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@ Not all dependent variables are normally
distributed

@® Frequencies (percentages) do not follow normal
distributions
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[ Goodness of fit tes ot ﬂ/
® Aims
@ Investigate whether observed ratios follow expected
ratios

> E.g. is the sex ratio likely to differ from 1:1

@ Data
© Counts (frequency) of units in each category
@ H:

© Observed data came from a population which has the
specified expected frequencies
"O-E=0




Goodness of fit test )%

@ Chi square (x?) statistic

£=3 (o _ee)2

© 0 = observed frequencies
© e = expected frequencies

odf=p-1

@ Assumptions

© Observations must be classified independently

© No more than 20% of categories have expected
frequencies <5

> chisq.test(c(obs),p=c(exp))exp

> Where obs are the observed counts and exp are the
expected proportions

@ Analysis sequence

@ Design experiment/survey

© Collect data

© Test assumptions

© Calculate %2 and compare to a 2 distribution

> chisq.test(c(obs),p=c(exp))

2Where obs are the observed counts and exp are the
expected proportions

© Conclusions
> Reject or not reject H,
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® Aims

@ Cross-classification of two or more variables

@ Investigating the association of two categorical
variables

@ Data

© Two or more categorical predictor variables

> 1f have 3 or more variables — best to use log-linear
models (G tests)

© Dependent variable
> Counts — number of observations

® H:

© The categorical variables are independent of one
another

> Equivalent to no interaction between categorical
variables in ANOVA

Categorical 1
A B C

Categorical 2

® Assumptions

@ Observations must be classified independently

@ No more than 20% of categories have expected frequencies < 5
Fishers exact test — for 2x2

@ Chi-square (x?)
@ Simple to calculate
@ df = (rows-1)(cols-1)
® Fishers exact test

@ useful if have small sample sizes (problem with assumptions)
© Computationally intense
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® Analysis sequence

© Design experiment/survey
@ Collect data
© Construct contingency table
‘> *_tab <- xtabs(response~catl+cat2, dataset) |
© Test assumptions

‘> chisq.test(*.tab, correct=F)$exp |

© Perform test

‘> *_x2 <- chisq.-test(*.tab, correct=F) |

‘> *_x2 <- Fisher.test(*.tab) |

[ Generalized linear models ) NP/
- 2

® Aims

© Investigate the effects of one or more factors on a
response variable

© Accommodates a range of distributions

@ Data

© Response variable
>Normally distribution — same as regression/ANOVA
> Poisson distribution — log-linear modeling
> Binomially distribution — logistic regression

© Predictor variables
> Categorical
> Continuous — logistic regression
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[ Generalized linear models )™\

@ Link function

@ Poisson distribution —log-linear modeling
>Log (k)

© Binomially distribution — logistic regression
Jlogit




[ Log-linear models ) N
. 4

® Aims

@ Investigating the association of two or more
categorical variables

> Whether there is an interaction between two or more
categorical variables

@ Data

© Response variable

> Poisson distribution — log-linear modelling
@ Predictor variables

> Categorical
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@® Poisson distribution

Poisson Distribution: Mean = 10
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@ H:
© Predictor variable(s) independent
>No interactions

® Log-linear model

@ Full model log f = constant + 2. + 2.5+ 5.8

© Reduced model  log f = constant + 3.* +5.%

@ Fit of model measured by log-likelihood (LL)

@ Difference between full and reduced model (G2)
indicates importance of interaction term
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og-likelihood A

Parameter astimates
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Log-likelihood

Parameter estimates
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@ Assumptions

© Observations must be classified independently
© Response variable follows a Poisson distribution
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@ Analysis sequence

@ Design experiment/survey
© Collect data
© Fit full generalized linear model
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‘ > * glmF <- gIm(RESPONSE~CAT1+CAT2+CAT1:CAT2, family=poisson, data)

@ Test H, (compare reduced model to full model)

‘ > anova(*.glmF, test="Chisq") |
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® Aims
© Investigate the effects of one or more factors on a
response variable
© Accommodates a range of distributions

@ Data

© Response variable
>Normally distribution — same as regression/ANOVA
> Poisson distribution — log-linear modeling
>Binomially distribution —logistic regression

© Predictor variables
> Categorical
2 Continuous — logistic regression
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® Aims

© Investigate the relationship between a continuous
predictor variable and a binary response variable

@® Data

© Response variable \
sbinary distribution
>0 or 1, dead or alive,
Jyes or no,
> present or absent
© Predictor variables N
> Continuous et e
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@ Binomial distribution

Binomial Distribution: Trials = 100, Probability of success = 0.5
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® Log-linear model
@ Full model g(x) =g+ P4Xy Where g(x) is the probability
x) " of being either 1 or 0
o Reduced model 9 =Fo

® H,:

© Population slope (B,) equals 0

@ Fit of model measured by log-likelihood (LL)

@ Difference between full and reduced model (G?)
indicates importance of slope
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@ Assumptions

© Response variable follows a binomial distribution
© Absence of collinearity
3 Correlation matrix (SPLOM)
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@ Analysis sequence

@ Design experiment/survey
© Collect data
© Fit generalized linear model

‘ >* glm <- gIm(RESPONSE~PREDICTOR, family=binomial, data)

© Test H,
‘ > summary(*.glm) |
@ Calculate % variation explained
> 1-(*gim$dev / *.glm$null) |
© Calculate LD50
> -*.glms$coef[1] / *.gim$coef([2] |

Intercept Slope
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