

Aims

- Description
- Investigate differences between population means
 Explanation
 - How much of the variation in response variable (Y) is explained by differences in the predictor variable (X)

Single factor ANOVA

- Data
 - Dependent (response) variable
 - Continuous
 - Normally distributed
 - Independent (predictor) variable
 Categorical factor
 - *n* sampling units (replicates) per group (=level)

Linear model

 $\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + \boldsymbol{\epsilon}$

- Over parameterized
 - OMore parameters than there are groups
 - \circ Cannot include all α_i 's
 - Can only include *p*-1 terms in model, plus the overall mean
 - \bigcirc Must redefine the α terms

 $y = \mu + \alpha + \varepsilon$

Analysis of variance (ANOVA)

- Weight of Lobelia seedlings grown in one of four composts (A, B, C & D)
- Biological hypothesis: seedlings grow differently in different composts
 - There is an effect of compost type on the weight of Lobelia seedlings

•
$$H_0: \mu_A = \mu_B = \mu_C = \mu_D = \mu$$

. .

Population group means are all equal

- There is nothing on this page!
- Well why don't you delete it then?
- Why don't you get stuffed?
- Are you talking to me?
- Don't you look at me!!
- I could have a more intelligent conversation with a thimble full of pond scum!

Single factor ANOVA Assumptions

- Assumptions
 - Independent observations
- Normality (residuals)
 Boxplot of response variable
- Homogeneity of variance (residuals)
- Spread of observations around regression line
 Residual plot

> boxplot(RESPONSE ~ FACTOR, data=DATA)

OResidual plot
> plot(*.lm)

> plot(*.aov)

OR

Residual

• Final checks (influence measures)

OHow much each Y value differs from expected

Planned comparisons

- Following a significant ANOVA
 - Some group comparisons more biologically meaningful than others
 Control vs Treatment1, etc
- Planned prior to data analysis!
- p-1 comparisons maximum
- All comparisons must be independent

Planned comparisons

- Consider four groups
- $y = \mu + \alpha_2 + \alpha_3 + \alpha_4 + \varepsilon$ • We can redefine α_2 , α_3 , α_4
 - *p*-1 alternative comparisons
 E.g. α₂ : group2 vs group4

 \circ E.g. α_2 : average of group1 & group2 vs group3

-

- Define specific comparisons
 - Need to specify which groups contribute to each effect (α_2 , α_3 , α_4)

Planned	d compariso	ons			26
 Consid y = µ + Define 	ler four gro $\alpha_2 + \alpha_3 + \alpha_4$ specific co	ups ₄+ε mparisons	i		
● grp1 ● Avera	vs grp2 age gr2&grp3	3 vs grp4		These are contrast coefficients	
	Grp1	Grp2	Grp3	Grp4	
α2	1	-1	0	0	
α3	0	0.5	0.5	-1	
α4	?	?	?	?	1
	I			1	1

Plann	ned comparisons
Defin	ning contrasts
>contra	asts(FACTOR) <- cbind(c(coefs), c(coefs))
• Wi • Ensu	here coefs are the contrast coefficients ure that the contrasts are independent
	crossprod(contrasts(partridge\$GROUP))
• All [,1] [1,] 2 [2,] 0 [3] 0	Iower left (triangle) values must be 0 [.2] [.3] [.4] [.1] [.2] [.3] [.4] 0 0 [.1] 2 1 30 0 [2] 0 30 -4 0 1 0 [3] 1 -5 4

Post-hoc unplanned comparisons

XX

Following a significant ANOVA

- None of the possible comparisons appear more or less biologically meaningful than others
- Compare all groups pairwise
- Lots of comparisons
 Not independent
- Control familywise Type I error rate at 0.05
 - Adjust each comparison

Specific comp	arisons of means	
Familywise Ty	ype I error rate	
Probability of comparisons	at least one Type I erro	or among all
Increases wit	th increasing number of	groups
No. of groups	No. of comparisons	Familyavica
No. of groups		Type I error probability
3	3	0.14
5	10	0.40
	45	0.00

Post-hoc unplanned comparisons	31
Bonferoni corrections	
Divide p-value by number of comparisons	
Tukey's test	
 Adjust degrees of freedom according to the number or comparisons 	f
>library(multcomp)	
>summary(simtest(DV~FACTOR,data,type="Tukey"))	
More comparisons – more brutal the adjustments	
Reduced power	

Factors

Fixed factors

- Only interested in the specific groups (levels) tested
- Can't generalize to other levels
- E.g. control/caged
- Levels selected to represent levels interested in

Random factors

- Want to extrapolate to all other possible levels
- E.g. Temperature, Site, pH
- Levels selected as random representatives

Nested ANOVA

Data

Dependent (response variable)Factor A (categorical variable)

-

- Main effect
 Fixed factor
- Factor B (categorical variable)
 Subreplicates
 - Random factor
 - Factor B(A)

Nested ANOVA

- Linear model
- $\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\alpha} + \boldsymbol{\beta} + \boldsymbol{\varepsilon}$
- Ĥo:
 - Populations means of Factor A are equal
 No effect of Factor A
 - $\Box \mu_1 = \mu_2 = \dots = \mu$ $\Box \alpha_1 = \alpha_2 = \dots = 0$
 - Populations means of Factor B are equal
 - No variance between levels of Factor B within Factor A
 Not really interested in testing whether there are differences between sub-replicates!

Factor	MS	F-ratio
Α	MS _A	MS _A /MS _{B(A)}
3(A)	MS _{B(A)}	$MS_{B(A)}/MS_{C(B(A))}$
(B(A))	MS _{C(B(A))}	MS _{C(B(A))} /MS _{Resid}
Burnt Uni	• •	Burnt • •
Unburnt B	urnt	Unburnt

Nested ANOVA

Assumptions

- As with single factor ANOVA
- Consider what the replicates are
 - Blocks are the replicates of Factor A
 - For Factor A, the average of Factor B within A are the replicates
 - These need to be used for boxplots

Factorial ANOVA

Aims

- To investigate the effects of two or more factors (and there interactions) on a response variable
- Data
 - Dependent (response variable)
 - Factor A (categorical variable)
 - Fixed or random factor
 - Factor B (categorical variable)
 Fixed or random factor
- Every level of Factor A crossed with every level of Factor B

Factorial ANOVA

• Linear model

- $\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\alpha} + \boldsymbol{\beta} + \boldsymbol{\alpha}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ Ho:
- - Populations means of Factor A are equal ONo effect of Factor A $\circ \alpha_1 = \alpha_2 = \dots = 0$
 - Populations means of Factor B are equal ONo effect of Factor B

 $\Box \beta_1 = \beta_2 = \ldots = 0$

No interaction between Factor A and Factor B

Facto	orial AN	IOVA		
• ANO	VA			
Factor	MS	F-ratio (both fixed)	F-ratio (A fixed, B random)	F-ratio (both random)
Α	MS _A	MS _A /MS _{Resid}	MS _A /MS _{A:B}	MS _A /MS _{A:B}
В	MS _B	MS _B /MS _{Resid}	MS _B /MS _{Resid}	MS _B /MS _{A:B}
A:B	MS _{A:B}	MS _{A:B} /MS _{Resid}	MS _{A:B} /MS _{Resid}	$MS_{A:B}/MS_{Resid}$

Interpret interactions first!

Simple main effects

Factorial ANOVA

```
• Type I (regular, sequential) SS

• SS = improvement with each successive term

y = \mu + \alpha + \beta + \alpha\beta + \varepsilon

RSS<sub>MEAN</sub> y = \mu + \varepsilon

RSS<sub>A</sub> y = \mu + \alpha + \varepsilon

SS<sub>A</sub> = RSS<sub>MEAN</sub> - RSS<sub>A</sub>

RSS<sub>A,B</sub> y = \mu + \alpha + \beta + \varepsilon

SS<sub>B</sub> = RSS<sub>A</sub> - RSS<sub>A,B</sub>

RSS<sub>A,B,AB</sub> y = \mu + \alpha + \beta + \alpha\beta + \varepsilon

• Order important when unbalanced

y = \mu + \beta + \alpha + \alpha\beta + \varepsilon
```


Randomized block	
 When the levels of F simultaneously – e. 	Factor A cannot occur g. given at different times
Called repeated mea	asures
 Eg. Measurements t same individual 	aken every five minutes from the
0, 5, 10, 15, 20, 30, 40	0, 5, 10, 15, 20, 30, 40
0, 5, 10, 15, 20, 30, 40	0, 5, 10, 15, 20, 30, 40

Randomized block

- Linear model
- $y = \mu + \beta + \alpha + \varepsilon$ Ho:

- Populations means of Factor B (blocks) are equal ONo difference between blocks $\circ \beta_1 = \beta_2 = \ldots = 0$
- Populations means of Factor A are equal ONo effect of Factor A $\odot \alpha_1 = \alpha_2 = \ldots = 0$

Randomized block

- K S
- Sphericity likely to be met when treatments randomly assigned to units within blocks
 - E.g. treatments randomized within quadrats
 - E.g. order of drugs given to rats random

• Sphericity not likely to be met when treatments are time

- Since cant randomize time
- Time 1 is likely to be more similar to Time 2 than to Time 10
- Calculate the degree to which sphericity not met
 - Epsilon (<1)</p>
 - Greenhouse Geisser (preferred)
 - Huyhn-Feldt
 - Adjust degrees of freedom

ANOVA		
Factor	MS	F-ratio
A	MS _A	MS _A /MS _B
B(A)	MS _{B(A)}	MS _{B(A)} /MS _{Resid}
;	MSc	MS _C /MS _{B(A):C}
:C	MS _{A:C}	MS _{A:C} /MS _{B(A):C}
B(A):C	MS _{B(A):C}	MS _{B(A):C} /MS _{Resid}

Split-plot designs

Assumptions

- Normality, equal variance
 Establish correct residuals
- Sphericity (for within plot effects)
 As for blocking designs
- No interaction between plot and within plot effects