

Multivariate analyses

Aims

- Data reduction
 - Reduce large numbers of variables into a smaller number – that adequately summarize the patterns
- Reveal patterns in the data that cannot be found using isolated variables
 - Characterize things based on a large number of variables
 - Classify sites
 - Taxonomy

Multivariate analyses

Objects

- Things we wish to compare
 Sampling or experimental units
 - E.g. sites, quadrats

Variables

- Characteristics measured from each object
 - Output State of the state of
 - counts of many different species (species abundances)
 - Size of body parts (taxonomy)

Multivariate analyses

R-mode analyses

- Combine variables based on correlations
- E.g. Principal components analysis (PCA)

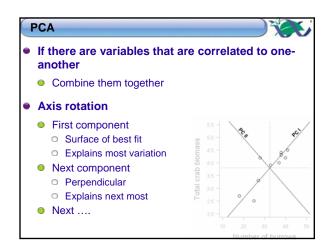
Q-mode analyses

- Combine variables based on object dissimilarity
- E.g. Multidimensional scaling (MDS)
- Analysis of similarity (ANOSIM)
- Autocorrelation
- Cluster analysis

PCA

Aims

- Data reduction
- Reveal patterns in the data that cannot be found using isolated variables
- Data
 - Many predictor variables measured from the same sampling units



PCA

X

Difficult to visualize when more than 3 variables

Eigenanalysis

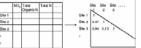
- Matrix algebra used to do axes rotation in multidimensional space
- Start with *p* original variables
- End with p new completely uncorrelated variables (principal components)

PCA

Eigenanalysis

- Calculate correlation matrix between all p variables
- Calculate new principal components (PC)
- Eigenvalues (latent roots)
 - Amount or original variation explained by each new principal component
 - OAdds up to the number of original variables
- Component loadings
 - ocontribution of each original variable to each of the new
 - PC

Factor scores



PCA

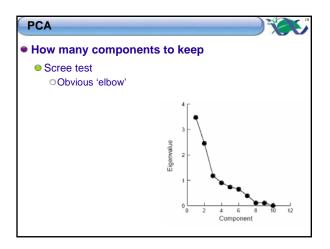
How many components to keep

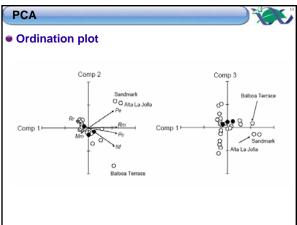
Eigenvalue > 1 rule

- The sum of the eigenvalues is always equal to the number of original variables
- \bigcirc Any PC > 1 must be explaining more than its share of the variation

Retain

• Any PC < 1 not explaining much



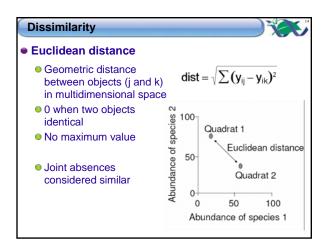


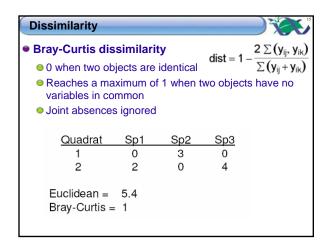
PCA
Assumptions
Because it is based on correlations
Assumes linearity

Q-mode analyses

Distance (dissimilarity) measures

- Measure of the degree of difference between each pair of objects based on a set of variables
 - How different sites are with respect to species composition
 - How different organisms are with respect to a suit of morphological and/or genetic characteristics
- Smaller dissimilarities represent higher degree of similarity





Diss	simila	rity						X	
• Dis	tance	matr	ix		Eucli	dean	dista	ance	5
Site	Sp1	Sp2	Sp3	<u> </u>	Α	в	С	D	Е
A	0	14	68	- A	0.00	24.2	69.2	57.9	46.2
В	Ő	29	49	В	24.2	0.00	57.9	45.5	28.3
_	•			/ C	69.2	56.4	0.00	11.4	24.0
С	0	1	0		57.9	45.5	11.4	0.00	13.6
D	0	4	11	× E	46.2	38.3	24.0	13.6	0.00
E	1	0	24	-	Bray	-Curt	is dis	stanc	es
				``	A	в	С	D	Е
	\checkmark			Α	0.00	0.21	0.96	0.69	0.55
				В	0.21	0.00	0.97	0.68	0.53
Diet	tance			С	0.96	0.97	0.00	0.87	1.00
DIS	lance	naurx		D	0.69	0.68	0.87	0.00	0.45
			$\overline{\ }$	Е	0.55	0.53	1.00	0.45	0.00

Dissimilarity which is best?

• Species abundance data

- Zeros common
- Max value when quadrats have no species in common
- Bray-Curtis preferred
 > library(vegan)
 - > *.bc <- vegdist(variables, "bray")</pre>

Measurement/morphological data

- Zeros rare
- Euclidean distance OK
 - > library(vegan)
 - > *.euc <- vegdist(variables, "euc")</pre>

Dissimilarity

Other distances

- Genetic distances from gene frequencies
 - Nei's distance
 - Edward's (Angular) distance
 - Coancestrality coefficient (Reynolds') distance
 - OClassical Euclidean (Rogers') distance
 - OAbsolute genetics (Provesti's) distance

Standardizations

• Aim

- To allow all variables to have an equal influence on patterns
- Avoids overweighting by highly abundant species
- Allows rare species to contribute
- Different environmental variables measured on different scales

• Scale each variable

- Divide all observations by max for that variable
- Scale to a mean of 0 and sd of 1

	Raw	data		Stan	dardize	d (max)) data			
Site	Sp1	Sp2	Sp3	Site	Sp1	Sp2	Sp3			
Α	0	14	68	Α	0.00	0.48	1.00			
в	0	29	49	в	0.00	1.00	0.72			
С	0	1	0	 С	0.00	0.02	0.00			
D	0	4	11	11	11	11	D	0.00	0.14	0.16
Е	1	0	24	Е	1.00	0.00	0.35			

	Raw	data		Standardized (max) data					
Site	Sp1	Sp2	Sp3	Site	Sp1	Sp2	Sp3		
Α	0	14	68	Α	-0.447	0.361	1.350		
в	0	29	49	в	-0.447	1.593	0.668		
С	0	1	0	→ c	-0.447	-0.706	-1.092		
D	0	4	11	D	-0.447	-0.460	-0.697		
Е	1	0	24	E	1.789	-0.789	-0.230		

Multidimensional scaling (MDS)

V

• Aims

 Graphical representation of dissimilarity between objects in as few dimensions (axes) as possible Axes are new variables

1.	Setup	data	

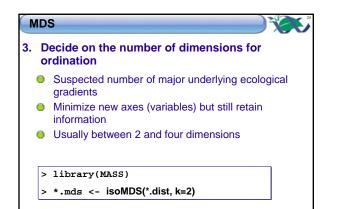
MDS

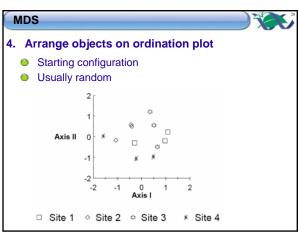
- Objects (sites) in rows
- Variables (species) in columns

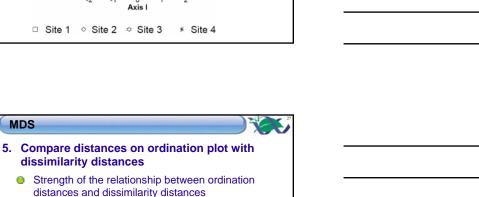
Site	Sp1	Sp2	Sp3	Sp4	Sp5
1	54	0	0	5	0
2	37	1	0	4	0
3	68	2	0	2	0
4	60	0	0	0	1
5	47	0	0	2	0
6	60	0	0	0	0

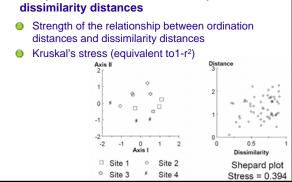
	IDS							24	
2.	Calcu	late di	ssimila	rity (B	ay-Cu	rtis)			
	> lib	rary(v	egan)						
	> *.b	c <- v	egdist	(varia)	oles, "	bray")			
		Site 1	Site 2	Site 3	Site 4	Site 5	Site 6		
	Site 1	0.00							
	Cite 2	0 20	0 00						

	0110 1	0110 2	0110 0	0110 1	0.000	0.00 0
Site 1	0.00					
Site 2	0.20	0.00				
Site 3	0.67	0.65	0.00			
Site 4	0.22	0.33	0.76	0.00		
Site 5	0.33	0.41	0.80	0.19	0.00	
Site 6	0.34	0.43	0.80	0.18	0.05	0.00



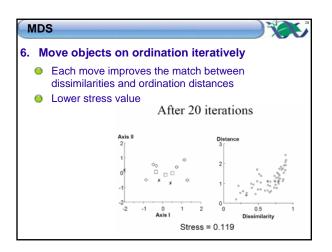


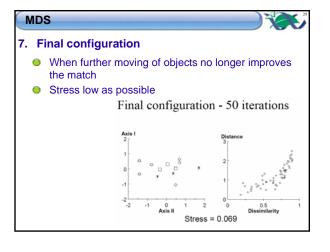




MDS



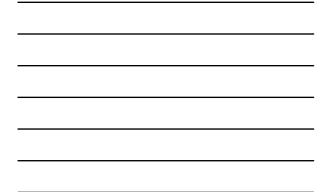




Non-metric MDS

- Rank-based regression
 Similar to rank based correlation
 Better for ecological data
- How low should stress be?
 - > 0.20 (20%) basically random
 - <0.15 (15%) is good match</p>
 - <0.1 (10%) is ideal</p>
 - Ordination configuration is close to actual dissimilarities
 A small number of new variables explain most of the patterns contained in all the original variables

Hypothesis testing?										
 Is there are respect to s 					nabita	ts with				
 Can we use NO! (why?) BUT 		ew axe	s score	es in AN	NOVA?					
	Site	Sp1	Sp2	Sp3	Sp4	Sp5				
	1	54	0	0	5	0				
Habitat 1 -	2	37	1	0	4	0				
	3	68	2	0	2	0				
	4	60	0	0	0	1				
Habitat 2 🔫	5	47	0	0	2	0				
	6	60	0	0	0	0				



Analysis of Similarities (ANOSIM)

• Aim

To compare groups based on similarities of objectsUses dissimilarity matrices

Data

- Categorical variable
- Multiple continuous response variables
 Dissimilarity matrix

● H₀:

- Average rank dissimilarities between objects within groups = Average rank dissimilarities between objects between groups
 - •No difference in species composition between groups

Habitat	Site	Sp1		Sp3	Sp4	Sp5	_			
Α	1	54		0	5	0				
Α	2	37	1	0	4	0				
Α	3	68		0	2	0				
в	4	60		0	0	1				
в	5	47		0	2	0				
В	6	60	0	0	0	0	_			
	-			Site 1	Sit	e 2	Site 3	Site 4	Site 5	Site 6
	ſ	Α	Site 1	0.00						
6	$\left\{ \right.$	Α	Site 2	0.20	0.0	00				
	L	Α	Site 3	0.67	0.0	65	0.00			
	٢	в	Site 4	0.22	0.3	33	0.76	0.00		
C	\prec	в	Site 5	0.33	0.4	41	0.80	0.19	0.00	
	L	в	Site 6	0.34	0.4	43	0.80	0.18	0.05	0.00

Analysis of Similarities (ANOSIM)

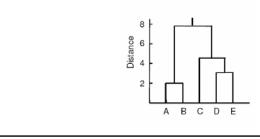
- Dissimilarities not normally distributed
 - Based on ranks
- Dissimilarities not independent
 - Uses randomization procedures to construct a probability distribution
- Generates own test statistic (called R)

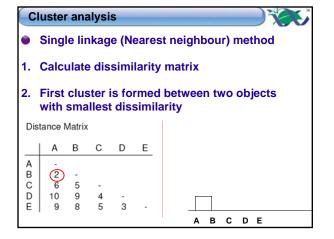
Cluster analysis

24

Aims

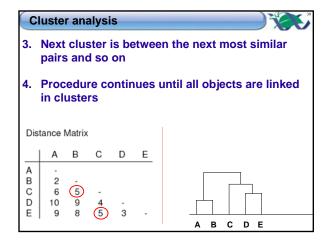
 Combines similar objects together into clusters which are displayed as a dendogram





CI	uste	r ana	alysi	s						
	3. Next cluster is between the next most similar pairs and so on									
•	Length of linkage reflects dissimilarity									
Dis	tance l	Matrix	(
	A	В	С	D	Е					
A B	- 2									
č	6	5	-							
D E	2 6 10 9	9	4 5	Ō						
E	9	8	5	3	-	ABCDE				

C	luste	r an	alysi	s		38
3.			ster i d so		etwee	n the next most similar
Dis	tance I	Matrix	¢			
	A	В	С	D	Е	
A B C D E	- 2 6 10 9	- 5 9 8	45	- 3		
		-				ABCDE



Cluster analysis Other linkage methods Average linkage Unweighted Pair-Group Method of Arithmetic Averaging (UPGMA) Average neighbour Complete linkage (Furthest neighbour) Distance between clusters determined by most dissimilar objects in their groups

Clustering												
 How well do the cluster groups match the dissimilarity patterns 												
cophenetic correlation												
	0.8	23				-	A B	c	D	E		
Dissimilarity distances							Cluster distances					
	A	В	С	D	Е		A	В	С	D	Е	
A	-	-	-	-	-	A	-	-	-	-	-	
В	2	-	-	-	-	В	2	-	-	-	-	
С	6	5	-	-	-	С	5	5	-	-	-	
D	10	9	4	-	-	D	5	5	4	-	-	
Е	9	8	5	3	-	E	5	5	4	3	-	

Minimum spanning trees

- Mapped over ordination plots
- 1. Find smallest dissimilarity
- 2. Join these objects with a line
- 3. Find the next lowest dissimilarity and join objects
- 4. Repeat until all points joined
- 5. Short lines represent within clusters, long lines between clusters

