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How many ways are there to obtain a genus g surface by gluing together the edges of

n given polygons? For geometric reasons, it is natural to generalise this problem to the

case of stable surfaces. We show that such an augmented enumeration yields lattice

point polynomials which can be recursively computed. Their top degree coefficients are

intersection numbers on compactified moduli spaces of curves while their constant terms

are Euler characteristics of compactified moduli spaces of curves. On the other hand, the

geometric meaning of the intermediate coefficients remains a complete mystery. In this talk,

we will define the lattice point polynomials, present some of their properties, and indicate

possible connections to topics such as Gromov-Witten theory and topological recursion.



BUILDING A SURFACE FROM POLYGONS

How many ways are there to obtain a genus g surface by gluing together

the edges of n given polygons?

Let the polygons be numbered 1, 2, . . . , n and have b1, b2, . . . , bn edges.

The edges form a combinatorial object called a ribbon graph.

We won’t allow vertices of degree one.

Denote this weighted enumeration of ribbon graphs by Ng,n(b1, b2, . . . , bn).

A baby example

You should be able to check that N0,4(3, 3, 3, 3) = 8.

2 labellings 6 labellings



TOPOLOGICAL RECURSION

Theorem (Norbury, 2008)

There is a topological recursion by which you can compute Ng,n from Ng,n−1,

Ng−1,n+1, and Ng1,n1 × Ng2,n2 for g1 + g2 = g and n1 + n2 = n + 1.

Where does the recursion come from?
When you remove an edge from a ribbon graph,

two faces could become one;

one face could become two with a loss of genus; or

the ribbon graph could become disconnected.

Corollary

If we restrict to even b1, b2, . . . , bn, then Ng,n(b1, b2, . . . , bn) is an even

polynomial of degree 6g − 6 + 2n.

Bonus fact
Eynard–Orantin technology stores the recursion in the curve xy − y 2 = 1.



EXAMPLES OF LATTICE POINT POLYNOMIALS

g n Ng,n(b1, b2, . . . , bn)

0 3 1

1 1 1
48
(b21 − 4)

0 4 1
4
(b21 + b

2
2 + b

2
3 + b

2
4 − 4)

1 2 1
384
(b41 + b

4
2 + 2b

2
1b
2
2 − 12b1 − 12b2 + 32)

2 1 1
8847360

(5b81 − 312b61 + 5712b41 − 36608b21 + 73728)

What do the coefficients of the lattice point polynomials mean?



MODULI SPACES OF CURVES

Mg,n =

(
genus g smooth algebraic curves with distinct

points labelled from 1 up to n

)

=

(
genus g Riemann surfaces with distinct

punctures labelled from 1 up to n

)

=

(
genus g hyperbolic surfaces with distinct

cusps labelled from 1 up to n

)

dimMg,n = 6g − 6 + 2n

Strebel’s theorem
For fixed r1, r2, . . . , rn > 0, we can bijectively associate a point inMg,n to a

ribbon graph where

every vertex has degree at least three;

a positive length is assigned to every edge; and

the perimeter of face k is rk .



DELIGNE–MUMFORD COMPACTIFICATION

Mg,n =

(
genus g stable algebraic curves with distinct

smooth points labelled from 1 up to n

)

A stable curve may be nodal but its components satisfy 2g − 2 + n > 0.

9
5

6

1

2

4

7

3

8

There is a stratification ofMg,n by smaller moduli spaces of curves.

M0,5 = M0,5
F M0,4×M0,3

F M0,3×M0,3×M0,3

1 labelling 10 labellings 15 labellings



LATTICE POINTS IN MODULI SPACES OF CURVES

Interpret ribbon graphs with integer edge lengths as lattice points in

moduli spaces of curves.

Theorem (Norbury, 2008)

The top degree part of Ng,n stores psi-class intersection numbersZ
Mg,n

ψa11 ψ
a2
2 · · ·ψ

an
n ,

where ψ1, ψ2, . . . , ψn ∈ H2(Mg,n;Q).

The constant term of Ng,n is χ(Mg,n).

Corollary

Combining this theorem with the topological recursion yields another proof of

the Witten–Kontsevich theorem, which governs psi-class intersection numbers.



LATTICE POINTS IN COMPACTIFIED MODULI SPACES

Count lattice points in the compactified moduli spaceMg,n to obtain Ng,n.

Example

Points inM0,5 represent curves of the following types.

M0,5 = M0,5
F M0,4×M0,3

F M0,3×M0,3×M0,3

1 labelling 10 labellings 15 labellings

N0,5(b1, b2, b3, b4, b5) = N0,5(b1, b2, b3, b4, b5)

+
X

10 terms

N0,4(bi , bj , bk , 0)× N0,3(b`, bm, 0)

+
X

15 terms

N0,3(bi , bj , 0)× N0,3(bk , 0, 0)× N0,3(b`, bm, 0)



COMPACTIFIED LATTICE POINT POLYNOMIALS

Some simple facts

If we restrict to even b1, b2, . . . , bn, then Ng,n(b1, b2, . . . , bn) is an even

polynomial of degree 6g − 6 + 2n.

The top degree part of Ng,n stores psi-class intersection numbers onMg,n.

The constant term of Ng,n is χ(Mg,n).

Theorem (Do–Norbury, 2011)

The polynomial Ng,n(b1, b2, . . . , bn) enumerates stable ribbon graphs.

There is a topological recursion by which you can compute Ng,n from

Ng,n−1, Ng−1,n+1, and Ng1,n1 × Ng2,n2 for g1 + g2 = g and n1 + n2 = n + 1.

If we write χg,n = χ(Mg,n), then

χg,n+1 = (2−2g−n)χg,n+
1

2
χg−1,n+2+

1

2

gX
h=0

nX
k=0

 
n

k

!
χh,k+1 χg−h,n−k+1.



EXAMPLES OF COMPACTIFIED LATTICE POINT POLYNOMIALS

g n Ng,n(b1, b2, . . . , bn)

0 3 1

1 1 1
48
(b21 + 20)

0 4 1
4
(b21 + b

2
2 + b

2
3 + b

2
4 + 8)

1 2 1
384
(b41 + b

4
2 + 2b

2
1b
2
2 + 48b

2
1 + 48b

2
2 + 192)

2 1 1
8847360

(5b81 + 648b
6
1 + 19152b

4
1 + 278272b

2
1 + 1517568)

It appears that the compactified lattice point polynomials may be the right

objects to study. What do their coefficients mean?

Bonus question

Does Eynard–Orantin technology store the recursion in a curve?



ADDING DEGREE ONE VERTICES

Define Mg,n(b1, b2, . . . , bn) analogously to Ng,n(b1, b2, . . . , bn) except we now

allow degree one vertices; and

divide by the combinatorial constant
Q`bk−1

1
2 bk

´
.

Then Mg,n(b1, b2, . . . , bn) is a polynomial of degree 3g − 3 + n.

g n Mg,n(b1, b2, . . . , bn)

0 3 1

1 1 1
24
(b1 + 10)

0 4 1
2
(b1 + b2 + b3 + b4 + 4)

1 2 1
48
(b21 + b

2
2 + b1b2 + 8b1 + 8b2 + 24)

2 1 1
23040
(5b41 + 56b

3
1 + 228b

2
1 + 1184b1 + 3952)



RIBBON GRAPHS AND BRANCHED COVERS OF CP1

Old fact
Let Zg,n(b1, b2, . . . , bn) be the set of smooth maps from a genus g curve to

CP1 whose only branching is over {0, 1,∞} such that

the branching profile over ∞ is (b1, b2, . . . , bn);

the branching profile over 1 is (2, 2, . . . , 2); and

there are no points with branching of order 1 over 0.

Then Ng,n(b1, b2, . . . , bn) = #Zg,n(b1, b2, . . . , bn).

New fact
Let Zg,n(b1, b2, . . . , bn) be the set of stable maps from a genus g curve to CP1

whose only branching is over {0, 1,∞} such that

the branching profile over ∞ is (b1, b2, . . . , bn);

the branching profile over 1 is (2, 2, . . . , 2); and

every point with branching of order 1 over 0 is a node.

Then Ng,n(b1, b2, . . . , bn) = χ
ˆ
Zg,n(b1, b2, . . . , bn)

˜
.



THE GROMOV–WITTEN/HURWITZ CORRESPONDENCE

There are two competing theories for counting genus g branched covers of CP1

with specified branching conditions.

Hurwitz theory: Combinatorially count by multiplying cycles in the

symmetric group algebra.

Gromov–Witten theory: Geometrically count by doing intersection theory

on a suitable space of maps.

GW/H correspondence (Okounkov–Pandharipande, 2006)

The GW count is a compactified version of the H count. It can be obtained by

multiplying completed cycles in the symmetric group algebra.

The count Ng,n(b1, b2, . . . , bn) is naturally a Hurwitz number. Is its

compactified version Ng,n(b1, b2, . . . , bn) a Gromov–Witten number?



THANKS

If you would like more information, you can

find the slides from the talk at http://www.ms.unimelb.edu.au/~nndo

download the preprint at http://arxiv.org/abs/1012.5923

wait for the paper to appear in Geometry and Topology

email me at normdo@gmail.com

speak to me at the front of the lecture theatre

http://www.ms.unimelb.edu.au/~nndo
http://arxiv.org/abs/1012.5923
normdo@gmail.com

