}+d_{2}+\cdots+d_{m}=N$ is a set of points. The number of these points is called an intersection number.
- In order to obtain a well-defined intersection number, it is necessary to "jiggle the picture", "live in a compact space" and "count with signs".
- We will use the following (non-standard) notation for intersection numbers.

$$
X_{1} \cdot X_{2} \cdots X_{m}= \begin{cases}\left|X_{1} \cap X_{2} \cap \ldots \cap X_{m}\right| & \text { if finite } \\ 0 & \text { otherwise }\end{cases}
$$

## The geometry of surfaces

## TOPOLOGY

Topologists classified (compact, connected, orientable) surfaces by genus.


## GEOMETRY

What does a geometer do with a surface? It depends. . .
algebraic geometry algebraic structure
up to isomorphism $\Downarrow$ algebraic curve
complex analysis
complex structure
up to biholomorphism $\Downarrow$

Riemann surface

## hyperbolic geometry

hyperbolic metric up to isometry $\Downarrow$
hyperbolic surface
... but actually it doesn't, since these objects are all the same!

## Moduli spaces of curves

$\mathcal{M}_{g, n}$ can be defined as the moduli space of

- genus $g$ smooth algebraic curves with $n$ marked points;
- genus $g$ Riemann surfaces with $n$ punctures; or
- genus $g$ hyperbolic surfaces with $n$ cusps.

The marked points or punctures or cusps are labelled from 1 up to $n$.

## Three technical problems

Problem: $\quad \mathcal{M}_{g, n}$ does not always exist
Solution: Do not allow $(g, n)=(0,0),(0,1),(0,2)$ or $(1,0)$
Problem: $\mathcal{M}_{g, n}$ is not compact
Solution: Use the Deligne-Mumford compactification $\overline{\mathcal{M}}_{g, n}$ Points in $\overline{\mathcal{M}}_{g, n}$ correspond to stable algebraic curves

Problem: $\overline{\mathcal{M}}_{g, n}$ is not a manifold
Solution: Treat $\overline{\mathcal{M}}_{g, n}$ like an orbifold Intersection numbers may be rational

## Why do we care about moduli spaces of curves?



## Why do we care about moduli spaces of curves?



## BECAUSE THEY ARE INTERESTING AND FUN!

## Psi-classes

## Important fact

The dimension of $\overline{\mathcal{M}}_{g, n}$ is $6 g-6+2 n$.

- The psi-classes $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ are codimension 2 subsets of $\overline{\mathcal{M}}_{g, n}$. In the more technical language of cohomology,

$$
\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in H^{2}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

- Choose non-negative integers $a_{1}+a_{2}+\cdots+a_{n}=3 g-3+n$ and consider the intersection number of psi-classes

$$
\psi_{1}^{a_{1}} \cdot \psi_{2}^{a_{2}} \cdots \psi_{n}^{a_{n}} \in \mathbb{Q}
$$

- There are various other important subsets of $\overline{\mathcal{M}}_{g, n}$ such as $\kappa_{1}$.


## Examples of psi-class intersection numbers

On $\overline{\mathcal{M}}_{0,5}$, the intersection number $\psi_{1} \cdot \psi_{2}$ is 2 .
On $\overline{\mathcal{M}}_{1,1}$, the intersection number $\psi_{1}$ is $\frac{1}{24}$.

## Constructing the psi-classes



## Constructing the psi-classes


$\overline{\mathcal{M}}_{g, n}$

## Constructing the psi-classes



## Constructing the psi-classes


$\overline{\mathcal{M}}_{g, n}$

## Constructing the psi-classes


$\overline{\mathcal{M}}_{g, n}$

## Constructing the psi-classes


$\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$ is known as the forgetful map

$$
\begin{gathered}
\operatorname{dim} D_{k}=6 g-6+2 n \\
\operatorname{codim} D_{k}=2 \text { in } \overline{\mathcal{M}}_{g, n+1}
\end{gathered}
$$

$$
\operatorname{dim} E_{k}=6 g-6+2 n
$$

$$
\operatorname{codim} E_{k}=2 \text { in } \overline{\mathcal{M}}_{g, n+1}
$$

$\operatorname{codim} D_{k} \cap E_{k}=4$ in $\overline{\mathcal{M}}_{g, n+1}$ $\operatorname{codim} D_{k} \cap E_{k}=2$ in $D_{k}$
$\overline{\mathcal{M}}_{g, n}$

## Constructing the psi-classes


$\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$ is known as the forgetful map

$$
\begin{gathered}
\operatorname{dim} D_{k}=6 g-6+2 n \\
\operatorname{codim} D_{k}=2 \text { in } \overline{\mathcal{M}}_{g, n+1}
\end{gathered}
$$

$$
\operatorname{dim} E_{k}=6 g-6+2 n
$$

$$
\operatorname{codim} E_{k}=2 \text { in } \overline{\mathcal{M}}_{g, n+1}
$$

$\operatorname{codim} D_{k} \cap E_{k}=4$ in $\overline{\mathcal{M}}_{g, n+1}$ $\operatorname{codim} D_{k} \cap E_{k}=2$ in $D_{k}$ $\operatorname{codim} \psi_{k}=2$ in $\overline{\mathcal{M}}_{g, n}$

## A brief history of Witten's conjecture

## Big question

How do you calculate intersection numbers of psi-classes?

- Witten (1991): I conjecture that if we put all of the intersection numbers of psi-classes into a generating function $F$, then $F$ satisfies the infinite sequence of partial differential equations known as the KdV hierarchy.
- Kontsevich (1992): Witten is right! I have a formula which relates intersection numbers with ribbon graphs.
- Okounkov and Pandharipande (2001): Witten is right! We have a formula which relates intersection numbers with Hurwitz numbers.
- Mirzakhani (2004): Witten is right! I have a formula which relates intersection numbers with volumes of moduli spaces.


## Volumes of moduli spaces

- Let $\mathcal{M}_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ be the moduli space of genus $g$ hyperbolic surfaces with $n$ boundary components of lengths $L_{1}, L_{2}, \ldots, L_{n}$.
- The moduli space $\mathcal{M}_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ has a natural symplectic structure - so one can measure its volume.
- Let $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ be the volume of $\mathcal{M}_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$.


## Mirzakhani's recursion

The volumes $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ satisfy the following recursive formula.

$$
\begin{aligned}
& 2 \frac{\partial}{\partial L_{1}} L_{1} V_{g, n}\left(L_{1}, \ldots, L_{n}\right)=\int_{0}^{\infty} \int_{0}^{\infty} x y H\left(x+y, L_{1}\right) V_{g-1, n+1}\left(x, y, L_{2}, \ldots, L_{n}\right) d x d y \\
& \quad+\sum_{\substack{g_{1}+g_{2}=g \\
l_{1} \amalg L_{2}=[2, n]}} \int_{0}^{\infty} \int_{0}^{\infty} x y H\left(x+y, L_{1}\right) V_{g_{1},\left|I_{1}\right|+1}\left(x, L_{L_{1}}\right) V_{g_{2},\left|I_{2}\right|+1}\left(y, L_{L_{2}}\right) d x d y \\
& \quad+\sum_{k=2}^{n} \int_{0}^{\infty} x\left[H\left(x, L_{1}+L_{k}\right)+H\left(x, L_{1}-L_{k}\right)\right] V_{g, n-1}\left(x, L_{2}, \ldots, \hat{L}_{k}, \ldots, L_{n}\right) d x
\end{aligned}
$$

One corollary of this formula is that $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ is a polynomial.

## Mirzakhani's theorem

The volume $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ is given by the following formula.

$$
\sum_{|a|+m=3 g-3+n} \frac{\left(2 \pi^{2}\right)^{m} \psi_{1}^{a_{1}} \cdot \psi_{2}^{a_{2}} \cdots \psi_{n}^{a_{n}} \cdot \kappa_{1}^{m}}{2^{|a|} a_{1}!a_{2}!\ldots a_{n}!m!} L_{1}^{2 a_{1}} L_{2}^{2 a_{2}} \ldots L_{n}^{2 a_{n}}
$$

- Mirzakhani's recursion lets you calculate $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$.
- Mirzakhani's theorem says that $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ is a polynomial whose coefficients store intersection numbers on $\overline{\mathcal{M}}_{g, n}$. The psi-class intersection numbers are stored in the top degree.
- Mirzakhani's recursion + Mirzakhani's theorem $=$ Witten's conjecture
- Philosophy: Any meaningful statement about $V_{g, n}$ gives a meaningful statement about intersection numbers on $\overline{\mathcal{M}}_{g, n}$.


## Examples of volume polynomials

$$
\begin{aligned}
& V_{0,3}=1 \\
& V_{0,4}=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}+4 \pi^{2}\right) \\
& V_{0,5}=\frac{1}{8} \sum L_{i}^{4}+\frac{1}{2} \sum L_{i}^{2} L_{j}^{2}+3 \pi^{2} \sum L_{i}^{2}+10 \pi^{4} \\
& V_{1,1}=\frac{1}{48}\left(L_{1}^{2}+4 \pi^{2}\right) \\
& V_{1,2}=\frac{1}{192} L_{1}^{4}+\frac{\pi^{2}}{12} L_{1}^{2}+\frac{\pi^{4}}{4}+\frac{\pi^{2}}{12} L_{2}^{2}+\frac{1}{192} L_{2}^{4}+\frac{1}{96} L_{1}^{2} L_{2}^{2} \\
& V_{2,1}=\frac{139 \pi^{4}}{23040} L_{1}^{4}+\frac{169 \pi^{6}}{2880} L_{1}^{2}+\frac{29 \pi^{8}}{192}+\frac{29 \pi^{2}}{138240} L_{1}^{6}+\frac{1}{442368} L_{1}^{8}
\end{aligned}
$$

## New volume polynomial relations

## Generalised string equation, generalised dilaton equation and more

The volume polynomials $V_{g, n+1}$ and $V_{g, n}$ satisfy the following relations.

$$
\begin{align*}
V_{g, n+1}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right) & =\sum_{k=1}^{n} \int L_{k} V_{g, n} d L_{k} \quad \text { (GSE) }  \tag{GSE}\\
\frac{\partial V_{g, n+1}}{\partial L_{n+1}}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right) & =2 \pi i(2 g-2+n) V_{g, n} \quad \text { (GDE) }  \tag{GDE}\\
\frac{\partial^{2} V_{g, n+1}}{\partial L_{n+1}^{2}}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right) & =\sum_{k=1}^{n} L_{k} \frac{\partial V_{g, n}}{\partial L_{k}}-(4 g-4+n) V_{g, n} \\
& \vdots \\
\frac{\partial^{k} V_{g, n+1}}{\partial L_{n+1}^{k}}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right) & =[? ? ?] V_{g, n}
\end{align*}
$$

- Algebraic geometry Mirzakhani's theorem translates these results into relations between intersection numbers on $\overline{\mathcal{M}}_{g, n+1}$ and $\overline{\mathcal{M}}_{g, n}$. Such relations emerge from analysing the forgetful map $\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$.
- Mirzakhani's recursion

Mirzakhani's recursion determines all volumes $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$, so it should encode these relations in some sense. Interestingly, these proofs use identities among the Bernoulli numbers.

- Hyperbolic geometry?

A purely imaginary length usually corresponds to an angle. So these results suggest a connection between intersection numbers on $\overline{\mathcal{M}}_{g, n}$ and the geometry of hyperbolic surfaces with cone points.

## What is a ribbon graph?

A ribbon graph of type $(g, n)$ is

- a graph with a cyclic ordering of the edges at every vertex
- which can be thickened to give a surface of genus $g$ and
- $n$ boundary components labelled from 1 up to $n$.


## Trivalent ribbon graph of type $(1,1)$



Trivalent ribbon graphs of type $(0,3)$


## Kontsevich's combinatorial formula explained

## Kontsevich's combinatorial formula

$$
\sum_{|a|=3 g-3+n} \psi_{1}^{a_{1}} \cdot \psi_{2}^{a_{2}} \cdots \psi_{n}^{a_{n}} \prod_{k=1}^{n} \frac{\left(2 a_{k}-1\right)!!}{s_{k}^{2 a_{k}+1}}=\sum_{\Gamma \in T R G_{g, n}} \frac{2^{2 g-2+n}}{|\operatorname{Aut}(\Gamma)|} \prod_{e \in \Gamma} \frac{1}{s_{\ell(e)}+s_{r(e)}}
$$

- LHS: polynomial in $\frac{1}{s_{1}}, \frac{1}{s_{2}}, \ldots, \frac{1}{s_{n}}$
- coefficients store all intersection numbers of psi-classes on $\overline{\mathcal{M}}_{g, n}$
- RHS: rational function in $s_{1}, s_{2}, \ldots, s_{n}$
- strange enumeration over trivalent ribbon graphs of type ( $g, n$ )
- Kontsevich's combinatorial formula is incredible!


## Kontsevich's combinatorial formula for $g=0$ and $n=3$

- The LHS is easy.

$$
L H S=\psi_{1}^{0} \cdot \psi_{2}^{0} \cdot \psi_{3}^{0} \frac{1}{s_{1} s_{2} s_{3}}
$$

- The RHS has one term for each trivalent ribbon graph of type $(0,3)$.

$$
\begin{aligned}
R H S= & \frac{2}{2 s_{1}\left(s_{1}+s_{2}\right)\left(s_{1}+s_{3}\right)}+\frac{2}{2 s_{2}\left(s_{2}+s_{3}\right)\left(s_{2}+s_{1}\right)} \\
& +\frac{2}{2 s_{3}\left(s_{3}+s_{1}\right)\left(s_{3}+s_{2}\right)}+\frac{2}{\left(s_{1}+s_{2}\right)\left(s_{2}+s_{3}\right)\left(s_{3}+s_{1}\right)} \\
= & \frac{s_{2} s_{3}\left(s_{2}+s_{3}\right)+s_{3} s_{1}\left(s_{3}+s_{1}\right)+s_{1} s_{2}\left(s_{1}+s_{2}\right)+2 s_{1} s_{2} s_{3}}{s_{1} s_{2} s_{3}\left(s_{1}+s_{2}\right)\left(s_{2}+s_{3}\right)\left(s_{3}+s_{1}\right)} \\
= & \frac{\left(s_{1}+s_{2}\right)\left(s_{2}+s_{3}\right)\left(s_{3}+s_{1}\right)}{s_{1} s_{2} s_{3}\left(s_{1}+s_{2}\right)\left(s_{2}+s_{3}\right)\left(s_{3}+s_{1}\right)} \\
= & \frac{1}{s_{1} s_{2} s_{3}}
\end{aligned}
$$

- Conclusion: $\psi_{1}^{0} \cdot \psi_{2}^{0} \cdot \psi_{3}^{0}=1$.


## A new approach to Kontsevich's combinatorial formula

## Kontsevich's combinatorial formula simplified

INTERSECTION NUMBERS OF PSI-CLASSES

$\Longrightarrow \quad$| RIBBON |
| :--- |
| GRAPHS |

## Sketch proof: Step 1 of 3

INTERSECTION NUMBERS
OF PSI-CLASSES

## ASYMPTOTICS OF VOLUMES

 OF MODULI SPACESRecall that the intersection numbers of psi-classes are stored in the top degree coefficients of $V_{g, n}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$. You can access the top degree coefficients of a polynomial using asymptotics.

Sketch proof: Step 2 of 3

## ASYMPTOTICS OF VOLUMES

 OF MODULI SPACES
## $\Longrightarrow \quad$ HYPERBOLIC SURFACES WITH

 VERY LONG BOUNDARIESTo understand $V_{g, n}\left(N \ell_{1}, N \ell_{2}, \ldots, N \ell_{n}\right)$ for large $N$, one must understand hyperbolic surfaces with boundaries of lengths $N \ell_{1}, N \ell_{2}, \ldots, N \ell_{n}$ for large $N$.

## A new approach to Kontsevich's combinatorial formula

## Sketch proof: Step 3 of 3

> HYPERBOLIC SURFACES WITH VERY LONG BOUNDARIES

Fact: The Gauss-Bonnet theorem implies that all hyperbolic surfaces of genus $g$ with $n$ boundary components have the same surface area.

Crucial geometric reasoning: If you take a hyperbolic surface and stretch its boundary lengths to infinity, then you will obtain a ribbon graph after rescaling.


## A problem about ribbon graphs and determinants

## Ribbon graphs and determinants

Consider a trivalent ribbon graph of type $(g, n)$. Colour $n$ of the edges blue and the remaining edges red. Let $A$ be the matrix formed from the adjacency between the blue edges and the boundaries. Let $B$ be the matrix formed from the oriented adjacency between the red edges. Then

$$
\operatorname{det} B=2^{2 g-2}(\operatorname{det} A)^{2}
$$

## A problem about ribbon graphs and determinants

## Ribbon graphs and determinants

Consider a trivalent ribbon graph of type ( $g, n$ ). Colour $n$ of the edges blue and the remaining edges red. Let $A$ be the matrix formed from the adjacency between the blue edges and the boundaries. Let $B$ be the matrix formed from the oriented adjacency between the red edges. Then

$$
\operatorname{det} B=2^{2 g-2}(\operatorname{det} A)^{2} .
$$

The following is a ribbon graph with $g=0$ and $n=26$.


## A problem about ribbon graphs and determinants

## Ribbon graphs and determinants

Consider a trivalent ribbon graph of type ( $g, n$ ). Colour $n$ of the edges blue and the remaining edges red. Let $A$ be the matrix formed from the adjacency between the blue edges and the boundaries. Let $B$ be the matrix formed from the oriented adjacency between the red edges. Then

$$
\operatorname{det} B=2^{2 g-2}(\operatorname{det} A)^{2} .
$$

The following is a ribbon graph with $g=0$ and $n=26$.


## End matter

- Slides
http://www.ms.unimelb.edu.au/ ${ }^{\sim}$ norm
- Article

A tourist's guide to intersection theory on moduli spaces of curves
To appear in the Australian Mathematical Society Gazette
Volume 35, No. 2 (May 2008) or No. 3 (July 2008)

- Seminar

Geometry and Topology seminar on 6 May 2008

- Thesis

Coming soon!

Thanks to my supervisors:
Paul Norbury, Craig Hodgson and lain Aitchison.

