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In how many ways can you obtain a genus g surface by gluing together the
edges of a given set of polygons? Norbury interprets this question as counting
lattice points in the moduli space of curves and shows that the answer exhibits
polynomial behaviour. The top degree and constant terms of these lattice point
polynomials are known to store interesting geometric information. On the other
hand, the intermediate coefficients remain a complete mystery. In this talk, we’ll
present some results concerning these polynomials, indicate some interesting
connections to other areas, and consider what the intermediate coefficients might
mean.



TILING A SURFACE WITH POLYGONS

In how many ways can you obtain a genus g surface by gluing together the
edges of a given set of polygons?

Let the polygons be numbered 1, 2, . . . ,n and have b1, b2, . . . , bn edges.

The edges of the polygons form a graph on the surface called a ribbon graph.
We think of a ribbon graph as a cell decomposition of the surface.

We won’t allow two adjacent edges to be glued together — in other words, we
won’t allow vertices of degree one in the ribbon graph.

Denote the enumeration by Ng,n (b1, b2, . . . , bn ).

Example
You should be able to calculate that N0,4(3, 3, 3, 3) = 8.

2 labellings 6 labellings
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REPRESENTATION THEORY APPROACH

Let X be the set of oriented edges of the ribbon graph.

s0 = the permutation on X which rotates anticlockwise about vertices
X /〈s0〉 = {vertices of the ribbon graph}

s1 = the permutation on X which flips edges
X /〈s1〉 = {edges of the ribbon graph}

s2 = s−1
1 s−1

0
X /〈s2〉 = {faces of the ribbon graph}

The number Ng,n (b1, b2, . . . , bn ) counts triples s0s1s2 = id of permutations which
satisfy the following.

s2 has cycle structure (b1, b2, . . . , bn )

s1 has cycle structure (2, 2, . . . , 2)

s0 has V non-trivial cycles where V − E + F = 2 − 2g

The Burnside formula expresses the answer as a sum over characters of the
symmetric group — but this is not very useful for our purposes.
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MATRIX INTEGRAL APPROACH

Consider the following matrix integral where V (M ) =
∑ tk

k M k .

ZN (t1, t2, . . .) =
∫
HN

exp
(
− 1

2N Tr M 2) dM
2N/2πN2/2

exp (N Tr V (M ))

Here, HN is the space of N ×N Hermitian matrices with the Euclidean volume
element dM .

The topological expansion of this matrix integral is

logZN (t1, t2, . . .) =
∑

Γ a ribbon graph

N 2−2g

#Aut Γ
tb1 tb2 · · · tbn .

Here, Γ is a ribbon graph on a genus g surface made from polygons with
b1, b2, . . . , bn edges. Also, Aut Γ is the automorphism group of Γ .

By specialising the variables, you can obtain the number Ng,n (b1, b2, . . . , bn ) as
a coefficient of this generating function — but this is not very useful for our
purposes. However, it indicates that we should count ribbon graphs with the
weight 1

#Aut Γ .



MATRIX INTEGRAL APPROACH

Consider the following matrix integral where V (M ) =
∑ tk

k M k .

ZN (t1, t2, . . .) =
∫
HN

exp
(
− 1

2N Tr M 2) dM
2N/2πN2/2

exp (N Tr V (M ))

Here, HN is the space of N ×N Hermitian matrices with the Euclidean volume
element dM .

The topological expansion of this matrix integral is

logZN (t1, t2, . . .) =
∑

Γ a ribbon graph

N 2−2g

#Aut Γ
tb1 tb2 · · · tbn .

Here, Γ is a ribbon graph on a genus g surface made from polygons with
b1, b2, . . . , bn edges. Also, Aut Γ is the automorphism group of Γ .

By specialising the variables, you can obtain the number Ng,n (b1, b2, . . . , bn ) as
a coefficient of this generating function — but this is not very useful for our
purposes. However, it indicates that we should count ribbon graphs with the
weight 1

#Aut Γ .



MATRIX INTEGRAL APPROACH

Consider the following matrix integral where V (M ) =
∑ tk

k M k .

ZN (t1, t2, . . .) =
∫
HN

exp
(
− 1

2N Tr M 2) dM
2N/2πN2/2

exp (N Tr V (M ))

Here, HN is the space of N ×N Hermitian matrices with the Euclidean volume
element dM .

The topological expansion of this matrix integral is

logZN (t1, t2, . . .) =
∑

Γ a ribbon graph

N 2−2g

#Aut Γ
tb1 tb2 · · · tbn .

Here, Γ is a ribbon graph on a genus g surface made from polygons with
b1, b2, . . . , bn edges. Also, Aut Γ is the automorphism group of Γ .

By specialising the variables, you can obtain the number Ng,n (b1, b2, . . . , bn ) as
a coefficient of this generating function — but this is not very useful for our
purposes. However, it indicates that we should count ribbon graphs with the
weight 1

#Aut Γ .



COMBINATORIAL APPROACH (INSPIRED BY GEOMETRY)

Theorem (Norbury, 2008)
There exists a topological recursion in which Ng,n relies on Ng−1,n+1, Ng,n−1, and
Ng1,n1 ×Ng2,n2 for g1 + g2 = g and n1 + n2 = n + 1. You can use this to compute
Ng,n (b1, b2, . . . , bn ) from the following base cases.

N0,3(b1, b2, b3) =

1 if b1 + b2 + b3 is even

0 if b1 + b2 + b3 is odd

N1,1(b1) =

 1
48 (b

2
1 − 48) if b1 is even

0 if b1 is odd

Proof.
Think about what happens when you remove an edge from the graph.

Corollary
The count Ng,n (b1, b2, . . . , bn ) is an even symmetric quasi-polynomial of degree
6g − 6 + 2n . So there exist polynomials N (k)

g,n (b1, b2, . . . , bn ) such that

Ng,n (b1, b2, . . . , bk︸ ︷︷ ︸
odd

, bk+1, bk+2, . . . , bn︸ ︷︷ ︸
even

) = N (k)
g,n (b1, b2, . . . , bn )
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EXAMPLES OF LATTICE POINT POLYNOMIALS

Example
If k is odd, then N (k)

g,n (b1, b2, . . . , bn ) = 0.

g n k N (k)
g,n (b1, b2, . . . , bn )

0 3 0 or 2 1

1 1 0 1
48 (b

2
1 − 4)

0 4 0 or 4 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 − 4)

0 4 2 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 − 2)

1 2 0 1
384 (b

2
1 + b2

2 − 4)(b2
1 + b2

2 − 8)

1 2 2 1
384 (b

2
1 + b2

2 − 2)(b2
1 + b2

2 − 10)

2 1 0 1
216×33×5 (b

2
1 − 4)(b2

1 − 16)(b2
1 − 36)(5b2

1 − 32)

3 1 0 1
225×36×52×7 (5b

4
1 − 188b2

1 + 1152)
∏5

k=1(b
2
1 − 4k2)

Question
What do the coefficients mean?



EXAMPLES OF LATTICE POINT POLYNOMIALS

Example
If k is odd, then N (k)

g,n (b1, b2, . . . , bn ) = 0.

g n k N (k)
g,n (b1, b2, . . . , bn )

0 3 0 or 2 1

1 1 0 1
48 (b

2
1 − 4)

0 4 0 or 4 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 − 4)

0 4 2 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 − 2)

1 2 0 1
384 (b

2
1 + b2

2 − 4)(b2
1 + b2

2 − 8)

1 2 2 1
384 (b

2
1 + b2

2 − 2)(b2
1 + b2

2 − 10)

2 1 0 1
216×33×5 (b

2
1 − 4)(b2

1 − 16)(b2
1 − 36)(5b2

1 − 32)

3 1 0 1
225×36×52×7 (5b

4
1 − 188b2

1 + 1152)
∏5

k=1(b
2
1 − 4k2)

Question
What do the coefficients mean?



MODULI SPACES OF CURVES

surface
(g = genus, n = #boundaries)

algebraic curve
(n = #marked points)

Riemann surface
(n = #punctures)

hyperbolic surface
(n = #cusps)

Moduli spaces of curves

Mg,n =

{
genus g smooth algebraic curves with distinct
points labelled from 1 up to n

}

=

{
genus g Riemann surfaces with distinct
punctures labelled from 1 up to n

}

=

{
genus g hyperbolic surfaces with
cusps labelled from 1 up to n

}

The dimension ofMg,n is 6g − 6 + 2n . It’s a Deligne–Mumford stack — so
think of it as a complex orbifold.
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DELIGNE–MUMFORD COMPACTIFICATION

Deligne–Mumford compactification

Mg,n =

{
genus g stable algebraic curves with distinct
smooth points labelled from 1 up to n

}

A stable curve may be nodal but its components must satisfy 2g − 2 + n > 0.

9
5

6

1

2

4

7

3

8

The spacesMg,n are “stratified” by smaller moduli spaces of curves.

M0,5 = M0,5
⋃ M0,4 ×M0,3

⋃ M0,3 ×M0,3 ×M0,3

1 labelling 10 labellings 15 labellings
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FROM ALGEBRAIC CURVES TO METRIC RIBBON GRAPHS

Theorem (Strebel)
Choose positive real numbers r1, r2, . . . , rn and a Riemann surface S with punctures
p1, p2, . . . , pn . There exists a unique quadratic differential on S whose non-closed
horizontal trajectories form an embedded graph with complement punctured disks
centred at p1, p2, . . . , pn and with perimeters r1, r2, . . . , rn . The perimeters arise by
integrating the square root of the quadratic differential along the edges of the graph.

Corollary
Given positive real numbers r1, r2, . . . , rn , we can uniquely associate a point in
Mg,n to a ribbon graph with

every vertex of degree at least three;

a length attached to every edge; and

the perimeter of face k is rk .
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LATTICE POINTS IN MODULI SPACES OF CURVES

Idea
Interpret ribbon graphs with integer edge lengths as lattice points in moduli spaces
of curves. So Ng,n (b1, b2, . . . , bn ) counts lattice points inMg,n . This gives a
discrete approximation to the volume of the moduli space, which is known to store
interesting topological information.

Theorem (Norbury, 20008)

The top degree part of the quasi-polynomial Ng,n (b1, b2, . . . , bn ) stores all
psi-class intersection numbers onMg,n .∫

Mg,n

ψ
a1
1 ψ

a2
2 · · ·ψ

an
n

Here, ψ1, ψ2, . . . , ψn ∈ H 2(Mg,n ;Q) and a1 + a2 + · · · + an = 3g − 3 + n .

The quasi-polynomial Ng,n satisfies Ng,n (0, 0, . . . , 0) = χ(Mg,n ).

Corollary
Combining this theorem with the earlier recursion gives a new proof of the
Witten–Kontsevich theorem, which governs all psi-class intersection numbers.
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LATTICE POINTS IN COMPACTIFIED MODULI SPACES

New idea
Count lattice points in compactified moduli spaces of curves

Example
Points inM0,5 represent curves of the following types.

M0,5 = M0,5
⋃ M0,4 ×M0,3

⋃ M0,3 ×M0,3 ×M0,3

1 labelling 10 labellings 15 labellings

N 0,5(b1, b2, b3, b4, b5) = N0,5(b1, b2, b3, b4, b5)

+
∑

10 terms

N0,4(bi , bj , bk , 0) ·N0,3(b`, bm , 0)

+
∑

15 terms

N0,3(bi , bj , 0) ·N0,3(bk , 0, 0) ·N0,3(b`, bm , 0)
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COMPACTIFIED LATTICE POINT POLYNOMIALS

Fact

The count N g,n (b1, b2, . . . , bn ) is an even symmetric quasi-polynomial of degree
6g − 6 + 2n .

The quasi-polynomials Ng,n and N g,n agree to leading order — so the top
degree part of the quasi-polynomial Ng,n (b1, b2, . . . , bn ) stores all psi-class
intersection numbers onMg,n .

The quasi-polynomial N g,n satisfies N g,n (0, 0, . . . , 0) = χ(Mg,n ).

g n k N (k)
g,n (b1, b2, . . . , bn )

0 3 0 or 2 1

1 1 0 1
48 (b

2
1 + 20)

0 4 0 or 4 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 + 8)

0 4 2 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 + 2)

1 2 0 1
384 (b

4
1 + b4

2 + 2b2
1b2

2 + 48b2
1 + 48b2

2 + 192)

1 2 2 1
384 (b

4
1 + b4

2 + 2b2
1b2

2 + 48b2
1 + 48b2

2 + 84)
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QUESTIONS

Claim
The compactified enumeration N g,n seems to be the right thing to study.

What are we counting?
We have a combinatorial interpretation for Ng,n (b1, b2, . . . , bk , 0, 0, . . . , 0), but
only when k is positive.

Are the coefficients of N g,n always positive?
We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of N g,n?
The quasi-polynomials N g,n seem to have a Hirzebruch–Riemann–Roch flavour
and/or a connection to Gromov–Witten theory.

Is there a topological recursion for N g,n?
We conjecture (and hope) that the answer is “yes”.

The lattice point enumeration is part of a larger story which involves
enumerative geometry, matrix integrals, factorisations in the symmetric group,
integrable systems, and so on. What are the consequences of these connections?
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