

Single factor ANOVA
Aims
Description
olnvestigate differences between population means
Explanation
o How much of the variation in response variable (Y) is
explained by differences in the predictor variable (X)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single factor ANOVA
Data
Dependent (response) variable
O Normally distributed
Independent (predictor) variable
o Categorical - factor
n sampling units (replicates) per group (=level)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single factor ANOVA
$\mathbf{y}=\mu+\alpha_{1}+\alpha_{2}+\alpha_{3}+\varepsilon$
Linear model
Over parameterized
\quad More parameters than there are groups
\quad Cannot include all α_{i} 's
\quad Can only include $p-1$ terms in model, plus the overall
\quad mean
\quad Must redefine the α terms
$\mathbf{y}=\mu+\alpha+\varepsilon$


```
Single factor ANOVA
- Linear model
    \(y=\beta_{0}+\beta_{1} x+\varepsilon \longleftarrow\) Regression
    \(\mathrm{y}=\mu+\alpha+\varepsilon \quad\) ANOVA
- Reduced model (when \(\mathrm{H}_{0}\) is true, \(\alpha=0\) )
Reduced model (when \(\mathrm{H}_{0}\) is true, \(\alpha=0\) )
\(y=\beta_{0}+\varepsilon\)
\(\longleftarrow\) Regression
\(y=\mu+\varepsilon\)
\(\longleftarrow\) ANOVA
- \(\mathrm{H}_{0}\) :
- Population group means are all equal
- \(\mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu\)
\(\alpha_{1}=\alpha_{2}=\ldots=0 \quad\left(\right.\) Where \(\left.\alpha_{1}=\mu_{1}-\mu\right)\)
```

\qquad
\qquad

Null hypotheses

$\mathbf{y}=\mu+\alpha+\varepsilon \longrightarrow \mathbf{y}=\mu+\beta_{1} \mathbf{G}_{1}+\beta_{2} \mathbf{G}_{2}+\cdots+\varepsilon$
\qquad

Null hypotheses $\left(\mathrm{H}_{0}\right)$ \qquad

- Parameter based
- Population mean $=0(\mu=0)$
-Population slope1 $=0\left(\beta_{1}=0\right)$
- Population slope2 $=0\left(\beta_{2}=0\right)$
\qquad
- ...
- Use t-tests

But what do these slopes mean in ANOVA??
\qquad
\qquad
\qquad

Null hypotheses

$y=\beta_{0}+\beta_{1} x+\varepsilon$
Null hypotheses (H_{0}) \qquad

- Model based (variance based)

Compare fit $\left\{\begin{array}{l}\mathbf{y}=\mu+\alpha+\varepsilon \\ \boldsymbol{y}=\mu+\varepsilon\end{array}\right.$

- Generate a statistic based on the ratio of fit of the full and reduced models \qquad
- F-ratio

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
Single factor ANOVA
There is nothing on this page!
Well why don't you delete it then?
Why don't you get stuffed?
Are you talking to me?
Don't you look at me!!
- I could have a more intelligent conversation with
a thimble full of pond scum!
```

Single factor ANOVA
- Assumptions
- Normality (residuals)
○ Boxplot of response variable
- Homogeneity of variance (residuals)
○ Spread of observations around regression line
○Residual plot
> boxplot (RESPONSE ~ FACTOR, data=DATA)

Single factor ANOVA
- Fit linear model $y=\mu+\alpha+\varepsilon$
> *. 1 m <-1m(RESPONSE ~ FACTOR, data=DATA)
> *.aov <- aov(RESPONSE - FACTOR, data=DATA)
$y=\mu+\alpha_{2}+\alpha_{3}+\alpha_{4}+\varepsilon$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single factor ANOVA
- Final checks (influence measures)
- Residual
oHow much each Y value differs from expected
○Residual plot
$>\operatorname{plot}(* .1 \mathrm{~lm})$
OR
$>\operatorname{plot}(*$. aov $)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single factor ANOVA
- Analysis sequence - Design experiment/survey - Collect data - Test assumptions - Fit linear model - Estimate parameters - Full vs reduced - Partition variability into explained \& unexplained $-r^{2}$ - SS $_{\text {Groups }} /$ SS $_{\text {Total }}$

Single factor ANOVA

Analysis sequence cont.

- Test H_{0} 's > summary(*.aov)
- $\alpha_{1}=\mu=0$ (t-test)
\qquad
- $\alpha_{2}-\alpha_{1}=0$ (t-test) $\}$ By default
- (t-test)
- Full vs Reduced (explained vs unexplained)
- $\alpha_{1}=\alpha_{2}=\ldots=0$
- F-ratio statistic $=\mathrm{MS}_{\text {Groups }} / \mathrm{MS}_{\text {Residual }}$ - F-distribution (df=p-1, $p(n-1)$)
> anova(*.aov)
- Conclusions
- Reject or not reject H_{0}
\qquad
\qquad
\qquad
\qquad
\qquad

Planned comparisons
 Following a significant ANOVA

- Some group comparisons more biologically meaningful than others
-Control vs Treatment1, etc
Planned prior to data analysis!
p-1 comparisons maximum
\qquad

All comparisons must be independent \qquad
\qquad
\qquad
$\left.\begin{array}{|l}\text { Planned comparisons } \\ \mathbf{y}=\mu+\alpha_{2}+\alpha_{3}+\alpha_{4}+\varepsilon \\ \text { - By default, this tests } \\ 0 \alpha_{1}=\mu=0 \\ \alpha_{2}-\alpha_{1}=0 \\ \alpha_{3}-\alpha_{1}=0 \\ \alpha_{4}-\alpha_{1}=0\end{array}\right]$ All means are compared to group 1
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Consider four groups
$y=\mu+\alpha_{2}+\alpha_{3}+\alpha_{4}+\varepsilon$
We can redefine $\alpha_{2}, \alpha_{3}, \alpha_{4}$
o p-1 alternative comparisons

$$
\text { E.g. } \alpha_{2} \text { : group2 vs group4 }
$$

-E.g. α_{2} : average of group1 \& group2 vs group3

Define specific comparisons

- Need to specify which groups contribute to each effect ($\alpha_{2}, \alpha_{3}, \alpha_{4}$)
\qquad
\qquad

Planned comparisons				
Consider four groups $y=\mu+\alpha_{2}+\alpha_{3}+\alpha_{4}+\varepsilon$ Define specific comparisons				
- grp1 vs grp2 - Average gr2\&grp3 vs grp4				These are contrast oefficients
	Grp1	6102	Grp3	Grp4
α_{2}		-1	0	0
α_{3}	0	0.5	0.5	-1
α_{4}	?	?	?	?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Planned comparisons				
Consider four groups $y=\mu+\alpha_{2}+\alpha_{3}+\alpha_{4}+\varepsilon$ Define specific comparisons				
-	nd trend nd		i	
	Grp1	Grp2	Grp3	Grp4
α_{2}	-3	-1	1	3
α_{3}	-1	1	1	-1
α_{4}	-1	3	-3	1

Post-hoc unplanned comparisons
- Following a significant ANOVA
- None of the possible comparisons appear more or
less biologically meaningful than others
- Compare all groups pairwise
- Lots of comparisons
o Not independent
Control familywise Type I error rate at 0.05
o Adjust each comparison

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|ll}\hline \text { Specific comparisons of means } \\ \text { - Familywise Type I error rate } \\ \text { - Probability of at least one Type I error among all } \\ \text { comparisons } \\ \text { o Increases with increasing number of groups } \\ & \\ \hline \text { No. of groups } & \text { No. of comparisons } \\ & \begin{array}{c}\text { Familywise } \\ \\ \\ \hline\end{array} \\ \text { Type I error } \\ \text { probability }\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Post-hoc unplanned comparisons
- Donferoni corrections
Tukey's test
o Adjust degrees of freedom according to the number of
comparisons
>library (multcomp) >summary(simtest (DV~FACTOR, data, type="Tukey"))
More comparisons - more brutal the
adjustments
o Reduced power

\qquad
Bonferoni corrections

- Divide p-value by number of comparisons

Tukey's test
Adjust degrees of freedom according to the number of \qquad
library(multcomp) \qquad
>summary(simtest(DV~FACTOR, data, type="Tukey"))
More comparisons - more brutal the

- Reduced power

```
Factors 
Fixed factors
    - Only interested in the specific groups (levels) tested
    - Can't generalize to other levels
    - E.g. control/caged
    - Levels selected to represent levels interested in
```


Random factors

```
- Want to extrapolate to all other possible levels
- E.g. Temperature, Site, pH
- Levels selected as random representatives
```

\qquad

| Nested ANOVA |
| :--- | :--- |
| - Data |
| - Factor A (categorical variable) |
| ○ Main effect |
| ○Fixed factor |
| - Factor B (categorical variable) |
| - Subreplicates |
| ○ Random factor |
| ○Factor B(A) |
| |

\qquad

- Dependent (response variable) \qquad
- Main effect
- Fixed factor \qquad
\qquad
- Random
\qquad
\qquad
\qquad
Nested ANOVA
Linear model
$\mathbf{y}=\mu+\alpha+\beta+\varepsilon$
Ho: Populations means of Factor \mathbf{A} are equal
مNo effect of Factor \mathbf{A}
$\mu_{1}=\mu_{2}=\ldots=\mu$
$\alpha_{1}=\alpha_{2}=\ldots=0$
- Populations means of Factor B are equal
o No variance between levels of Factor \mathbf{B} within Factor \mathbf{A}
onot really interested in testing whether there are
differences between sub-replicates!
\qquad
$y=\mu+\alpha+\beta+\varepsilon$
н: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Nested ANOVA
- As with single factor ANOVA
- Consider what the replicates are
- Forks are the replicates of Factor A the average of Factor B within A are the
replicates
-These need to be used for boxplots
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

\qquad
\qquad

Factorial ANOVA				
- ANOVA				
Factor	MS	F-ratio (both fixed)	F-ratio (A fixed, B random)	$\begin{aligned} & \text { F-ratio (both } \\ & \text { random) } \end{aligned}$
A	MS_{A}	$\mathrm{MS}_{\mathrm{A}} / \mathrm{MS}_{\text {Resid }}$	$\mathrm{MS}_{\mathrm{A}} / \mathrm{MS}_{\mathrm{A}: \mathrm{B}}$	$\mathrm{MS}_{\mathrm{A}} / \mathrm{MS}_{\mathrm{A}: \mathrm{B}}$
B	MS_{B}	$\mathrm{MS}_{\mathrm{B}} / \mathrm{MS}_{\text {Resid }}$	$\mathrm{MS}_{\mathrm{B}} / \mathrm{MS}_{\text {Resid }}$	$\mathrm{MS}_{\mathrm{B}} / \mathrm{MS}_{\text {A }: \mathrm{B}}$
A:B	$\mathrm{MS}_{\mathrm{A}: \mathrm{B}}$	$\mathrm{MS}_{\mathrm{A}: \mathrm{B}} / \mathrm{MS}_{\text {Resid }}$	$\mathrm{MS}_{\mathrm{A}: \mathrm{B}} / \mathrm{MS}_{\text {Resid }}$	$\mathrm{MS}_{\mathrm{A}: \mathrm{B}} / \mathrm{MS}_{\text {Resid }}$
Interpret interactions first! - Simple main effects				

Factorial ANOVA
 Unbalanced designs (models) - non-orthogonal

- Unequal sample sizes
- Source of unequal variance
- Complicate partitioning of variance
- When balanced

$$
\mathrm{SS}_{\text {Total }}=\mathrm{SS}_{\mathrm{A}}+\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{AB}}+\mathrm{SS}_{\text {Residual }}
$$

\qquad

- When unbalanced $\mathrm{SS}_{\text {Total }} \neq \mathrm{SS}_{\mathrm{A}}+\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{AB}}+\mathrm{SS}_{\text {Residual }}$
\qquad
\qquad
\qquad
\qquad
\qquad

```
Factorial ANOVA
Type I (regular, sequential) SS
    OSS = improvement with each successive term
        y=\mu+\alpha+\beta+\alpha\beta+\varepsilon
RSS
RSS
RSS
RSS
- Order important when unbalanced
```

\qquad

$$
\mathbf{y}=\mu+\beta+\alpha+\alpha \beta+\varepsilon
$$

Factorial ANOVA

Type II (hierarchical) SS

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Randomized block
When the levels of Factor A cannot occur
simultaneously - e.g. given at different times
o Called repeated measures
o Eg. Measurements taken every five minutes from the
same individual
:---
$0,5,10,15,20,30,40$

Randomized block
Linear model
$\mathrm{y}=\mu+\beta+\alpha+\varepsilon$
Ho:
Populations means of Factor B (blocks) are equal
No difference between blocks
o $\beta_{1}=\beta_{2}=\ldots=0$
Populations means of Factor A are equal
No effect of Factor A
o $\alpha_{1}=\alpha_{2}=\ldots=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Randomized block
Assumptions
Normality, equal var
No block (B) by A interaction
R Difficult to interpret
o Diagnose with an interaction plot
Sphericity
Equal variances of differences between all pairs of
treatments
evar of group1 - group2 = var of group2 - group 3
etc
Non sphericity chances of type I errors
\qquad

- Normality, equal var

No block (B) by A interaction

- Reduces power of test of A

Difficult to interpret \qquad

- Diagnose with an interaction plot

Sphericity \qquad
Equal variances of differences between all pairs of

var of group1 - group2 = var of group2 - group 3
Non sphericity chances of type I errors
\qquad
\qquad
\qquad
\qquad

Randomized block
Sphericity likely to be met when treatments randomly
assigned to units within blocks
E.g. treatments randomized within quadrats
E.g. order of drugs given to rats random
Sphericity not likely to be met when treatments are time
. Since cant randomize time 1 is likely to be more similar to Time 2 than to Time 10
Calculate the degree to which sphericity not met
Epsilon (<1)
Huyhnoreldt
Adjust degrees of freedom

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Split-plot designs - ANOVA Factor MS F -ratio A MS_{A} $\mathrm{MS}_{\mathrm{A}} / \mathrm{MS}_{\mathrm{B}}$ $\mathrm{B}(\mathrm{A})$ $\mathrm{MS}_{\mathrm{B}(\mathrm{A})}$ $\mathrm{MS}_{\mathrm{B}(\mathrm{A}} / \mathrm{MS}_{\text {Resid }}$ C MS_{C} $\mathrm{MS}_{\mathrm{C}} / \mathrm{MS}_{\mathrm{B}(\mathrm{A}): \mathrm{C}}$ $\mathrm{A}: \mathrm{C}$ $\mathrm{MS}_{\mathrm{A}: \mathrm{C}}$ $\mathrm{MS}_{\mathrm{A}: \mathrm{C}} / \mathrm{MS}_{\mathrm{B}(\mathrm{A}): \mathrm{C}}$ $\mathrm{B}(\mathrm{A}): \mathrm{C}$ $\mathrm{MS}_{\mathrm{B}(\mathrm{A}): \mathrm{C}}$ $\mathrm{MS}_{\mathrm{B}(\mathrm{A}): \mathrm{C}} / \mathrm{MS}_{\text {Resid }}$

| Split-plot designs |
| :--- | :--- |
| - Assumptions |
| - Normality, equal variance |
| ○ Establish correct residuals |
| - Sphericity (for within plot effects) |
| ○As for blocking designs |
| - No interaction between plot and within plot effects |
| |
| |
| |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Factorial ANOVA

 - Aims
 - To investigate the effects of two or more factors (and there interactions) on a response variable

 Data

 - Dependent (response variable)
 - Factor A (categorical variable)
 - Fixed or random factor
 - Factor B (categorical variable) - Fixed or random factor

 Every level of Factor A crossed with every level of Factor B

