

Statistical	decisions		
	Statistical conclusion		
	Reject H ₀ (conclude is effect)	Retain H ₀ (conclude no effect)	
Really is an effect	Correct decision – effect detected	Type II error – effect not detected	
Really is no effect	Type I error – effected detected, none exists	Correct decision – no effect detected, none exists	

Statis	tical	deci	isions
--------	-------	------	--------

X

- Type I errors when falsely (incorrectly) reject a null hypothesis
 - Conclude that there is an effect, when there really is not
 - $\bullet \alpha$ probability of a Type I error (0.05)
 - ${\ensuremath{\, \bullet }}$ Minimize by setting α as low as possible

	Statistical conclusion		
	Reject H ₀ (conclude is effect)	Retain H ₀ (conclude no effect)	
Really is an effect	Correct decision – effect detected	Type II error – effect not detected	
Really is no effect	Type I error – effected detected, none exists	Correct decision – no effect detected, none exists	

Statistical decisions

- Type II errors when falsely (incorrectly) retain a null hypothesis
 - Conclude that there is an no effect, when there really is an effect
 - β probability of a Type II error
 - Typically, approx 20%

	Statistical conclusion		
	Reject H ₀ (conclude is effect)	Retain H ₀ (conclude no effect)	
Really is an effect	Correct decision – effect detected	Type II error – effect not detected	
Really is no effect	Type I error – effected detected, none exists	Correct decision – no effect detected, none exists	

Power of a test

- Probability of detecting an effect if it exists
- Probability of correctly rejecting a false H₀
- Power = 1 β (probability of making a Type II error)
- Usually aim for power ≈ 0.8

Statistical power depends on

Effect size (ES)

- Magnitude of the difference between treatments
- Large differences (effect sizes) are easier to detect

Background variation (σ)

- Variation between sampling units
 Estimated by sample standard deviation (s)
- Greater background variability, less likely to detect effects

power $(1 - \beta) \propto \frac{ES}{\sigma}$

A priori power analysis – example 1

• Aims:

- To detect a 50% increase in crab numbers due to caging (absence of fish predators)
 ○Increase in mean from 20 to 30 → ES=10
- To be 80% sure of detecting such a difference if it occurred
 - opower = 0.8
- How many replicate plots per treatment required?
 - What is required n?

> power.t.test(power=0.8,sd=4.36,delta=10)

A priori power analysis – example 2

- Effects of nitrogen on seedling growth
- Four treatments:
 - High, Medium, Low and Control (no) Nitrogen in potting soil
- H₀: population mean seedling growth rate is the same for all soil nitrogen treatments
 - $\mu_{High} = \mu_{Medium} = \mu_{Low} = \mu_{Control}$
- Pilot study
 - Growth rate of 5 seedlings normal soil (control soil)
 - Mean growth rate = 20 (units)
 - Variance in growth rate between seedlings = 9

o s = 3.00


```
\mu_{\text{High}} and \mu_{\text{Medium}} expected to be 50% greater

\bullet_{\mu}_{\text{High}} = \mu_{\text{Medium}} = 10^{*}1.5 = 15
```

```
• Variation between treatment means (10, 10, 15, 15)
• s^2 = 8.33
```

> power.anova.test(group=4,power=0.8,between.var=8.33,within.var=9)

○*n*=5.02 (6)

○*n*=8.11 (9)

A priori power analysis – example 3

- Relationship between food consumption and tooth wear in possums
- X? possums ranging in tooth class from 1 (low) to 6 (high)
- H₀: population slope is equal to zero
 - $\beta = 0$
 - Is the same as population correlation equals zero or=0
- Previous study
 - 6 koalas of varying tooth wear
 - r² = 0.91 (r=0.95)

Effect size

How big?

- What size of effect or trend is biologically important?
- How big an effect or trend do we want to detect if it occurs?

• Where do we get suggested effect sizes from?

- Biological knowledge/experience
- Previous work/literature
- Compliance requirements
 E.g. water quality

Specification of effect size

Depends on test

- t-test difference between means
- Regression r² or r
- ANOVA more complicated
 - Depends on hypothesis (e.g. four groups)
 Difference between smallest and largest mean
 - Grp1 = Grp2 = Grp3 < Grp4 (one different)
 - Grp1 = Grp2 = Grp3 < Grp4 (two different)</p>
 - Grp1 < Grp2 < Grp3 < Grp4 (trend)

Estimation of variance

- Where do we get suggested effect sizes from?
 - Biological knowledge/experience
 - Previous work/literature
 - Same systems
 Similar systems
 - Pilot studies
- Estimated variance must be based on same sort of test
 - t-test Paired vs independent two sample
 - ANOVA
 - Regression

- Sample size determination (n)
 - Desired power (0.8)
 - Effect size (EF)
 - Estimation of variance
 - Apply a "safety" factor to calculated *n*
 - Plot power vs n

Minimum Detectable Effect Size determination

- Desired power (0.8)
- Estimate of variance
- Possible sample size (or range)
- Plot ES vs n

A posteriori power analysis

- If statistically non-significant result
- Report power of test to detect relevant effect size

σ

power(1 –
$$\beta$$
) $\propto \frac{\text{ES }\sqrt{n}}{n}$

$$power(1-p) \propto$$

- Effect size (ES) Magnitude of difference(s)
 - t-test difference between means

 - $\label{eq:anovariance} \begin{array}{l} \circ \text{ ANOVA} \sqrt{MS}_{Groups} / \sqrt{MS}_{Residual} \\ \circ \text{ Regression} MS_{Regression} / \sqrt{MS}_{Residual} \text{ or } r \text{ (correlation coeficient)} \end{array}$
- Background variability (σ)
 - t-test within group variation
 - ANOVA MS_{Residual}
 Regression MS_{Residual} or 1 (standardized)
- Sample size (n)

> power.t.test(power=0.8,sd=0.5,n=31)

