
R and S-PLUS:
BASIC INSTRUCTIONS

Contents

1 GENERAL NOTES: 2

2 INSTALLATION UNDER WINDOWS 3

3 BRIEF INTRODUCTION 3
3.1 Getting started . 4
3.2 Command history . 4
3.3 Variables - vectors . 4
3.4 Data frames . 6

4 PACKAGES 7
4.1 Installing new packages . 7
4.2 Loading packages . 7

5 DATA FILES 8
5.1 Generating a new data set . 8
5.2 Opening an existing data set/file . 9
5.3 Importing a data set/file from the clipboard . 9
5.4 Coding factorial variables in imported data sets . 9
5.5 Saving a data file . 10
5.6 Transforming variables . 10
5.7 Selecting subsets or subgroups of a data . 10
5.8 By groups . 11

6 SUMMARY STATISTICS 11
6.1 Univariate . 11
6.2 Bivariate . 12

7 TWO SAMPLE TESTS 12
7.1 Independent t-test . 12
7.2 Mann-Whitney-Wilcoxon test . 13
7.3 Paired t-test . 13

8 CORRELATION & REGRESSION 14
8.1 Correlation . 14
8.2 Regression . 14

9 ANOVA 15
9.1 Single factor ANOVA . 16
9.2 Post Hoc Tukey’s test . 17
9.3 Planned comparisons . 17
9.4 Factorial ANOVA . 18
9.5 Nested ANOVA . 19

1 GENERAL NOTES:

9.6 Randomized Block . 20
9.7 Split-plot & Repeated Measures . 21

10 Frequency analysis 22
10.1 Goodness of fit tests . 22
10.2 Contingency tables . 22

11 MULTIVARIATE ANALYSIS 23
11.1 PCA . 23
11.2 Multidimensional scaling . 24
11.3 Clustering . 25

12 GRAPHS 26
12.1 Boxplots . 26
12.2 Bar graph . 26
12.3 Scatterplot . 27
12.4 Interaction plots . 27
12.5 Saving graphs . 28

13 Using command scripts 28

1 GENERAL NOTES:

The instructions below work for both S-Plus and R. S-
Plus is a very powerful statistics language from ATT Bell
Laboratories. R is an open source copy of S-Plus and
is available for Win9x and Unix/Linux operating systems.
Whilst S-Plus (and thus R) is very flexible, expandable
and virtually without limitations, because it is a program-
ming language (albeit high-level), it does require basic
programming concepts and has a steep learning curve.
Having said this, the rewards for mastering the basic con-
cepts of R are great. Other statistical packages such,
such as SYSTAT and SPSS are inflexible, riddled with
limitations and very expensive (not available to students
off campus). R can be downloaded from:
ftp://mirror.aarnet.edu.au/pub/CRAN

/index.html
Warning , R (and S-Plus) is a completely command and
script based package. It is not possible to incorporate
the huge array of functions etc into a usable menu-driven
interface.
As R is a copy of S-Plus, reading documentation on
either will provide information on usage. In particular
Everitt (1994) and Venables and Ripley (1994) are excel-
lent references. In addition, there is plenty of information
available on the web and in help files that come with the

distributions.

These instructions only cover some of the many options
available for analyses and graphs. Once you are familiar
with a particular type of analysis or graph, you might want
to investigate other options. Help is always available. For
each procedure described, an example of the commands
needed are provided and additional scripts are placed
in the Appendix. The commands take on the following
structure:

• > this is the command prompt, you don’t type this, it
is already there.

• # this is a comments marker. It allows for comments
in the script and every thing following it for that line
will be ignored by R.

• <- is the equivalent of a ’=’ (equals sign).

• Bold type indicates that you should alter the text in
here to correspond to the variable etc. that you are
interested in.

• all white space is ignored. Occasionally, commands
are split across lines in this document. When using
the commands, remove the carriage returns.

2

3 BRIEF INTRODUCTION

R itself is driven by typed commands. Such an inter-
face often frightens new users away, however, there are
several good reasons for performing statistical analyses
via commands

1. Forces the user to know more about what they are
asking the software to perform. This minimizes the
effects of the point-and-click (black box) syndrome
where users click a couple of windows items, hit re-
turn, hope for the best and accepting any non er-
ror as indicating a correct outcome. Consequently,
command driven statistics are potentially excellent
teaching resources.

2. Enable easy storing of sequences of commands
thereby permitting analyses to be replicated exactly
(no matter how complex) at later date

3. Much quicker for developers to write and main-
tain code and therefore commands usually provide
more flexible procedures than more graphical user
interfaces

Note: these notes do not cover many of the more ad-
vanced techniques and issues of analysis. As the title
implies, they are very much ‘basic instructions’. More ex-
tensive examples and syntax is found within the Ework-
sheets.

2 INSTALLATION UNDER WIN-
DOWS

The latest stable version of R can be downloaded from
http://users.monash.edu.au/˜murray/stats/ .
Installation is straight forward. Click on the R installation
link and follow the prompts to download the *.exe file into
a local directory on you computer (running Windows).
Locate and double click on this file - this will run the setup
software and install R on your computer (Note, you will be
asked to confirm where R should be located, the default
position is best!).
You should also download and install a number of pack-
ages that extend the functionality of R and provide a
range of procedures that are useful for biologists (see
section 4).

3 BRIEF INTRODUCTION

Although R for windows is a powerful statistical package,
it is actual a high-level interpreted programming language
(called R) which is modeled on S. Both R and S are ob-
ject orientated languages and therefore everything in R
is an object of some kind The basic data storage unit in
R is called a vector. A vector is just an array of one or
more entries (numbers, characters, etc). Hence a vector
is an object. There are a number of types (or classes) of
vector in R reflecting the nature of the data in the vector.
There is a function called c , which is short (very short) for
concatenate. This function generates a vector (collection
of similar entries) of entries. For example, the following
syntax generates a vector with the name newvector
that contains two real (double precision or floats) num-
bers (8.4 and 2.1):

>a <- c(8.4, 2.1)

The statement (everything to the right of the R prompt,
>) is evaluated when the ENTER key is pressed.
A few necessary definitions

Array A collection of one or more values of the
same type (e.g. all numbers or all charac-
ters etc) arranged in one or more dimen-
sions

Vector A collection of one or more values of the
same type (e.g. all numbers or all charac-
ters etc).

>c(1,2,3,4)

The above command generates a
numeric class (type) of vector compris-
ing of the values 1, 2, 3 and 4. Table 1 lists
other common vector classes.

Object Everything is an object. There are a num-
ber of types (or classes) of vector in R re-
flecting the nature of the data in

Function A set of instructions carried out on one or
more objects. Functions are typically used
to perform specific and common tasks that
would otherwise require many instructions.
For example, the function mean() is used
to calculate the arithmetic mean of the val-
ues in a given object (e.g. numeric vector)

3

3.1 Getting started 3 BRIEF INTRODUCTION

Argument Information parsed to a function to deter-
mine how the function should perform its
task. Arguments are given between the
brackets that proceed the name of the func-
tion. For example, the mean function re-
quires at least one argument - the name of
an object that contains the data from which
the mean is to be generated

Operator Is a symbol that has a pre-defined mean-
ing. Familiar operators include + - * / =
< > <= and >=, while less familiar opera-
tors include == (does the item on the left
hand side of the == equal the item/value
on the right hand side), != (is the left hand
side not equal to the right), && (and) and
|| (or)

Expression A statement that is evaluated and used to
produce a value that is then printed to the
output and discarded

Assignment Evaluates an expression and assigns the
result (value) to an object. The assignment
operator <- is interpreted by R as ’evaluate
the expression on the right hand side and
assign it to the object on the left hand side.
If the object on the left hand side does not
already exist, then it is created, otherwise
the objects contents are replaced. For ex-
ample

>a <- 1

assigns the value 1 to an object called ’a’

Formula

Table 1 Object vector classes in R

Vector class Contains
Example

integer whole numbers
2:4

numeric real numbers
c(8.4,2.1)

character letters
c(’A’,’Fish’)

logical TRUE or FALSE
c(’FALSE’,’TRUE’)

list list of objects
list(’A’=c(1,2),’B’=c(’a’,

’big’))
This generates a list vector class that
itself contains a numeric vector called
A and a character vector called B

3.1 Getting started

>help(mean)

OR
>?mean

Two alternatives for getting help on the function mean()

>q()

Quits R gracefully.

3.2 Command history

Using the up and down arrow keys on the keyboard to
scroll backwards and fawards respectively through the
previously enetered commands (command history), en-
ables previous commands to be re-executed or modified
and executed.

3.3 Variables - vectors

In biology, a variable is a collection of observations of
the same type. For example, a variable might consist of
the observed weights of individuals within a sample of 10
bush rats. Each item (or element) in the variable is of the
same type (a weight) and will have been measured com-
parably (same techniques and units). Biological variables
are therefore best represented in R by vectors.

Type out the following command and press enter

4

3.3 Variables - vectors 3 BRIEF INTRODUCTION

>4+2

The command is evaluatuated and the result (6) is printed
on the default (screen) output device.

>4+2

[1] 6

The result is proceeded by [1] which indicates that this
is the first element in the requested result. For such a
simple example, the element lable is not necessary, how-
ever, its importance will become apparent later when the
result includes a list of items (numbers or words).

Enter and explore the following commands (a brief
description follows each entry):

>1:8

The : operator is interpreted as ‘generate a sequence from
the item on the left hand side to the item on the right hand side’

>c(2.4, 3.5, 5.6, 6.2, 7.5, 8.4, 10.0, 12.1,

13.6, 13.9)

The c function concatenates a sequence of numbers into
a vector. Hence the command above generates a num-
ber vector (containing 10 real numbers)

>x <- 1:10

Assign the sequence of numbers to a new object (an
integer vector) called x . Note that when an object is
assigned, its class is automatically determined by the
contents assigned to it.

>x

Print to contents of the x object to the default device.

1. > wt <- c(126, 130, 121, 136, 139, 106, 111,
102, 99, 115)

2. > wt

3. >class(wt)

1. Use the c function to generate a number vector
(containing 10 real numbers) and assigns the vec-
tor to a new object (a number vector) called wt . In
this case wt might represent the weights of 10 bush
rats, and thus might represent a continuous vari-
able.

2. Print to contents of the wt object

3. Use the class() function to determine (and print)
which class of object the object wt belongs to

1. >X <- c(1, 2, 3, 2.4, ’a’, ’high’)

2. >X

3. >class(y)

1. Use the c function to a vector (specified with a col-
lection of integers, real numbers and characters)
and assigns the vector to a new object called X.
Since all the items in a vector must be of the same
type, all the the items are converted into characters
and therefore the vector is a character vector. Note
also that R is case sensitive and therefore x and X
are not the same.

2. Print to contents of the X object

3. Use the class() function to determine (and print)
which class of object the object X belongs to

3.3.1 Factorial variables

A specific type of character vector that is of particular im-
portance in the analysis of grouped data is the factor
class.

1. >SEX <- c(’Male’, ’Male’, ’Male’, ’Male’,
’Male’, ’Female’, ’Female’, ’Female’,
’Female’, ’Female’)

2. >SEX

3. >SEX1 <- factor(SEX1)

4. >list(Sex=SEX, Sex1=SEX1)

5. >SEX <- factor(SEX, levels=c(’Male’,
’Female’))

6. >SEX

7. >SEX <- gl(2,5,10,lab=c(’Male’,’Female’))

8. >SEX

1. Use the c function to generate a character vector
containing 6 items and assign it the name SEX

2. Print out the contents of the SEX character vector
object.

3. Use the factor function to convert the character
vector object into a factor object in which the unique

5

3.4 Data frames 3 BRIEF INTRODUCTION

levels of the factor are defined. For comparison
sake the result has been assigned to another factor
object (SEX1), however it is more usual to reassign
the result to the same object

4. Use the list function to print the contents of the
original SEX character object and the SEX1 factor
object. The arguments Sex=SEX and Sex1=SEX1
define names (can be any legal names you like) for
the SEX and SEX1 objects within the list and are
used to identify them in the printed output.
Note that the SEX1 object also lists the levels within
the factor in alphabetical order. Most statistical
packages do this, however, it is usually not desir-
able as the alphabetical ordering of treatments is
biologically meaningless.

5. Use the levels= argument to specifically assign
the order of levels when assigning a factor object

6. Reprint the contents of the SEX1 object. Notice that
the order of the levels is more meaningful. The sig-
nificance of the ordering will become more apparent
later.

7. The gl function generates a factor vector and
automatically sets the order of the levels ac-
cording to the order defined by the argument
(lab=c(’Male’,’Female’)) all in one relatively short
command. The first argument of the gl function de-
termines how many levels are in the resulting factor
variable, the second determines how many times
the items of each level should appear in succession
and the third argument determines how many items
in total should be in the vector. For simplicity as well
as flexibility, the gl function is the author’s preferred
method for defining factors

8. Print the contents of the SEX factor vector

Note that the names given to vectors (variables) can
comprise of virtually any sequence of letters and numbers
provided the following rules are adhered to

1. Names must begin with a letter (not a number or an
operator)

2. Names cannot include either (underscore) or a
space character

Following is a list of naming recommendations

1. Names should reflect the content of the object. For
example the name wt was used to represent a vari-
able or weights

2. Although there is no restriction on name lengths,
short names are quicker to type and therefore
preferable

3. Separate words in names by a ’.’ (decimal point).
For example the name head.length might be
used to represent a variable of rat head lengths

4. Avoid names that are names of common functions
(such as mean, c etc), as these can provide a
source of confusion.

3.4 Data frames

A single biological variable is rarely collected and ana-
lyzed in isolation. Rather data are usually collected in
sets of variables reflecting tests of relationships, differ-
ences between groups or as multiple characterizations.
Consequently, data sets are best organized into collec-
tions of variables (vectors). Such collections are called
data frames in R.
Data frames are generated by combining multiple vectors
together whereby each vector becomes a separate col-
umn in the data frame. In for a data frame to represent
the data properly, the sequence in which observations ap-
pear in the vectors (variables) must be the same for each
vector and each vector should have the same number of
observations. For example, the first observations from
each of the vectors to be included in the data frame must
represent observations collected from the same sampling
unit.

1. > rats <- data.frame(sex=SEX, wt)

2. > rats

3. >row.names(rats) <- c(’a’, ’b’, ’c’, ’d’,
’e’, ’f’, ’g’, ’h’, ’i’, ’j’)

4. > rats

1. Use the data.frame function to generate a data
frame object (named rats) from two vectors (SEX
and wt). The argument sex=SEX is used to re-
name the vector SEX to sex within the data frame.
Note that the first observations from the two vectors
wt and SEX must represent observations collected
from the same sampling unit (individual rat)

2. View the rats data frame (data set)

6

4 PACKAGES

3. Use the row.names function to add labels (names)
to each of the rows. These names are not neces-
sary and purely act as a means to identify individual
replicates

4. View the rats data frame (data set). Note the row
names

Once a data frame has been formed, vectors (vari-
ables) are referred by the following syntax:

>frame$vector

where frame is the name of a data frame and vector is
the name of a vector within that data frame
For example,

>rats$wt

Prints the contents of the vector wt within the rats data
frame. Note also that the following two commands refer
to two completely different variables;

>wt

>rats$wt

and that altering (or deleting) the vector wt will not alter
the rats$wt vector and vica versa.

4 PACKAGES

R is a highly modular piece of software, consisting of a
very large number of packages. Each package defines
a set of functions that can be used to perform specific
tasks. Packages also include of help files and example
data sets and command scripts to provide information
about the full use of the functions.

The modularized nature of R means that only the
packages that are necessary to perform the current tasks
need to be loaded into memory. This results in a very
‘light-weight’, fast statistical software package. Further-
more, the functionality of R can be easily extended by
the creation of additional packages, rather than re-write
all the software. As a result of this, and the open source
license, new statistics are added to R nearly as soon as
staticians publish them. New and revised packages can
be freely downloaded from the CRANwebsite at any time.

4.1 Installing new packages

To first install or update a package

4.1.1 Menus - windows

1. Download the package source (a zip file)

2. Perform the following menu sequence from Rgui

➠Packages

➠Install package(s) from local zip files..

Locate and select the name of the package and
click the

�

�

�

�
OK

4.1.2 Commands - UNIX

1. Download the package source (a tar.gz file)

2. From the directory containing the tar.gz file (that is
from a terminal not currently engaged with R), type

R CMD INSTALLpackage.tar.gz

where package.tar.gz is the name of the package
to be installed

4.2 Loading packages

During the installation process of R, a large number of
commonly used packages installed. When R is first
started, only the base package is loaded. This package
contains an extensive collection of functions for perform-
ing most of the basic data manipulation and statistical
procedures.
To load additional packages for use during a session:

4.2.1 Commands

>library(package)

where package is the name of a pre-installed package to
be loaded into memory.
For example:

>library(ctest)

loads a package called ctest which is a collection of ex-
tremely useful functions put together by Kurt Hornik for
performing classical tests including t-tests, chi-squared
tests and MannWhitney Wilcoxon tests.

7

5 DATA FILES

4.2.2 Menus

Perform the following menu sequence from Rgui
➠Packages

➠Load package..

Select the package from the list and click the
�

�

�

�
OK

5 DATA FILES

Table 2 lists a fictitious data set that will be used to illus-
trate many basic statistical procedures in R

ID SEX Weight Head length
A Male 126 19
B Male 130 21
C Male 121 20
D Male 136 23
E Male 139 22
F Female 106 16
G Female 111 17
H Female 102 15
I Female 99 13
J Female 115 16

5.1 Generating a new data set

5.1.1 Commands

The following lines of syntax generate 3 new variables.

1. > wt <- c(126, 130, 121, 136, 139, 106, 111,
102, 99, 115)

2. > head.length <- c(19, 21, 20, 23, 22, 16,
17, 15, 13, 16)

3. > sex <- gl(2,5,10,c(’Male’, ’Female’))

4. > rats <- data.frame(sex, wt, head.length)

5. >row.names(rats) <- LETTERS[1:10]

6. > rats

1. Use the c (concatenation) function to assemble a
collection of real numbers into a continuous variable
with 10 observations. Call this vector (a series of
entities - like an array) wt

2. Assemble another continuous variable with 10 ob-
servations and call it head.length

3. Use the gl function to assemble a collection of cat-
egory labels for a categorical variable and assign it
the name sex .

4. Use the data.frame function to generate a data
frame comprising of three vectors (based on sex ,
wt and head.length) and assign it to an object
called rats

5. Use the row.names function to add row names to
the data set. LETTERSis one of a handful of use-
ful built in vectors defined in the base package and
contains a sequence of capital letters from ’A’ to ’Z’.
Note that this step is not necessary, it purely assists
in identifying individual sampling units (the individ-
ual rats in this case).

6. Print (view) the rats data frame

NOTE: the order in which values are placed into the
variables is very important, as variables are usually col-
lections of observations that are collected from the same
sampling units.

There is also a primitive spreadsheet that can be used
to enter and edit data from existing data frames.

>fix(frame)

where frame is the name of an exiting data frame. To use
this spreadsheet to generate a new data frame, it is first
necessary to define an empty data frame before calling
fix . For example to generate the rats data set via the
spreadsheet:

1. > rats <- data.frame(row.names=0, sex=0,
wt=0, head.length=0)
OR

2. > rats <- data.frame(row.names=
LETTERS[1:10], sex=gl(2,5,10, c(’Male’,
’Female’)), wt=0, head.length=0)

3. >fix(rats)

1. Use the data.frame function to generate a new
data frame (rats). Arguments such as sex=0 gen-
erate blank vectors within the data set. If row
names are to be entered using the spreadsheet, the
row.names argument needs to appear as the first
argument in the data.frame function.

2. The data.frame function can also include more
complete vector definitions. In this case the row
names and sex vector are predefined and wt and

8

5.2 Opening an existing data set/file 5 DATA FILES

head.length remain empty. Factor variables are
often more efficiently and easily defined by com-
mands whereas numberical vectors are often easier
to fill using the spreadsheet.

3. Use the fix function to fill in the data frame

5.2 Opening an existing data set/file

R will accept (open and import) many different file types
including SPSS, MINITAB and plain text.

5.2.1 PLAIN TEXT - comma delimited

1. > data <- read.table(" filename", header=T,
sep=",")

2. > data

1. The read.table function is used to load the file
called filename (including full path if not in the cur-
rent working directory) into a data frame format
and is assigned the name data . The parameter
header=T is used to retain column titles that are
in the first row of the text file (if they are present)
and the parameter sep="," specifies that the data
in the text file are comma delimited. For space or
tab delimited files use sep=" " .

2. List the contents of the resulting data frame. Note
that the data is already in data frame format.

5.2.2 SPSS

1. >library(foreign)

2. > data <- read.spss(" filename.sav")

3. > data

4. > data <- data.frame(data)

5. > data

1. The library function loads the foreign package
which includes import filter functions for a number
of data set formats including SPSS. If you have al-
ready loaded this library during the current R ses-
sion (ie since you started the R program running),
then there is no need to load it again, and this line
can be ignored.

2. An SPSS data file with the name filename.sav (in-
cluding full path if not in the current working direc-
tory) is loaded using the read.spss function into
the native R format and is assigned the name data .
Note that SPSS uses special type specifiers in vari-
able names (such as a $ to indicate a categorical
variable) that are not legal within the names of ob-
jects in R. R converts these characters into ’.’ (dec-
imal points). While this is not a problem, it can be
annoying and you might want to change the name
of any vectors that are affected by this.

3. Lists the contents of the imported SPSS data set

4. Usually it is preferable to quickly convert the im-
ported data into what is called a data frame since
most people find this a more intuitive way of visual-
izing data.

5. List the contents of the resulting data frame.

5.3 Importing a data set/file from the clip-
board

1. > data <- read.table("clipboard", header=T,
sep=" \t")

2. > data

1. The read.table function is used to load the clip-
board data into a data frame format and is assigned
the name data . The parameter header=T is used
to retain column titles that are in the first row of
the text file (if they are present) and the parame-
ter sep=" \t" specifies that the data in the text file
are tab delimited (all data in the clipboard are tab
delimeted).

2. List the contents of the resulting data frame. Note
that the data is already in data frame format.

5.4 Coding factorial variables in imported
data sets

Note, it is recommended that whenever a data set is im-
ported from either a text file or other statistical package,
categorical (factor) variables should be defined in R as
factors (see section 3.3.1. This ensures that these vari-
ables are treated as categorical (rather than continuous)
variables during subsequent analysis and is particularly

9

5.5 Saving a data file 5 DATA FILES

important for variables whose levels names are numbers.
It is also worth defining the order of the levels within the
factor as well

>FACTOR <- factor(FACTOR,

levels=c(’b’,’c’,’a’))

Where FACTOR is the name of a categorical variable
and the ’b’,’c’,’a’ is an example of how the ordering of 3
levels within the factor can be defined To list or refer to a
single variable (e.g. DV in a data frame (e.g. dat use the
following syntax:

>dat$DV

To list the properties (attributes) of a variable or data
frame use the following syntax:

>dat$DV

5.5 Saving a data file

5.5.1 Exporting as comma delimited text file

To save data (an array or list) in R, use the following com-
mands:

>write.table(data," filename",

header=TRUE, sep= ",")

Where data is the name of the data frame to export and
filename is the name (including path) of file to be saved..
Header=TRUE retains variable names in the saved file
and sep= "," defines the data delimiter as a comma.

5.5.2 Storing data in R native format

To save data (an array or list) in R, use the following com-
mands:

>dump(" data"," filename")

Where data is the name of the data frame (or other ob-
ject) to save and filename is the name (including path) of
file to be saved.

5.6 Transforming variables

Biological data often requires transforming or scaling.
Table 3 Common data transformations

Transformation Expression
loge log(VAR)
log10 log(VAR,10)
log10 log10(VAR)√ sqrt(VAR)
arcsin asin(sqrt(VAR))
scale (mean=0,unit variance) scale(VAR)

where VAR is the name of the vector (variable) whose
values are to be transformed.

1. > rats$logwt <- log(rats$wt,10)

2. > rats

1. Generate a new variable logDV that contains the
log10 transformations of the variable DV

2. Print the rats data frame

5.7 Selecting subsets or subgroups of a
data

When listing or referring to a variable for analysis, it is
possible select a subset of the data by the following for-
mat:

5.7.1 Subsets within single vectors (variables)

Table 4 Listing or referencing subsets of the data

Selection Command
Values of a less than 50 a[a<50]

The first 10 values in a a[1:10]

The 20th to the 50th value of a a[20:50]

1. > var <- sample(20:100, 10, replace=TRUE)

2. > var

3. > var[1:5]

4. > var[var>50]

1. Use the sample function to generate a numeric vec-
tor containing 10 random numbers (sampled with
replacement) between 20 and 100

10

5.8 By groups 6 SUMMARY STATISTICS

2. Print the var vector

3. Print elements 1 through to 5 of the var vector

4. Print only those values of var that are greater than
50

5.7.2 Subsets by factor levels

Returning to the rats data set

1. > male.rats.wt <- rats$wt[which(rats$sex ==
’ Male’)]

2. > male.rats.wt <- rats$wt[rats$sex ==
’ Male’]

3. > male.rats <- subset(rats, sex == ’Male’)

4. > male.rats <- subset(rats$wt, rats$sex ==
’Male’)

5. > male.rats <- subset(rats, sex==’Male’,
select= wt)

1. Use the which function to generate a vector the
values of wt in the data set rat for which the cate-
gorical variable sex is equal to Male . Note the use
of ==. In this case it means ”does the bit on the left
side equal the value on the right side” (see the list
of R operatators on page 4)

2. Same as above only shorter

3. Use the subset function to generate a new data
frame (male.rats) from the original data frame
(rats) containing the values of all the vectors (vari-
ables) that were present in the data set rat for which
the categorical variable sex is equal to Male .

4. Use the subset function to generate a new data
frame (male.rats) from the original data frame
(rats) containing only the values of wt in the data
set rat for which the categorical variable sex is
equal to Male .

5. Alternative for above

5.8 By groups

It is also possible to perform calculations on a variable
separately based on groupings defined in a categorical
data variable. To request calculations be performed by
groups.

>splitDat <- split(dataFrame, GROUPING)

Where dataFrame is the name of the data frame (data
set), GROUPING is the name of a categorical (factor)
variable in the data set. This function splits the data set
into a number of smaller data sets (corresponding to the
number of levels/groups within the variable GROUPING).
The new name (splitDat) is used to refer to the collection
of new smaller datasets. Note that the original data set
(dataFrame) remains unaltered. Each subset can then
be referred to using the following syntax:

1. > split.rats <- split(rats, sex)

2. > split.rats

3. > split.rats$Male

4. > split.rats$Male$wt

1. Use the split function to split a data set dat
according to the levels in a categorical variable
(TREAT)

2. List the levels of the split data set

3. List the Male subgroup of the split.rats data frame

4. List the values of variable wt within the Male sub-
group of the split.rats data frame

6 SUMMARY STATISTICS

6.1 Univariate

To calculate basic summary statistics on a whole vari-
able, use the following syntax:

>FUNCTION(VARIABLE)

Where FUNCTION is a statistical function (see the ta-
ble 5 bellow) and VARIABLE is the name of a continuous
variable

11

6.2 Bivariate 7 TWO SAMPLE TESTS

Table 5 Common summary statistic functions

Statistic Function command
Mean mean
Variation var
Standard deviation sd
Number of observations length
Median median
Quantiles quantile

1. >mean(rats$wt)

2. > rats.mean.wt <- mean(rats$wt,trim= .1)

3. > rats.mean.wty

1. Use the mean function to calculate the arithmetic
mean of the entire wt variable within the rats data
frame

2. Use the mean function to calculate the trimmed
mean (10%) value for the entire wt variable within
the rats data frame and assign the value to a vector
called rats.mean.wt

3. Print the value of the rats.mean.wt vector (trimmed
mean).

6.2 Bivariate

>tapply(VARIABLE, GROUPING, FUNCTION)

Where VARIABLE is the name of the variable that you
want to calculate the statistic for, GROUPING is the name
of a categorical (factor) variable and FUNCTION is the
name of the statistic that you want to perform (see table 5
for a list of common summary statistics). The function
tapply applies a function to a variable separately for
each level within a categorical variable. The above table
lists some common summary statistics and the corre-
sponding functions.

1. > rats.mean.wt <- tapply(rats$wt, rats$sex,
mean)

2. > rats.mean.wt

3. > rats.sd.wt <- tapply(rats$wt, rats$sex, sd)

4. > rats.n.wt <- tapply(rats$wt, rats$sex,
length)

5. > rats.se.wt <- rats.sd.wt/sqrt(rats.n.wt)

6. > dat.stats.wt <-cbind(mean=rats.mean.wt,
SE=rats.se.wt)

7. > dat.stats.wt

1. Use the tapply function to calculate the mean of
wt for each level of sex within the rats data set
and store the results as an array of numbers called
rats.mean.wt

2. Print the rats.mean.wt array

3. Use the tapply function to calculate the standard
deviation of wt for each level of sex within the rats
data set and store the results as an array of num-
bers called rats.sd.wt

4. Use the tapply function to calculate the number
of wt observations for each level of sex within the
rats data set and store the results as an array of
numbers called rats.n.wt

5. Calculate the standard error of the mean of wt for
each level of sex using the formula (SE = sd/

√

n))
and store the results as an array of numbers in a
variable called rats.se.wt

6. Use the cbind function (which binds elements - in
this case arrays of numbers - by columns) to com-
bine the two 1-dimensional arrays into a singe 2-
dimensional array called rats.stats.wt . Note that
the column names in this 2-dimensional array are
defined as parameters in the cbind function.

7. List the resulting 2-dimensional array

7 TWO SAMPLE TESTS

7.1 Independent t-test

The following syntax performs a pooled (equal) variance
student t-test

12

7.2 Mann-Whitney-Wilcoxon test 7 TWO SAMPLE TESTS

>t.test(VARIABLE˜GROUPING,var.equal=TRUE)

Where VARIABLE is the name of a dependent variable
and GROUPING is the name of a categorical (factor) vari-
able with two levels. The var.equal parameter is set to
TRUEfor an equal variance t-test or FALSE for a separate
variance t-test.

1. > rats.t <- t.test(rats$wt˜rats$sex,
var.equal=TRUE)

2. > rats.t

1. Perform a pooled variance t-test to compare the
mean wt variable for the two levels of the sex factor
and store the result in an object called rats.t

2. List the contents of the above object - e.g. the re-
sults of the t-test

7.2 Mann-Whitney-Wilcoxon test

The following syntax performs a Mann-Whitney-Wilcoxon
test

>wilcox.test(VARIABLE˜GROUPING)

Where VARIABLE is a continuous dependent variable
and GROUPING is the name of a categorical (factor)
variable with two levels.

1. > rats.wilcox <- wilcox.test(rats$wt ˜

rats$sex)

2. > rats.wilcox

1. Perform a Mann-Whitney-Wilcoxon (non-
parametric, rank based test) to compare the ranks
of the wt variable for each of the two levels of the
sex factor and assign the resulting output to an
object called rats.wilcox

2. List the Mann-Whitney-Wilcoxon output

7.3 Paired t-test

Paired data is usually represented a little differently, re-
flecting the paired manner in which the observations in
the groups were collected. The following fictitious data set
consists paired observations of the number of sea cucum-
bers recorded in permanent quadrats before and after a
cyclone. Pairing data in this manner takes into considera-
tion that sea cucumbers are distributed very patchily and
that the number of sea cucumbers is likely to vary consid-
erably between individual quadrats.

Table 2 A fictitious data set used to illustrate paired t-tests
in R

Quadrat Before After
Q1 12 9
Q2 18 11
Q3 9 8
Q4 14 8
Q5 22 17
Q6 7 6

Generate the above data set using similar procedures
as for the rats data set (see section 3.3). Hint, use the
vector names before and after , use pair labels to gener-
ate the row names and call the data frame cucumber .

>t.test(VARIABLE1, VARIABLE2)

Where VARIABLE1 and VARIABLE2 represent the
paired variables

1. > cucumber.pt <- t.test(before, after,
data= cucumber, paired=TRUE)

2. > cucumber.pt

3. >matplot(t(cucumber),type=’l’)

1. Use the t.test function to perform a paired t-test
to test the null hypothesis that the mean difference
between before and after pairs equals 0 and store
the result in an object called cucumber.pt

2. List the contents of the above object - e.g. the re-
sults of the paired t-test

3. Use the matplot and t functions to generate a
graph that represents the Before-After trend for
each quadrat (as lines). The t function is used
to transpose the data.frame such that the variables
are in rows as required by the matplot function.

13

8 CORRELATION & REGRESSION

The type=’l’ argument specifies that the graph
should consist of lines rather than points

Incidently, it is also possible to analyze this data set
when the data frame is setup in the format for indepen-
dent t-tests. While this is not recommended it does illus-
trate the flexibility of R. In order to perform the t-test, we
need to convert the data into the format used for classical
hypothesis tests. That is one vector that lists the levels
of the treatment and another variable that lists the obser-
vations. While it would be relatively easy to generate this
data frame from scratch, for the purpose of introducing
another useful R function, the existing paired data frame
will be converted from what is known as ’wide’ format to
the ’long’ format. The paired t-test will then be performed
on this converted data frame.

1. > cuc <- reshape(cucumber, varying
= list(names(cucumber)),
times=names(cucumber),
v.names= ’cucumbers’, direction=’long’,
ids=row.names(cucumber)

2. > cuc$times <- factor(cuc$time,
levels=c(’before,’after’))

3. > cuc

4. > cuc.pt <- t.test(cucumbers ˜ time,
data= cucumber, paired=T)

5. > cuc.pt

1. Use the reshape function to convert the wide
format data frame (cucumber) into long format
data (cuc). The first argument is the name
of the data frame to convert, the second argu-
ment (varying=list(names(cucumber))) lists
which variables are to be transformed from multi-
ple columns into a single column. The third argu-
ment (times=names(cucumber)) determines the
names of the levels for a new categorical variable
from the variable names in the original data frame.
The forth argument (v.names= ’cucumbers’)
provides a name for the newly generated dependent
variable. The fifth argument (direction=’long’)
indicates that the data frame should be con-
verted to long format. Finally, the last argument
(ids=row.names(cucumber), defines the labels to
put in a variable that is used to identify individual
sampling units.

2. Use the factor function to define the vector time

as a factor variable and specifically force the order
of the levels

3. Use the t.test function to perform a paired t-test
on the data within the newly formed data frame cuc

4. Print the results of the paired t-test

8 CORRELATION & REGRESSION

8.1 Correlation

Revisiting the rats data set that was generated in sec-
tion 3.3. This will be used to examine the strength of the
association between the weights and head lengths of the
rats.

>cor.test(VARIABLE1, VARIABLE2,

method="pearson")

Where VARIABLE1 and VARIABLE2 are two contin-
uous variables. The parameter method="pearson"
specifies Pearson’s product moment correlation coeffi-
cient. Alternatives include method=’spearman’ and
method="kendall" for Spearman rank ρ and Kendall
rank τ respectively.

1. > rats.cor <- cor.test(wt, head.length, data
= rats, method=’pearson’)

2. > rats.cor

1. Use the cor.test function to calculate the Pear-
son’s product moment correlation coefficient and
associated p-value for the association of wt and
head.length in the data set rats and assign the out-
put to an object named rats.cor . Note that as the
direction of causality is not implied in correlation, it
does not matter which of the vectors (variables) is
listed in the cor.test function first

2. View the correlation output

8.2 Regression

To illustrate regression, the following fictitious data set
will be used. Samples were collected from 12 lakes to
examine the relationship between the number of gastro-
pod (snail) species and the level of salinity. Species is

14

9 ANOVA

the dependent (response) variable and salinity is the in-
dependent (predictor) variable.
Table 7 Fictitious data set to illustrate linear regression in
R

Lake species salinity
1 5 21.5
2 2 43.7
3 4 19.4
4 8 19.3
5 5 22.8
6 10 6.7
7 9 10.5
8 13 5.5
9 8 2.0
10 10 12.7
11 7 27.8
12 20 0.8

Generate the above data set using similar procedures as
demonstrated in section 3.3. Hint, use the vector names
species and salinity , use pair labels to generate the row
names and call the data frame snails .

>lm(DEPENDENT˜INDEPENDENT)

Where DEPENDENT is a continuous dependent vari-
able and INDEPENDENT is a continuous independent
variable (with respect to the dependent variable). The lm
function evaluates any linear model. The statement of the
form DEPENDENT̃ INDEPENDENT is a linear model.

1. > snails.lm <- lm(snails$species ˜

snails$salinity)

2. > snails.lm <- lm(species ˜ salinity,
data= snails)

3. >anova(snails.lm)

4. >summary(snails.lm)

5. >influence.measures(snails.lm)

6. >par(mfrow=c(2,2))

7. >plot(snails.lm)

8. >par(mfrow=c(1,1))

9. >plot(species ˜ salinity, data= snails)

10. >abline(snails.lm)

1. Use the lm function to evaluate the linear relation-
ship between species and salinity in the snails

data frame and assign the output object to the name
snails.lm . In the process of performing the linear
regression, many results/diagnostics are calculated
throughout the process - far too many to be dis-
played in full. These are all stored in the object
pointed to be the variable snails.lm and a number
of different functions are used to display or summa-
rize the different linear model outputs.

2. An alternative to the previous command. Using
the data= parameter prevents having to repeatedly
prepend each variable name with the data frame
name

3. The anova function will summarize the Analysis of
Variance (partitioning of total variation in the depen-
dent variable into components explained and unex-
plained by the linear model)

4. The summary function will summarize the esti-
mated regression coefficients and associated hy-
pothesis tests

5. The influence.measures function lists a range
of regression diagnostics used to evaluate the influ-
ences of each observation on the linear regression
outcome. The most important are cook.d (Cooks
D) and hat (leverage)

6. Use the par function to setup the graphics device
(Graph window) ready to accept 4 graphs on one
page with a 2x2 layout

7. Produces 4 diagnostic plots (Plot 1 = residual plot,
Plot 2 = normal Q-Q plot, Plot 3 = scale-local plot &
Plot 4 = Cook’s D plot)

8. Use the par function to restore the graphics device
to display only single graphs per page

9. Use the plot function to plot to generate a scatter-
plot of species against salinity

10. Use the abline function to fit a line of best fit
through the data using the regression coefficients
to determine the slope and intercept of the line

9 ANOVA

To illustrate simple ANOVA, the following fictitious data
set will be used. The diversity of arboreal mammals oc-
cupying forest patches of differing disturbance frequen-
cies (’High’, ’Low’ and ’Natural’) were examined across a

15

9.1 Single factor ANOVA 9 ANOVA

large scale forest matrix. Disturbance frequencies were
replicated 4 times and therefore a total of 12 different for-
est patches were examined.
Table 9 Fictitious data set to illustrate ANOVA in R

High Low Natural
1 3 7
3 4 6
1 3 6
0 2 5

Note the above data set has been presented in ’wide’
format to conserve space. Generate the above data set
using similar procedures as demonstrated in section 3.3.
Hint, use the vector names treat and abund to represent
the factorial variable (listing the levels of the disturbance
frequency) and dependent variable (number of arboreal
mammal species). Call the data frame mammals and
provide unique patch names for the row names.

1. > abund <- c(1,3,1,0,3,4,3,2,7,6,6,5)

2. > treat <- gl(3,4,12,lab=c(’High’, ’Low’,
’Natural’))

3. > mammals <- data.frame(treat, abund,
row.names=paste(’Patch’, 1:12, sep=’-’))

4. > mammals

1. Use the c function to generate the dependent vari-
able

2. Use the gl function to generate the factor variable

3. Use the data.frame function to gener-
ate the data frame. Note that the argu-
ment row.names=paste(’Patch’, 1:12,
sep=’-’) is used to generate the row names dur-
ing the data frame generation process. The paste
function was used to generate the unique labels
(Patch-1 through to Patch-12)

9.1 Single factor ANOVA

>aov(DEPENDENT˜GROUPING)

Where DEPENDENT is a continuous dependent vari-
able and GROUPING is an independent categorical vari-
able with 2 or more levels. The aov function calls the
lm function (see Regression) and therefore evaluates
a linear model. The statement of the form DEPEN-
DENT̃ GROUPING is a linear model.

1. > mammals.aov <- aov(abund ˜ treat,
data= mammals)

2. >anova(mammals.aov)

3. >influence.measures(mammals.aov)

4. >par(mfrow=c(2,2))

5. >plot(mammals.aov)

6. >par(mfrow=c(1,1))

1. Use the aov function to compare the group means
for the variable abund in the mammals data frame
and assign the output object to the name mam-
mals.aov . In the process of performing the anal-
ysis of variance (as with other linear models), many
results/diagnostics are calculated. These are all
stored in the object pointed to be the variable mam-
mals.aov and a number of different functions are
used to display or summarize the different linear
model outputs. ANOVA is a specific form of lin-
ear model that operates on categorical predictors.
Likewise, the aov function is a specific type of lm
function that partitions variance in to explained and
unexplained and builds analysis of variance tables.
While, the same result would be obtained using the
lm function, the resulting model coefficients are of
little value in ANOVA. Furthermore, the resulting
aov object that is generated contains parameters
lacking from the more general lm object that fa-
cilitate subsequent post-hoc and planned compar-
isons testing

2. The anova function will summarize the Analysis of
Variance (partitioning of total variation in the depen-
dent variable into components explained and unex-
plained by the linear model). Note that as aov is
a specific form of lm in which the estimated coeffi-
cients are usually of little value, the functions anova
and summary produce the same output when ap-
plied to an aov object

3. The influence.measures function lists a range
of regression diagnostics used to evaluate the influ-
ences of each observation on the linear regression
outcome. The most important are cook.d (Cooks
D) and hat (leverage)

4. Setup the graphics window such that 4 graphs will
be produced on the one page

16

9.2 Post Hoc Tukey’s test 9 ANOVA

5. Produces 4 diagnostic plots (Plot 1 = residual plot,
Plot 2 = normal Q-Q plot, Plot 3 = scale-local plot &
Plot 4 = Cook’s D plot)

6. Restore the graphics window to the default setting
of a single graph per page

9.2 Post Hoc Tukey’s test

>summary(simtest(DEPENDENT ˜ GROUPING,

data= data, type="Tukey"))

Where simtest is a function that calculates a range
of post-hoc tests (including the Tukey Honest Significant
Differences).

1. > library(multcomp)

2. > mammals.tuk <- summary(simtest(abund ˜

treat, data= mammals, type="Tukey")

3. > mammals.tuk

1. Use the library function to load the multcomp
package (if not already loaded). Note that the
multcomp package itself requires the mvtnorm
package, so ensure that the latter is also installed
(although not necessarily loaded as loading the
multcomp package will automatically load it)

2. Use the simtest function to calculate the Tukey
Honest Significant Differences arising from the
model supplied (abund ˜ treat)

3. List the differences and intervals

9.3 Planned comparisons

Planned comparisons are performed following a signifi-
cant global ANOVA
This is a two stage process;

>contrasts(GROUPING) <- cbind(c(numeric

list),...)

where (GROUPING) is the name of the factorial variable
and numeric list is a list of contrast coefficients for the
factorial variable.

1. >contrasts(mammals$treat <-
cbind(c(1,-1,0), c(1,1,-2))

2. >round(crossprod(contrasts(mammals$treat)),
2)

1. Use the cbind function (which binds data together
in columns) to generate a list of contrast coeffi-
cients. The number of entries must not exceed 1
minus the number of levels within the categorical
variable.

2. Use the crossprod function to check that the de-
fined contrasts are orthogonal.

Fit or re-fit and summarize the global ANOVA:

>AOV <- aov(DEPENDENT ˜ GROUPING, data= data)

>summary(AOV, split = list(GROUPING =

list("LABEL1"=1, "LABEL2"=2, ...)))

Where the aov model is run with the intention of perform-
ing a few specific planned comparisons. DEPENDENT is
a dependent variable, GROUPING is a categorical (fac-
tor) variable

1. > mammals.aov <- aov(abund˜treat,
data= mammals)))

2. >summary(mammals.aov, split = list(treat
= list(" High vs Low"=1, " (High Low) vs
Natural"=2)))

1. Use the aov function to compare the group means
for the variable aov in the mammals data frame
and assign the output object to the name mam-
mals.aov . The model incorporates the predefined
contrasts to define which planned comparisons to
perform. The resulting ANOVA aov object is as-
signed the name mammals.aov

2. Use the summary function to view the re-
sults of the ANOVA and planned comparisons
(mammals.aov). The split argument is used to
generate the labels that will be used in the table to
denote the specific comparison tests. These en-
tries should be in the same order as the defined
contrasts. Each entry takes on the form such as
”LABEL1” =c(CONTRASTS1) where LABEL1 is a
label (string) that will be used to denote the com-
parison in subsequent tests, and CONTRASTS1 is

17

9.4 Factorial ANOVA 9 ANOVA

a set of contrast coefficients. The number of entries
must not exceed 1 minus the number of levels within
the categorical variable.

9.4 Factorial ANOVA

To illustrate factorial ANOVA, the following fictitious data
set will be used. The water loss of leaves at 2 tempera-
tures (20◦ and 30◦) and 3 humidities (45, 75 and 100%)

Table 9 Fictitious data set to illustrate multifactor ANOVA
in R

Temp 20 30
Humidity 45 75 100 45 75 100

66 72 100 82 86 100
54 82 99 82 90 94
69 86 92 78 86 98
61 86 100 80 88 99

Note the above data set has been presented in ’wide’
format to conserve space. Generate the above data set
using similar procedures as demonstrated in section 3.3.
Hint, use the vector names temp , humidity and wa-
ter to represent the 2 factorial variables (temperature
and humidity) and dependent variable (water loss by the
leaves). Call the data frame leaves and provide unique
leaf names for the row names.

1. > water <- c(66, 54, 69, 61, 72, 82, 86, 86,
100, 99, 92, 100, 82, 82, 78, 80, 86, 90,
86, 88, 100, 94, 98, 99)

2. > temp <- gl(2,4,24,lab=c(20, 30))

3. > humidity <- gl(3,4,24,lab=c(45, 75, 100))

4. > leaves <- data.frame(temp, humidity,
water, row.names=paste(’Leaf’, 1:24,
sep=’’))

5. > leaves

>aov(DEPENDENT˜FACTOR1* FACTOR2)

Where the aov function is used to evaluate the effects
of two factors (FACTOR1 and FACTOR2) on the depen-
dent variable DEPENDENT

1. > leaves.aov <- aov(water ˜ temp * humidity,
data= leaves)

2. >anova(leaves.aov)

3. >influence.measures(leaves.aov)

4. >par(mfrow=c(2,2))

5. >plot(leaves.aov)

6. >par(mfrow=c(1,1))

1. Use the aov function to compare the group means
for the variable water in the leaves data frame and
assign the output object to the name leaves.aov .

2. The anova function will summarize the Analysis of
Variance (partitioning of total variation in the depen-
dent variable into components explained and unex-
plained by the linear model). Note that as aov is
a specific form of lm in which the estimated coeffi-
cients are usually of little value, the functions anova
and summary produce the same output when ap-
plied to an aov object

3. The influence.measures function lists a range
of regression diagnostics used to evaluate the influ-
ences of each observation on the linear regression
outcome. The most important are cook.d (Cooks
D) and hat (leverage)

4. Setup the graphics window such that 4 graphs will
be produced on the one page

5. Produces 4 diagnostic plots (Plot 1 = residual plot,
Plot 2 = normal Q-Q plot, Plot 3 = scale-local plot &
Plot 4 = Cook’s D plot)

6. Restore the graphics window to the default setting
of a single graph per page

As for single factor ANOVA (see section 9.1), except
enter 2 or more factors in Factors box. SYSTAT will
then do a fully factorial ANOVA. To plot interactions, see
section 12.4 below. Note that neither planned compar-
isons or post hoc tests can be performed on multifactor
ANOVA’s. If the interaction term is not significant, then
break the analysis down and explore each of the simple
main effects separately. If the interaction is significant,
explore the effects of one factor separately for each level
of the other factor(s).

18

9.5 Nested ANOVA 9 ANOVA

9.4.1 Unbalanced multifactor designs

The balance of a design (model) is assessed with the
following command;

>!is.list(replications(model formula,

data= data))

where model formula is the model formula you intend to
use to fit the linear model. If the above command returns
a ‘FALSE’, then the model is not balanced (unequal repli-
cation), otherwise it is balanced.

If the model is unbalanced, it is necessary to use Type
II SS. This is done with following commands;

1. >library(biology)

2. >>AnovaM(AOV, type="II")

where AOV is the name of the fitted model.

1. > leaves.aov <- aov(water ˜ temp * humidity,
data= leaves)

2. >library(biology)

3. >AnovaM(leaves.aov, type="II")

1. Use the aov function to compare the group means
for the variable water in the leaves data frame and
assign the output object to the name leaves.aov .

2. Load the biology package

3. The AnovaM function will summarize the Analysis of
Variance (partitioning of total variation in the depen-
dent variable into components explained and unex-
plained by the linear model) using Type II sums of
squares.

9.5 Nested ANOVA

To illustrate nested ANOVA, the following fictitious data
set will be used. The data were collected to exam-
ine the effects of Phosphorus addition on the growth
rate of Banksia seedlings. Seedlings were planted
in 6 plots, 3 of which had Phosphorus added. The
growth of three seedlings per plot were measured.

Table 11 Fictitious data set to illustrate nested ANOVA in
R

Treatment Added Control
Plot 1 2 3 4 5 6

12 9 17 5 4 7
15 11 9 7 12 11
13 13 10 8 8 10

Again to conserve space, the above data set has been
presented in ’wide’ format. Generate the above data set
using similar procedures as demonstrated in section 3.3.
Hint, use the vector names treat , plot and growth to
represent the factor variables (Phosphorus added or con-
trol), the nesting factor (plots) and dependent variable
(growth rate of seedlings). Call the data frame seedlings
and provide unique seedling identities for the row names.

1. > growth <- c(12, 15, 13, 9, 11, 13, 17, 9,
10, 5, 7, 8, 4, 12, 8, 7, 11, 10)

2. > treat <- gl(2,9,18,lab=c(’Added’,
’Control’))

3. > plot <- gl(6,3,18,lab=c(1:6),
row.names=paste(’Seedling’,1:6,sep=’-’))

4. > seedlings <- data.frame(treat, plot,
growth)

5. > seedlings

>aov(DEPENDENT ˜ GROUPING + Error(GROUPING

%in% NEST))

Where the aov function is used to evaluate the effects
of a fixed factor GROUPING and a random nesting factor
NEST on the mean DEPENDENT variable.

1. > seedlings.aov <- aov(growth ˜ treat +
Error(treat %in% plot), data= seedlings)

2. >summary(seedlings.aov)

3. >summary(aov(growth ˜ treat/plot,
data= seedlings))

4. >influence.measures(seedlings.aov$[2])

5. >plot(seedlings.aov[[2]]$residuals,
seedlings.aov[[2]]$fitted)

1. Use the aov function to compare the group means
for the variable growth in the seedlings data frame

19

9.6 Randomized Block 9 ANOVA

using a nested ANOVA model and assign the output
object to the name seedlings.aov . Note that the ex-
pression + Error(treat %in% plot) defines
the correct error term for the effects of the main
fixed effect (treat) when the nesting factor (plot) is
a random factor.

2. List the resulting ANOVA table. Note that the ef-
fect of the nesting factor is not calculated. However,
as this is a random factor introduced purely for the
purpose of reducing some of the unexplained vari-
ability, a formal analysis of its effect is of little value.

3. Should you have a desperate need to formally test
the effect of the nested random factor, run the
model as if the nesting factor was fixed - just re-
member to ignore the test of the main fixed effect
as this will be incorrect.

4. The influence.measures function lists a range
of regression diagnostics used to evaluate the influ-
ences of each observation on the linear regression
outcome. Since the seedling.aov object has multi-
ple error strata, it is necessary to define which strata
the diagnostics should be generated for. The most
important are cook.d (Cooks D) and hat (lever-
age)

5. Produces a diagnostic residual plot

9.6 Randomized Block

To illustrate Randomized block ANOVA, the follow-
ing fictitious data set will be used. The contribution
of stream macro-invertebrates to leaf litter decay was
investigated using submerged packs of leaves that
were either enclosed in a fine exclusion mesh (to pre-
vent access by invertebrates) or not completely en-
closed (Controls). As streams are very patchy envi-
ronments, treatments were spatially blocked in an at-
tempt to reduce some of the unexplained variation.
Table 11 Fictitious data set to illustrate nested ANOVA in
R

Block Exclusion Control
1 43 74
1 28 56
1 35 58
1 51 88
1 37 63
1 39 78

Again to conserve space, the above data set has been

presented in ’wide’ format. Generate the above data set
using similar procedures as demonstrated in section 3.3.
Hint, use the vector names treat , block and prop to
represent the factor variable (invertebrates Excluded or
Control), the blocking factor (blocks) and dependent vari-
able (proportion of leaf material decayed). Call the data
frame decay .

1. > prop <- c(43, 28, 35, 51, 37, 39, 74, 56,
58, 88, 63, 78)

2. > treat <- gl(2,6,12,lab=c(’Exclusion’,
’Control’))

3. > block <- gl(6,1,12,lab=LETTERS[1:6])

4. > decay <- data.frame(treat, block, prop)

5. > decay

>aov(DEPENDENT˜GROUPING + BLOCK)

Where the aov function is used to evaluate the effects of
a fixed factor GROUPING and a blocking factor BLOCK
on the mean DEPENDENT variable.

1. > decay.aov <- aov(prop ˜ block + treat,
data= decay)

2. >summary(decay.aov)

3. >influence.measures(decay.aov)

4. >par(mfrow=c(2,2))

5. >plot(decay.aov)

6. >par(mfrow=c(1,1))

1. Use the aov function to compare the group means
for the variable prop in the block data frame us-
ing a randomized block ANOVA model and assign
the output object to the name decay.aov . Although
it doesn’t strictly matter which factor (the treatment
or the blocking) appears first in the model formula,
putting the blocking factor first reminds you of the
position of each of the factors in the design hierar-
chy

2. List the resulting ANOVA table.

3. The influence.measures function lists a range
of regression diagnostics used to evaluate the influ-
ences of each observation on the linear regression

20

9.7 Split-plot & Repeated Measures 9 ANOVA

outcome. The most important are cook.d (Cooks
D) and hat (leverage)

4. Setup the graphics window such that 4 graphs will
be produced on the one page

5. Produces 4 diagnostic plots (Plot 1 = residual plot,
Plot 2 = normal Q-Q plot, Plot 3 = scale-local plot &
Plot 4 = Cook’s D plot)

6. Restore the graphics window to the default setting
of a single graph per page

9.6.1 Sphericity

For methods of dealing with sphericity, please refer to the
Eworksheets.

9.7 Split-plot & Repeated Measures

9.7.1 Factors fixed, plot random

>aov(DEPENDENT ˜ BETWEEN + Error(PLOT %in%

BETWEEN) + WITHIN + BETWEEN:WITHIN)

Where BETWEEN is a fixed between plot (or subject) ef-
fect, PLOT is the random plot (subject) effect, WITHIN is a
fixed within plot (subject) effect and BETWEEN:WITHIN
is the within plot (subject) interaction between the two
fixed factors. The symbol : denotes a cross (interaction
term) and the symbol %in% denotes nesting. Note that :
can also be used to denote nesting.

To illustrate Split-plot ANOVA in R, a modified version
of the decay data set will be used. If surface shade cloth
was fitted above half (randomly allocated) of the plots (to
shade from the sun) and the other three plots were left
exposed, then it becomes a split-plot design. The shad-
ing treatment becomes the between plots (blocks) factor
and the exclusion treatment and exclusion treatment by
shading treatment become the within plot factors. To con-
form with popular naming conventions, the name block
will be changed to plot

1. > decay$plot <- decay$block

2. > shade <- gl(2,3,12, lab=c(’Shaded’,
’Exposed’))

3. > decay <- data.frame(decay,shade)

4. > decay.aov <- aov(prop ˜ shade + Error(plot
%in% shade) + treat + shade:treat,
data= decay)
OR

5. > decay.aov <- aov(prop ˜ shade* treat +
Error(plot %in% shade), data= decay)

6. >>summary(decay.aov)

7. >summary(aov(prop ˜ shade + plot %in% shade
+ treat + shade:treat, data= decay))
OR

8. >1-pf(3.06/1.807, 12, 36)

9. >influence.measures(decay.aov[[2]])

10. >influence.measures(decay.aov[[3]])

11. >plot(decay.aov[[2]]$res ˜

decay.aov[[2]]$fit)

12. >plot(decay.aov[[3]]$res ˜

decay.aov[[3]]$fit)

13. >interaction.plot(decay$shade,
decay$treat, decay$prop)

1. Copy the variable block to the variable plot . This is
purely to conform to the different naming convention
used for randomized block versus split plot designs,
but of course has absolutely no impact on the anal-
ysis

2. Use the gl function to generate a categorical vari-
able (assigned the name shade) with two lev-
els (’Shaded’, ’Exposed’) each item replicated
once in succession to generate a maximum of 12
entries. This can be a fictitious, independent, fixed,
between plot (subject) effect. Note again that the
order of the observations is important.

3. Use the c function to generate a continuous vari-
able (assigned the name DV) with 12 observations.
This can be a fictitious dependent variable.

4. Use the data.frame function to assimilate the 4
variables into a single data set and assign it the
name plot

5. Use the aov function to compare the group means
for the variable prop in the decay data frame using

21

10 FREQUENCY ANALYSIS

a split-plot ANOVA model where the between and
within plot (subjects) effects (shaded and treat re-
spectively) are fixed and the plot (plot) is a random
factor. Assign the output object to the name de-
cay.aov . The aov object created contains 3 strata
that correspond to the 3 error strata for the model.
Stratum one contains an estimate of the overall
mean. However, as the degrees of freedom of this
estimate is 0, this stratum is usually ignored. Stra-
tum two lists the between subject (plot) effects and
stratum 3 lists the within subject (plot) effects.

6. Alternative, shorthand syntax for performing the
same split-plot ANOVA described above. The term
shaded*treat will expand to shaded + treat +
shaded:treat

7. List the resulting ANOVA table.

8. Should you have a desperate need to formally test
the effect of the nested random factor, run the
model as if the nesting (plot or subject) factor was
fixed - just remember to ignore the test of the main
between fixed effect as this will be incorrect.

9. Alternatively, to get a quick estimate of the effect
of the nesting effect, use the pf function (proba-
bly distribution function for an F-ratio) to determine
the probability of obtaining an F-ratio (3.06/1.807) or
greater from a F distribution with 12 and 36 degrees
of freedom if the null hypothesis is true and there is
no effect of the nesting factor. The values 3.06 and
12 represent the estimate MS and degrees of free-
dom respectively for the effect of the nesting factor
and the values 1.807 and 36 represent the residual
MS and degrees of freedom respectively.

10. Use the influence.measures function to lists a
range of regression diagnostics used to evaluate
the influences of each observation on the estimates
of between subjects (plots) effects (stratum 2). The
most important are cook.d (Cooks D) and hat
(leverage)

11. Use the influence.measures function to lists a
range of regression diagnostics used to evaluate
the influences of each observation on the estimates
of within subjects (plots) effects (stratum 3). The
most important are cook.d (Cooks D) and hat
(leverage)

12. Create a residual plot for the between plots (sub-
ject) effect (stratum 2)

13. Create a residual plot for the within plots (subject)
effect (stratum 3)

14. Use the interaction.plot to represent the
within subject (plots) interaction

9.7.2 Sphericity

For methods of dealing with sphericity, please refer to the
Eworksheets.

10 Frequency analysis

10.1 Goodness of fit tests

>chisq.test(COUNTS,p=c(PROPORTIONS))

Where the chisq.test function is used to compare
the ratio in the COUNTS variable (observed ratio) to the
proportions ratio specified in PROPORTIONS (Expected
ratio)

>sex <- c(36,44)

>chisq.test(sex)

>chisq.test(sex,p=c(4/9,5/9))

1. Use the c function to generate an array of counts to
represent the observed ratio and assign it the name
sex . For example the observed sex ratio might be
36:44 (male:female)

2. Use the chisq.test function to evaluate whether
the observed ratio (sex) differs significantly from a
1:1 ratio

3. Use the chisq.test function to evaluate whether
the observed ratio (sex) differs significantly from a
proportional ratio of 4/9,5/9 (in this case 4:5)

10.2 Contingency tables

To illustrate contingency tables, the following fictitious
data set will be used. 123 birds observed during a sur-
vey were cross-classified according to 2 variables, Height
of canopy (ground level, middle canopy or treetops) and
tree type (Native or Exotic)

22

11 MULTIVARIATE ANALYSIS

Table 12 Fictitious data set to illustrate contingency tables
in R

Tree type Ground Middle Tree top
Native 12 24 19
Exotic 26 31 11

The data above are presented in collated table format.
Generate the above data set using similar procedures as
demonstrated in section 3.3. Hint, use the vector names
height and type to represent the factor variables (Tree
height and type), and the name count for dependent vari-
able (number of birds in each cross-classification). Call
the data frame birds .

1. > height <- gl(3,1,6, labels = c(’Ground’,
’Middle’, ’Top’))

2. > type <- gl(2,3,6, labels = c(’Native’,
Exotic’))

3. > counts <- c(12,24,19,26,31,11)

4. > birds <- data.frame(height, type, counts)

chisq.test(XTABLE,correct=F

Where the function chisq.test is used to test the in-
dependence of 2 or more categorical variables defined in
the contingency table (XTABLE

1. > birds.tab <- xtabs(counts ˜ height + type,
data= birds)

2. > birds.chi <- chisq.test(birds.tab,
correct=F)

3. > birds.chi

4. > birds.chi$residuals

1. Use the xtabs function to convert the data in the
data frame birds into a two-way contingency table
assigned the name birds.tab

2. Use the chisq.test function to test for indepen-
dence between the 2 categorical variables in the
contingency table birds.tab

3. List the output of the Pearson’s χ2 test

4. List the standardized residuals in table format

11 MULTIVARIATE ANALYSIS

To illustrate Multivariate analysis in R, the following ficti-
tious data set will be used. The abundance of 5 species
of cockroach were measured from 6 sites
Table 13 Fictitious data set to multivariate analysis in R

Sites Sp.a Sp.b Sp.c Sp.d Sp.e
BCI 0 14 28 0 68
LC 0 38 4 0 29
FOR 0 1 1 0 0
BOQ 0 1 0 0 0
MIR 0 4 18 0 11
CORG 0 0 0 0 24

The data above are presented with variable (species) in
columns and objects or sampling units (SU’s) in rows.
Generate the above data set using similar procedures as
demonstrated in section 3.3.

1. > Sp.a <- c(0,0,0,0,0,1)

2. > Sp.b <- c(14,38,1,1,4,0)

3. > Sp.c <- c(28,4,1,0,1,0)

4. > Sp.d <- c(7,0,0,0,0,0)

5. > Sp.e <- c(68,29,0,0,11,24)

6. > cockroach <- data.frame(Sp.a, Sp.b, Sp.c,
Sp.d, Sp.c)

7. >row.names(cockroach) <- c(’BCI’, ’LC’,
’FORT’, ’BOQ’, ’MIR’, ’CORG’)

11.1 PCA

>princomp(˜VARIABLE1+VARIABLE2+VARIABLE3+ ...,

cor=T)

Where the princomp factor is used to perform the PCA
(centering and axis rotation) on the list of variables VARI-
ABLE1 + VARIABLE2 + VARIABLE3 + .. supplied. The
parameter cor=T specifies that a correlation (rather than
covariance) matrix should be generated.

23

11.2 Multidimensional scaling 11 MULTIVARIATE ANALYSIS

1. > cockroach.pca <- princomp(˜ Sp.a + Sp.b
+ Sp.c + Sp.d + Sp.e, data= cockroach,
cor=T)

2. > cockroach.pca <- princomp(cockroach,cor=T)

3. >cor(cockroach)

4. > cockroach.pca$sd2

5. >screeplot(cockroach.pca, type=’l’)

6. >summary(cockroach.pca)

7. >biplot(cockroach.pca)

1. Use the princomp function to perform PCA on the
list of variables from the cockroach data frame

2. An alternative, shorthand way of performing the
same PCA as above when all of the variables in
the cockroach data frame are to be included in the
analysis

3. Generate a matrix of Pearson correlation coeffi-
cients between object pairs

4. List the latent Roots (Eigenvalues) for all the new
principal components

5. Generate a scree plot. The argument type=’l’
specifies lines rather than bars for the graph.

6. List explained variance etc

7. Generate the ordination plot

11.2 Multidimensional scaling

>isoMDS(DIST)

Where the function isoMDS is used to perform Kruskal’s
non-metric multidimensional scaling on a matrix of dis-
tances (assumed to represent dissimilarities)

1. >library(vegan)

2. > cockroach.dist <- vegdist(cockroach,
method=’bray’)

3. > cockroach.st <- decostand(cockroach, 2,
method= "max")
OR

4. > cockroach.st <- wisconsin(cockroach)

5. > cockroach.dist <- vegdist(cockroach.st)

6. >library(MASS)

7. > cockroach.mds <- isoMDS(cockroach.dist,
k=2)

8. >repeat {

9. >+ cockroach.mds1<- isoMDS(cockroach.dist,
initMDS(cockroach.dist), maxit= 200,
trace=FALSE, tol=1e-7)

10. >+if(cockroach.mds1$stress <
cockroach.mds$stress) break

11. >+ }

12. >par(mfrow=c(2,2))

13. >plot(procrustes(cockroach.mds1,
cockroach.mds))

14. >plot(cockroach.mds1$points[,1],
cockroach.mds$points[,1], type="n")

15. >text(cockroach.mds1$points[,1],
cockroach.mds$points[,1],
names(cockroach.dist))

16. >Sheppard(cockroach.dist,
cockroach.mds1$points)

17. >par(mfrow=c(1,1))

1. Use the library function to load the vegan pack-
age if it has not already been loaded. This package
contains a number of functions used in MDS

2. If no standardization is required, use the vegdist
function to calculate a Bray-Curtis dissimilarity ma-
trix and assign it to a dist object that is called
mds.dist . The method=.. parameter is used to
specify the type of dissimilarity matrix (see the Ta-
ble 15 for alternatives)

3. If standardization is required, use the decostand
function. In the example, data are standardized by
column (variable - species) maximas. The first pa-
rameter is a data frame ((mds), the second param-
eter specifies which margin (1=rows, 2=columns) to

24

11.3 Clustering 11 MULTIVARIATE ANALYSIS

standardize and the third specifies the form of stan-
dardization (see Table 14 for alternatives)

4. Use the vegdist function to calculate a Bray-
Curtis dissimilarity matrix and assign it to a dist
object that is called mds.dist . The method=.. pa-
rameter is used to specify the type of dissimilarity
matrix (see the Table 15 for alternatives)

5. Use the library function to load the MASS pack-
age if it has not already been loaded. This package
contains the MDS functions

6. Use the isoMDS function to perform a Kruskal’s
non-metric MDS using the distance matrix
(mds.dist) and specifying a 2-dimensional solution
(with the parameter k=2). As no starting config-
uration is given, a classical solution is provided.
The resulting MDS object is stored with the name
mds.mds

7. Use the repeat procedure to recompute the MDS
200 times see if a better solution is possible (based
on comparing stress values). This also demon-
strates the use of the initMDS function which gen-
erates unique random starting configurations.

8. Setup the graphics window such that 4 graphs will
be produced on the one page

9. Use the plot and procrustes functions to
compare the the cockroach.mds1 and cock-
roach.mds final configurations

10. Use the plot function to plot the final NMDS con-
figuration of SU’s without points (type=’n’)

11. Use the text function to add the SU names as
points on the NMDS configuration plot

12. Restore the graphics window to the default setting
of a single graph per page

Table 14 Standardization methods available in the
decostand function

Standardization Syntax
Divide by margin total ’tot’
Divide by marginal maximum ’max’
Average non-zero entry equals 1 ’freq’
Unity of marginal sum of squares ’normalize’
Range from 0 to 1 ’range’
Zero mean and unit variance ’standardize’
Presence/absence scale ’pa’

Table 15 Distance measures available in the vegdist
function.

Distance Measure Syntax
Bray-Curtis ’bray’
Euclidean Distance ’euc’
City Block (Manhattan) ’man’
Gower ’gower’
Canberra ’can’
Kulczynski ’kul’

11.3 Clustering

>hclust(DIST, METHOD)

Where the hclust function is used to calculate hierarchi-
cal clustering (and dendrogram generation) from the dis-
tance matrix (DIST using the linkage method (METHOD)

1. >cockroach.dist <- vegdist(cockroach)

2. > cockroach.clust <- hclust(cockroach.dist,
method= ’ave’)

3. >plot(as.dendrogram(cockroach.clust,
edge.root=T, horiz=T))

4. > cockroach.coph <-cophenetic(
cockroach.clust)

5. >cor(cockroach.dist, cockroach.coph)

1. Recycle the multivariate data set used for both the
PCA and NMDS demonstrations. For the purpose
of naming conventions copy the dissimilarity matrix
(cockroach.dist) to a new name (cockroach.dist)

2. Use the hclust function to perform the hierarchical
clustering from the clust.dist distance matrix using
the ave (average or UPGMA) linkage method (see
Table Linkages for alternative linkage methods)

3. Use the plot and as.dendrogram functions to
produce a dendrogram from the hierarchical cluster
object

4. Use the cophenetic function to calculate the
cophenetic distances for the hierarchical clustering
object (cockroach.clust)

5. Use the cor function to calculate the cophenetic
correlation coefficient between the original distance
measure cockroach.dist and the cophenetic dis-
tances cockroach.coph

25

12 GRAPHS

Table 16 Linkage methods available in the hclust func-
tion.

Linkage method Syntax
Single (Nearest neighbor) ’single’
Average (UPGMA) ’ave’
Complete (furthest neighbor) ’complete’
McQuitty ’mcquitty’
Median ’median’
Centroid ’centroid’
Ward ’ward’

12 GRAPHS

12.1 Boxplots

Re-visiting the leaves (2 factor ANOVA) data set from
section 9.4

Boxplots provide convenient means to examine the
distributional and homeostoichastic assumptions associ-
ated with parametric analysis, examine the quality of the
data and generally explore and visualize the data. Note
however, that boxplots generated from less than 5 obser-
vations are of limited value.

>boxplot(VAR, ...)

OR

>boxplot(FORMULA, ...)

Where VAR is a single variable used to produce a sin-
gle boxplot and FORMULA is a model statement (e.g.
VARIABLẼ GROUPING) used to produce as many box-
plots as there are levels within the FORMULA model

1. >boxplot(water ˜ temp, data= leaves)

2. >boxplot(water ˜ temp ∗ humidity,
data= leaves)

1. Use the boxplot function to plot boxplots for the
variable (water) against temp in the leaves data
frame.

2. Use the boxplot function to plot boxplots for
the variable (water) against temp :humidity in the
leaves data frame.

12.2 Bar graph

Re-visiting the leaves (2 factor ANOVA) data set from
section 9.4

Presently there are no good bar graph routines in R.
The command sequences suggested below provide a
quick-fix approach to generating bar graphs. However,
they fall short of being an elegant or even adequate solu-
tion.

>barplot(HEIGHTS, ...)

Where HEIGHT is an array of bar heights (usually means)

1. > leaves.split <- split(leaves$water,
leaves$humidity:leaves$temp)

2. > leaves.m <- sapply(leaves.split,mean)
OR

3. > leaves.m <- tapply(leaves$water,
leaves$humidity:leaves$temp, mean)

4. > leaves.sd <- sapply(leaves.split,sd)

5. > leaves.n <- sapply(leaves.split,length)

6. > leaves.se <- leaves.sd/sqrt(leaves.n)

7. > leaves.bar <- barplot(leaves.m,
col=c(0,1), ylim=c(0,max(leaves.m) * 1.25))

8. >arrows(leaves.bar, leaves.m, leaves.bar,
leaves.m+leaves.se, ang=90)
OR

9. >library(gregmisc)

10. >plotCI(leaves.bar, leaves.m,
uiw= leaves.se, add=T, gap=0)

1. Use the split function to split the values of wa-
ter within the data set (leaves) according to the
number of levels indicated by the second parame-
ter (leaves$humidity:leaves$temp), which in this
case is the interaction of the two factors. Store the
split data set in the variable leaves.split . Note that
when setting up for a bargraph with 2 factor vari-
ables, put the factor with the most levels first in the
sequence (in this case humidity went first because
it had 3 levels and temp only had 2).

2. Use the sapply function to calculate the mean of
the water variable separately for each level in the

26

12.3 Scatterplot 12 GRAPHS

split data frame leaves.split

3. As an alternative the means could have been calcu-
lated from the original (unsplit) data frame (leaves)
using the taply function

4. Use the sapply function to calculate the standard
deviation of the water variable separately for each
level in the split data frame leaves.split

5. Use the sapply function to calculate the length of
the water variable separately for each level in the
split data frame leaves.split

6. Use the standard deviations and sample sizes to
calculate the standard error of the water variable
separately for each level in the split data frame
leaves.split

7. Use the barplot function to generate a bar
graph using the means as the heights of the bars.
The x-coordinates of each bar in the graph are
stored in the variable leaves.bar . The parame-
ter ylim=c(0,max(leaves.m) * 1.25) is used to
ensure that the y axis is high enough to accommo-
date error bars - the y-maximum has been set to
25% higher than the group with the highest mean

8. Use the arrow function to add upper error bars to
each bar. The first two parameters used in this func-
tion (leaves.bar and leaves.m) are arrays of x and
y coordinates used for the start of each line. These
coordinates provided are for the middle-top of each
bar (column) in the graph. The next two parame-
ters (dat.bar , dat.m+dat.se) are arrays of x and y
coordinates used for the end of each line. These
coordinates provided are for the middle-top of each
bar (column) plus the standard error in the graph.
ang=0 specifies that the head of the arrows should
be at 90 degrees to the shaft.

9. Alternatively use the plotCI function to plot the
error bars. The first two parameters used in this
function (leaves.bar and leaves.m) are arrays of
x and y coordinates used for the start of each er-
ror bar. The next parameter uiw= leaves.se in-
dicates the height of the error bars. The parame-
ter add=T specifies that the error bars (intervals)
should be added to a current graph rather than re-
plotting just the error bars.

12.3 Scatterplot

Revisiting the snails data set that was generated in sec-
tion 8.2. This will be used to demonstrate simple scatter-
plots in R.

>scatterplot(FORMULA,smooth=F, boxplot=F)

Where FORMULA is a of the format
dependent ˜ independent | grouping

1. >plot(species ˜ salinity, dat= snails)

2. >abline(lm(species ˜ salinity, dat= snails))

3. >lines(lowess(snails$salinity,
snails$species, f=.5), col=2)

4. >scatterplot(species˜salinity, smooth=T,
reg.line=lm, data= snails)

1. Use the plot function to construct a scatterplot of
of species on the y-axis and salinity on the x-axis

2. Use the abline (fits lines to plots) and lm (linear
regression procedure) functions to fit a linear re-
gression line through the data.

3. Use the lines (draws lines on plots) and lowess
(performs lowess smoothing) functions to fit a red
(col=2) lowess smoother through the data. The
f=.5 argument defines the smoother span

4. Use the library function to load the car package
which contains the scatterplot function listed
bellow

5. Use the scatterplot function to construct a scat-
terplot of species on the y-axis and salinity on the
x-axis with a lowess smoother and a linear regres-
sion line fitted through the data and boxplots in the
axes.

12.4 Interaction plots

Revisiting the 2 factor ANOVA leaves data set that was
generated in section 9.4.

>interaction.plot(FACTOR1, FACTOR2, DV)

where FACTOR1 represents the x-axis, the levels of the
FACTOR2 factor are used to define the separate traces
and DV represents the y-axis

27

12.5 Saving graphs 13 USING COMMAND SCRIPTS

1. >interaction.plot(leaves$humidity,
leaves$temp, leaves$water)

1. Use the interaction.plot function to generate
an interaction plot with mean water on the y-axis,
humidity on the x-axis and levels of temp to define
the separate traces.

12.5 Saving graphs

Graphs may saved for use in other documents.
Saving graphs in commands involves redirecting the out-
put from a window (display) graphics device to a file filter
graphics device. So when satisfied with the graph in the
window display, redirect the output to either a JPEG or
Encapsulated postscript device and resubmit the com-
mands required to perform the graph. When the com-
mand sequence is finished, turn the device off so as to
return control back to the standard output device (the
screen). Encapsulated postscript

1. >postscript(file=" filename.eps",
paper= "special", height= 6, width= 6,
family= "Helvetica")

2. >....

3. >dev.off()

1. Use the postscript function to produce a JPEG
image. The parameter file= specifies an out-
put file name (including full path otherwise path is
assumed to be current working directory), paper
specifies the size of the paper. While it is possible
to specify ”a4” as the paper size, for graphs that are
intended to be embedded within other documents,
it is better to use the value ”special” and allow the
height and width parameters specify the dimen-
sions (in inches). The family parameter specifies
the font family for any text on the graph. There are
a large number of Adobe font names values possi-
ble (including ”Times” , however ”Helvetica” (sim-
ilar to Arial) is preferable.

2. Re-enter the commands necessary to generate the
graph

3. Turn off the postscript output graphics device, re-
turning the control back to the standard output de-

vice (screen)

JPEG

1. >jpeg(filename=" filename.jpg", height= 500,
width= 500, quality=52)

2. >....

3. >dev.off()

1. Use the jpeg function to produce a JPEG image.
The parameter filename= specifies an output file
name (including full path otherwise path is assumed
to be current working directory), and height and
width specify the dimensions of the graphic in pix-
els. The quality parameter is used to specify the
percentage of quality for compression (smaller val-
ues - greater compression, lower quality).

2. Re-enter the commands necessary to generate the
graph

3. Turn off the jpeg output graphics device, return-
ing the control back to the standard output device
(screen)

13 Using command scripts

Series of commands can be written as plain text in any
text editor, whereby each line represents a single R com-
mand. A collection of one or more commands is therefore
a script. Scripts can be read into R using the source
function.

source(" filename")

Where filename is the file name of the script (includ-
ing full path if not current working directory). Each line of
the script (filename) will be parsed (checked for errors),
interpreted, and run as if it had been typed directly at the
> prompt.
This is an extremely useful feature as it enables com-
plicated and/or lengthy sequences of commands to be
stored, modified and reused rapidly as well as acting as a
record of data analysis and a repository of analysis tech-
niques.

28

13 USING COMMAND SCRIPTS

R is free software distributed by the R core
development team under a GNU-style copyleft

Murray Logan, School of Biological Sciences,
Monash University.

February 9, 2007

29

	GENERAL NOTES:
	INSTALLATION UNDER WINDOWS
	BRIEF INTRODUCTION
	Getting started
	Command history
	Variables - vectors
	Data frames

	PACKAGES
	Installing new packages
	Loading packages

	DATA FILES
	Generating a new data set
	Opening an existing data set/file
	Importing a data set/file from the clipboard
	Coding factorial variables in imported data sets
	Saving a data file
	Transforming variables
	Selecting subsets or subgroups of a data
	By groups

	SUMMARY STATISTICS
	Univariate
	Bivariate

	TWO SAMPLE TESTS
	Independent t-test
	Mann-Whitney-Wilcoxon test
	Paired t-test

	CORRELATION & REGRESSION
	Correlation
	Regression

	ANOVA
	Single factor ANOVA
	Post Hoc Tukey's test
	Planned comparisons
	Factorial ANOVA
	Nested ANOVA
	Randomized Block
	Split-plot & Repeated Measures

	Frequency analysis
	Goodness of fit tests
	Contingency tables

	MULTIVARIATE ANALYSIS
	PCA
	Multidimensional scaling
	Clustering

	GRAPHS
	Boxplots
	Bar graph
	Scatterplot
	Interaction plots
	Saving graphs

	Using command scripts

