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Simple linear regression

Aims
Description

Linear relationship between response variable (Y) and 
predictor variable (X) 

Explanation
How much of the variation in response variable (Y) is 
explained by linear relationship with predictor variable 
(X)

Prediction
New Y values from new X values
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Simple linear regression

Data
Dependent (response) variable

Continuous
Normally distributed

Independent (predictor) variable
Continuous
Uniform across a range

Each recorded from n sampling units (replicates)
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Estimating regression parameters

y = bx + a
b = slope
a = y-intercept

Ordinary least 
squares (OLS) 
regression line

Minimizes residuals
Observed – expected

Minimizes sum of 
squared residuals

Observed value

Expected value

Residual
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Null hypotheses

Null hypotheses (H0)
Parameter based

Population intercept = 0 (β0=0)
Population slope = 0 (β1=0)
Use t-tests
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Null hypotheses

Null hypotheses (H0)
Model based (variance based)

Generate a statistic based on the 
ratio of fit of the full and reduced 
models

F-ratio

Compare fit
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Regression

Partitioning of total variance
Does the model (equation) explain the data?
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Regression

Partitioning total variance
Variance explained by linear model (equation)
Variance not explained by linear model (equation)
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Regression

When H0 is true F-ratio is expected to be close to 
zero

Amount explained by the model (equation) is 
substantially less than the amount not explained

Variation explained
Variation unexplained

F-ratio = (Accounting for df)

Analysis of Variance Table

Response: y
Df Sum Sq      Mean Sq      F value

x          1      40.707       40.707 30.125 
Residuals   8      10.810         1.351

Analysis of Variance Table

Response: y
Df Sum Sq      Mean Sq      F value

x          1        1.806         1.806 0.4959 
Residuals   8      29.145         1.351
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Regression

F-distribution (1, ?)

F-ratio = 30.125
P-value = 0.001
Reject H0

F-ratio = 0.4959
P-value =0.501
Not reject H0
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Regression

Strength of relationship (r2)
Explained variance

Total variance
r2 = = 1.0 (100%) = 0.79 (79%) 
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Regression

Puts result into perspective

Coefficients:
Estimate  Std. Error t value Pr(>|t|)    

(Intercept)   5.38993    0.41407 13.017    < 0.001
Slope 0.22319   0.06795       3.285       0.00142

Residual standard error: 1.783 on 98 degrees of freedom
Multiple R-Squared: 0.09918,  Adjusted R-squared:0.08999 
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Model II regression

When uncertainty in both response and predictor 
variables

Rather than select levels of the predictor variable 
to be uniform throughout a range

Measure predictor variable
Predictor variable normally distributed

E.g. relationship between tree height and DBH
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Model II regression

Major axis (MA) 
regression 

Minimize perpendicular 
spread to regression line 
Assumes degree of 
uncertainty in X and Y 
same

Normality

Homogeneity of 
variance
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Model II regression

Reduced major axis 
(RMA) regression 

Minimize the sum of 
triangular areas from 
observed points to 
regression line 
Slope = average of 
slope of Y on X and 
1/slope of X on Y 

Normality

Homogeneity of 
variance
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Model II regression

17

Model II regression

Rarely used – why?
Hypothesis tests unaffected
No good for predictive formula as we have no 
measure of uncertainty in new predictor values
Only used if need an accurate estimation of the 
nature of a relationship

Size scaling applications
Comparing relationship slopes
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Simple linear regression

Linear model

Reduced model (when H0 is true, β1=0)

H0: 
Population slope equals 0 (β1=0)
Population y-intercept equals 0 (β0=0)
Linear model fits better than reduced model
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Simple linear regression

Assumptions
Independent observations
Normality (residuals)

Boxplot of response variable
Homogeneity of variance (residuals)

Spread of observations around regression line
Residual plot

Linearity
Scatterplot

Lowess smoother

> scatterplot(RESPONSE ~ PREDICTOR, data=DATA)> scatterplot(RESPONSE ~ PREDICTOR, data=DATA)
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Simple linear regression

Fit linear model

> *.lm <- lm(RESPONSE ~ PREDICTOR, data=DATA)> *.lm <- lm(RESPONSE ~ PREDICTOR, data=DATA)
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Simple linear regression

Final checks (influence measures)
Residual

How much each Y value differs from expected 
Leverage

How much of an outlier in X space the observation is
Influence of each X value on predicted Y

Cook’s D
Incorporates residual and leverage
Influence of each point on slope
Values near or > 1 bad

> influence.measures(*.lm)> influence.measures(*.lm)

> resid(*.lm)> resid(*.lm)

> influence.measures(*.lm)> influence.measures(*.lm)
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Simple linear regression

Analysis sequence
Design experiment/survey
Collect data
Test assumptions
Fit linear model

Estimate parameters
Full vs reduced

Partition variability into explained & unexplained
r2
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Simple linear regression

Analysis sequence cont.
Test H0’s

β0=0
t-statistic = b0 / SE(b0)
t-distribution (df=n-2)

β1=0
t-statistic = b1 / SE(b1)
t-distribution (df=n-2)

Full vs Reduced (explained vs unexplained)
F-ratio statistic = MSRegression/MSResidual

F-distribution (df=1, n-2)
Conclusions

Reject or not reject H0

> summary(*.lm)> summary(*.lm)
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Multiple linear regression

Aims
Linear relationship between a response variable and 
two or more predictor variables
Predictions
Model selection

Data
One response variable (Y)
Multiple predictor variables (X1, X2, ….)
Each variable measured from each sampling unit (n)
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Multiple linear regression

Linear model

Reduced models

H0: 
Partial population slope 1 equals 0 (β1=0)
Partial population slope 2 equals 0 (β2=0)
….
Population y-intercept equals 0 (a=0)
Linear model fits better than reduced model(s)

All partial population slopes = 0
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Multiple linear regression

Assumptions
Independent observations
Normality (residuals)

Boxplot of variables
Homogeneity of variance (residuals)

Residual plot
Linearity

Scatterplot matrix (SPLOM)
Partial regression plots

> scatterplot.matrix(~RESPONSE+PRED1+PRED2+.., data=DATA)> scatterplot.matrix(~RESPONSE+PRED1+PRED2+.., data=DATA)
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Multiple linear regression

Assumptions cont
No collinearity – predictors correlated

Each predictor variable must be independent
If not estimates of partial slopes unreliable
Variance-inflation

Values > 5 not good, >10 very bad

Correlations between predictor pairs (or SPLOM)

Remove one of correlated variables
Center variables
Combine via PCA

> cor(~RESPONSE+PRED1+PRED2+.., data=DATA)> cor(~RESPONSE+PRED1+PRED2+.., data=DATA)

> vif(*.lm)> vif(*.lm)
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Multiple linear regression

Analysis sequence
Design experiment/survey
Collect data
Test assumptions
Fit linear model

Estimate parameters
Full vs reduced

> *.lm <- lm(RESPONSE~PRED1+PRED2+…, data=DATA)> *.lm <- lm(RESPONSE~PRED1+PRED2+…, data=DATA)
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Multiple linear regression

Test H0’s
β0=0
β1=0, β2=0, …
Full vs Reduced (explained vs unexplained)

Many competing models

> summary(*.lm)> summary(*.lm)
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Multiple linear regression

Model selection
Selecting the ‘best model’

Adjusted r2  

AIC
BIC

Predictor importance
Adjusted r2, AIC, BIC
Hierarchical partitioning

Conclusions
Reject or not reject H0

> hier.part(RESPONSE,data.frame(PRED1,PRED2,…)> hier.part(RESPONSE,data.frame(PRED1,PRED2,…)

> summary(*.lm)$’adj.r.squared’> summary(*.lm)$’adj.r.squared’

> extractAIC(*.lm)[2]> extractAIC(*.lm)[2]

> BIC(lm)> BIC(lm)


