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® Aims

@ Description

> Linear relationship between response variable (Y) and
predictor variable (X)

© Explanation
>How much of the variation in response variable (Y) is
explained by linear relationship with predictor variable
X)
© Prediction
>New Y values from new X values

[ SimFl li : }"&J' 3
rearession
2 Y 4

@ Data

@ Dependent (response) variable
> Continuous
> Normally distributed
© Independent (predictor) variable
> Continuous
> Uniform across a range
© Each recorded from n sampling units (replicates)




ey=bx+a Y=Pg+pPix+e
© b = slope
© a = y-intercept

® Ordinary least Observed value

squares (OLS)
regression line v *
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© Minimizes residuals ~ § esndua{ i
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© Observed — expected @ // \
© Minimizes sum of oo
squared residuals i Expected value
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® Y=[g+P4X+e

@ Null hypotheses (H,)

© Parameter based
> Population intercept = 0 (,=0)
> Population slope = 0 (3,=0)
o Use t-tests
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e y=[g+Pix+e
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@ Null hypotheses (H,) ol
© Model based (variance based) P
{y=150+[’;1x+a i .
Compare fit ]
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> Generate a statistic based on the
ratio of fit of the full and reduced
models

®F-ratio
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@ Partitioning of total variance
© Does the model (equation) explain the data?

:
y=1x+2
y=0.Tx+ 1.91
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@ Partitioning total variance

© Variance explained by linear model (equation)
@ Variance not explained by linear model (equation)

y=0.7Tx+1.91 y =0.15x + 4.63
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Foratio = Variation explained (Accounting for dfy

Variation unexplained
® When H, is true F-ratio is expected to be close to
zero

© Amount explained by the model (equation) is
substantially less than the amount not explained

Analysis of Variance Table

y=0.15x+ 4.8
. Response: y

5 1.4 g et Df SumSq MeanSq Fvalue

e Sl X 1 40.808 40.308 001929

Residuals 8  20.846 1.351
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® F-distribution (1, ?)
@ F-ratio = 30.125
@ P-value = 0.001 ;
© Reject H, E
: P=0.501
@ F-ratio = 0.4959 i
© P-value =0.501 i
@ Not reject H, '
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@ Strength of relationship (r?)
2= Explained variance = 0.09100%)
y=0.7x + 1.91 y=0.7x + 1.91
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Coefficients:
Estimate Std. Error tvalue Pr(>[t])

0.41407
0.06795

13.017
3.285

Slope

® Puts result into perspecti

<0.00
0.00142

ve

Plant growth rate

Temperature




@ When uncertainty in both response and predictor
variables

@ Rather than select levels of the predictor variable
to be uniform throughout a range

@ Measure predictor variable
© Predictor variable normally distributed

@ E.g. relationship between tree height and DBH
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@ Major axis (MA)
regression

© Minimize perpendicular
spread to regression line

© Assumes degree of
uncertainty in X and Y

Observed value
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@ Normality r <—— Length minimized
in hA
@ Homogeneity of '
variance -
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@ Reduced major axis
(RMA) regression

© Minimize the sum of
triangular areas from
observed points to
regression line Observed value

© Slope = average of
slope of Y on X and
1/slope of Xon Y

Response

@ Normality

Triangular area
minimized in RMA

@ Homogeneity of
variance

Predictor
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@ Rarely used —why?

© Hypothesis tests unaffected
© No good for predictive formula as we have no
measure of uncertainty in new predictor values
© Only used if need an accurate estimation of the
nature of a relationship
> Size scaling applications
> Comparing relationship slopes
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@® Linear model
y=[g+PiX+e

@ Reduced model (when H, is true, p,=0)
y=Pg+e

®H,
© Population slope equals 0 ($,=0)
@ Population y-intercept equals 0 (3,=0)
© Linear model fits better than reduced model
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@ Assumptions

© Independent observations
© Normality (residuals)
> Boxplot of response variable
© Homogeneity of variance (residuals)
2 Spread of observations around regression line
> Residual plot
© Linearity
> Scatterplot
® | owess smoother

> scatterplot(RESPONSE ~ PREDICTOR, data=DATA) |
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@® Fit linear model
y=[Pp+Pix+e

> *_Im <- Im(RESPONSE ~ PREDICTOR, data=DATA) |
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@ Final checks (influence measures)

o Residual |>_residC*.Im |
> How much each Y value differs from expected

© Leverage ‘ > influence.measures(*.1Im) |
2 How much of an outlier in X space the observation is
> Influence of each X value on predicted Y

@ Cook’s D ‘ > influence.measures(*.Im) |
> Incorporates residual and Teverage
> Influence of each point on slope
> Values near or > 1 bad
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® Analysis sequence

© Design experiment/survey
@ Collect data
© Test assumptions
© Fit linear model
> Estimate parameters
> Full vs reduced

@ Partition variability into explained & unexplained
o2
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@ Analysis sequence cont.
©TestHys  |> summary(*.Im) |
2 Bo=0
e t-statistic = b, / SE(by)
@t-distribution (df=n-2)
> B4=0
@ t-statistic = b, / SE(b,)
@ t-distribution (df=n-2)
JFull vs Reduced (explained vs unexplained)
® F-ratio statistic = MSgegression/MSgesiaual
@ F-distribution (df=1, n-2)
© Conclusions
> Reject or not reject H,
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® Aims
@ Linear relationship between a response variable and
two or more predictor variables
© Predictions
© Model selection

@ Data

© One response variable (Y)
© Multiple predictor variables (X;, X,, ....)
© Each variable measured from each sampling unit (n)
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@® Linear model
y=Pg+PiXs+Paxp+... +e

@ Reduced models

y=Po+e Y=Pg+PaXo+...+¢&

Y=L+ X4 +...+¢€

® H:

@ Partial population slope 1 equals 0 (5,=0)

© Partial population slope 2 equals 0 (4,=0)

o ...

© Population y-intercept equals 0 (a=0)

© Linear model fits better than reduced model(s)

> All partial population slopes = 0
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@ Assumptions

@ Independent observations
© Normality (residuals)
> Boxplot of variables
© Homogeneity of variance (residuals)
> Residual plot
© Linearity
> Scatterplot matrix (SPLOM)
> Partial regression plots

> scatterplot.matrix(~RESPONSE+PRED1+PRED2+. ., data=DATA) |
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@ Assumptions cont

@ No collinearity — predictors correlated
> Each predictor variable must be independent
> If not estimates of partial slopes unreliable
> Variance-inflation
®Values > 5 not good, >10 very bad
> vif(C_.Im)
> Correlations between predictor pairs (or SPLOM)

‘ > cor(~RESPONSE+PRED1+PRED2+. ., data=DATA) |
> Remove one of correlated variables

> Center variables
> Combine via PCA
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® Analysis sequence

© Design experiment/survey
@ Collect data
© Test assumptions
© Fit linear model
> Estimate parameters
> Full vs reduced

> *_Im <- Im(RESPONSE~PRED1+PRED2+.., data=DATA) |
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o Test Hy's ‘> summary (<. Im) |
'Bo=0
2B4=0, B,=0, ...
>Full vs Reduced (explained vs unexplained)
®Many competing models
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@ Model selection

© Selecting the ‘best model’
> Adjusted r2 | > summary C*. Im)$”adj -r.squared”

SAIC > extractAIC(*.Im)[2] |

BIC > BIC(Im)
© Predictor importance

» Adjusted r2, AIC, BIC
> Hierarchical partitioning

> hier.part(RESPONSE,data.frame(PRED1,PRED2, ..)

© Conclusions
>Reject or not reject H,
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