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In the past few decades, moduli spaces of curves have attained notoriety amongst
mathematicians for their incredible structure. In fact, the study of moduli spaces is
at the centre of a rich confluence of rather disparate areas such as geometry, topol-
ogy, combinatorics, integrable systems, matrix models and string theory. Starting
from baby principles, I will describe exactly what a moduli space is and motivate the
study of its intersection theory. This scenic tour will guide us towards the pinnacle
of the talk, a new proof of Kontsevich’s combinatorial formula. There should be
something in the talk for everyone, whether they are a seasoned traveller or a new
tourist to the fascinating world of moduli spaces of curves.
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What is a moduli space?

A moduli space parametrises a family of geometric objects.

Different points in a moduli space represent different geometric
objects and nearby points represent objects with similar structure.

Toy example: The moduli space of triangles

Consider a triangle with side lengths a, b and c .

M4 =
{
(a, b, c) ∈ R3

+ | a + b > c , b + c > a, and c + a > b
}

a

bc
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Baby enumerative geometry

Baby question

How many triangles

are isosceles;

have at least one side of length 5; and

have at least one side of length 7?

Define Xiso ⊆M4, the locus of isosceles triangles.
Define X5 ⊆M4, the locus of triangles with one side of length 5.
Define X7 ⊆M4, the locus of triangles with one side of length 7.

Same baby question

What is |Xiso ∩ X5 ∩ X7|?
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Intuitive intersection theory (a.k.a. cohomology)

An (N − d)-dimensional subset of an N-dimensional space is said to
have codimension d .

A “generic” intersection between subsets with codimension d1 and
d2 has codimension d1 + d2.

A “generic” intersection between m subsets of an N-dimensional
space with codimensions d1 + d2 + · · ·+ dm = N is a set of points.
The number of these points is called an intersection number.

We will use the following notation for intersection numbers.

X1 · X2 · · ·Xm = |X1 ∩ X2 ∩ . . . ∩ Xm|
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What can you do to a surface?

It might depend on what you’re interested in. . .

ALGEBRAIC GEOMETRY HYPERBOLIC GEOMETRY

COMPLEX ANALYSIS DIFFERENTIAL GEOMETRY

Norman Do A tourist’s guide to intersection theory on moduli spaces of curves



What can you do to a surface?

It might depend on what you’re interested in. . .

ALGEBRAIC GEOMETRY HYPERBOLIC GEOMETRY
algebraic structure hyperbolic metric

COMPLEX ANALYSIS DIFFERENTIAL GEOMETRY
complex structure Riemannian metric
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What can you do to a surface?

It might depend on what you’re interested in. . .

ALGEBRAIC GEOMETRY HYPERBOLIC GEOMETRY
algebraic structure hyperbolic metric
up to isomorphism up to hyperbolic isometry

COMPLEX ANALYSIS DIFFERENTIAL GEOMETRY
complex structure Riemannian metric
up to biholomorphic equivalence up to conformal equivalence
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What can you do to a surface?

It might depend on what you’re interested in. . .

ALGEBRAIC GEOMETRY HYPERBOLIC GEOMETRY
algebraic structure hyperbolic metric
up to isomorphism up to hyperbolic isometry
= algebraic curve = hyperbolic surface

COMPLEX ANALYSIS DIFFERENTIAL GEOMETRY
complex structure Riemannian metric
up to biholomorphic equivalence up to conformal equivalence
= Riemann surface = Riemann surface

. . . but actually it doesn’t! THEY ARE ALL THE SAME!
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An introduction to moduli spaces of curves

Mg,n = moduli space of genus g algebraic curves with n marked points
= moduli space of genus g hyperbolic surfaces with n cusps
= moduli space of genus g Riemann surfaces with n marked points

Two technical problems

Problem: Mg ,n is not compact.
Solution: Use the (Deligne–Mumford) compactification Mg ,n.

Points in Mg ,n correspond to stable curves.

Problem: Mg ,n is not a manifold.
Solution: Treat Mg ,n like an orbifold.

Allow intersection numbers to be rational.

Some facts

The dimension of Mg ,n is 6g − 6 + 2n.

The structure of Mg ,n is generally very complicated!
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Why do we care about moduli spaces of curves?

MODULI
SPACES

Algebraic
Geometry

Hyperbolic
Geometry

Topology

String
Theory

Matrix
Models

Integrable
Systems

Combinatorics

BECAUSE THEY ARE INTERESTING AND FUN!
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Intersection numbers of psi-classes

There are very important cohomology classes called psi-classes:

ψ1, ψ2, . . . , ψn ∈ H2(Mg ,n,Q).

Translation: ψ1, ψ2, . . . , ψn are codimension 2 subsets of Mg ,n.

Choose a1 + a2 + · · ·+ an = 3g − 3 + n = 1
2 dimMg ,n.

We are interested in intersection numbers of psi-classes:

ψa1
1 · ψa2

2 · · ·ψan
n ∈ Q.

Examples of intersection numbers of psi-classes

On M0,5, the intersection number ψ1 · ψ2 is 2.

On M1,1, the intersection number ψ1 is 1
24 .
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A very brief history of Witten’s conjecture

Witten (1991): I have a conjectured recursive formula which generates
all intersection numbers of psi-classes.

Kontsevich (1992): Witten is right! I have a combinatorial formula
which relates intersection numbers with ribbon graphs.

Okounkov and Pandharipande (2001): Witten is right! We have a
formula which relates intersection numbers with Hurwitz numbers.

Mirzakhani (2004): Witten is right! I have a formula which relates
intersection numbers with volumes of moduli spaces.

Do (2007): Witten is right! I can prove Kontsevich’s combinatorial
formula using Mirzakhani’s volumes of moduli spaces.
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What is a ribbon graph?

A ribbon graph of type (g , n) is

a graph with a cyclic ordering of the edges at every vertex

which can be thickened to give a surface of genus g and

n boundary components labelled from 1 up to n.

Trivalent ribbon graphs of type (0, 3)

2 3 3 1 1 2

1 2 3
2

3

1

Trivalent ribbon graph of type (1, 1)

1
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Kontsevich’s combinatorial formula explained

Kontsevich’s combinatorial formula

X
|a|=3g−3+n

ψa1
1 · ψa2

2 · · ·ψan
n

nY
k=1

(2ak − 1)!!

s
2ak+1
k

=
X

Γ∈TRGg,n

22g−2+n

|Aut(Γ)|
Y
e∈Γ

1

s`(e) + sr(e)

LHS: polynomial in 1
s1
, 1

s2
, . . . , 1

sn

coefficients store all intersection numbers of psi-classes onMg,n

RHS: rational function in s1, s2, . . . , sn

strange enumeration over trivalent ribbon graphs of type (g , n)

Kontsevich’s combinatorial formula is incredible!
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Kontsevich’s combinatorial formula at work

Kontsevich’s combinatorial formula for g = 0 and n = 3.

The LHS is easy.

LHS = ψ0
1 · ψ0

2 · ψ0
3

1

s1s2s3

The RHS has one term for each trivalent ribbon graph of type (0, 3).

RHS =
2

2s1(s1 + s2)(s1 + s3)
+

2

2s2(s2 + s3)(s2 + s1)

+
2

2s3(s3 + s1)(s3 + s2)
+

2

(s1 + s2)(s2 + s3)(s3 + s1)

=
s2s3(s2 + s3) + s3s1(s3 + s1) + s1s2(s1 + s2) + 2s1s2s3

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
(s1 + s2)(s2 + s3)(s3 + s1)

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
1

s1s2s3

Conclusion: ψ0
1 · ψ0

2 · ψ0
3 = 1.
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A new proof of Kontsevich’s combinatorial formula

Kontsevich’s combinatorial formula simplified

INTERSECTION NUMBERS
OF PSI-CLASSES

=⇒ RIBBON
GRAPHS

Sketch proof: Step 1 of 3

INTERSECTION NUMBERS
OF PSI-CLASSES

=⇒ ASYMPTOTICS OF VOLUMES
OF MODULI SPACES

Mirzakhani’s Theorem: LetMg,n(`1, `2, . . . , `n) be the moduli space of
hyperbolic surfaces of genus g with n boundaries of lengths `1, `2, . . . , `n. Then
its (Weil–Petersson) volume Vg,n(`1, `2, . . . , `n) is a polynomial whose top
degree coefficients store all intersection numbers of psi-classes onMg,n.

Question: How do you access the top degree coefficients of a polynomial?

Answer: Asymptotics — more precisely, we consider the behaviour of

Vg,n(N`1, N`2, . . . , N`n) as N approaches infinity.
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A new proof of Kontsevich’s combinatorial formula

Sketch proof: Step 2 of 3

ASYMPTOTICS OF VOLUMES
OF MODULI SPACES

=⇒ HYPERBOLIC SURFACES WITH
VERY LONG BOUNDARIES

To understand Vg,n(N`1, N`2, . . . , N`n) for very large values of N, we must

understand hyperbolic surfaces with boundaries of lengths N`1, N`2, . . . , N`n

for very large values of N.

Sketch proof: Step 3 of 3

HYPERBOLIC SURFACES WITH
VERY LONG BOUNDARIES

=⇒ RIBBON
GRAPHS

Fact: All hyperbolic surfaces of genus g with n boundary components have the
same surface area.

Crucial geometric reasoning: If you take a hyperbolic surface and send its

boundary lengths to infinity, then you will obtain a ribbon graph (after

rescaling).
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Two interesting problems

Calculating volumes

Given m linear equations in n variables with positive coefficients, the set
of non-negative solutions is an (n −m)-dimensional polytope. How can
you calculate its volume?

Remark: Use the Laplace transform!

Graphs and determinants

Consider a trivalent ribbon graph of type (g , n). Colour n of the edges
blue and the remaining edges red. Let A be the matrix formed from the
adjacency between the blue edges and the boundaries. Let B be the
matrix formed from the oriented adjacency between the red edges. Then

det B = 22g−2(det A)2.

Remark: There is no known combinatorial proof!
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A problem about graphs and determinants

The following is a ribbon graph with g = 0 and n = 26.
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A problem about graphs and determinants

The following is a ribbon graph with g = 0 and n = 26.

det B = 22g−2 × (det A)2

256 = 1
4 × 322
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