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Frequency analysis
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Analyzing frequencies

Not all dependent variables are normally 
distributed

Frequencies (percentages) do not follow normal 
distributions
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Goodness of fit test

Aims
Investigate whether observed ratios follow expected 
ratios

E.g. is the sex ratio likely to differ from 1:1

Data
Counts (frequency) of units in each category

H0:
Observed data came from a population which has the 
specified expected frequencies

O – E = 0
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Goodness of fit test

Chi square ( χ2) statistic

o = observed frequencies
e = expected frequencies

df = p - 1
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Goodness of fit test

Assumptions
Observations must be classified independently
No more than 20% of categories have expected 
frequencies < 5

Where obs are the observed counts and exp are the 
expected proportions

> chisq.test(c(obs),p=c(exp))$exp> chisq.test(c(obs),p=c(exp))$exp
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Goodness of fit test

Analysis sequence
Design experiment/survey
Collect data
Test assumptions
Calculate χ2 and compare to a  χ2 distribution

Where obs are the observed counts and exp are the 
expected proportions

Conclusions
Reject or not reject H0

> chisq.test(c(obs),p=c(exp))> chisq.test(c(obs),p=c(exp))
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Contingency tables

Aims
Cross-classification of two or more variables
Investigating the association of two categorical 
variables

Data
Two or more categorical predictor variables

If have 3 or more variables – best to use log-linear 
models (G tests)

Dependent variable
Counts – number of observations
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Contingency tables

H0: 
The categorical variables are independent of one 
another

Equivalent to no interaction between categorical 
variables in ANOVA
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Contingency tables

Assumptions
Observations must be classified independently
No more than 20% of categories have expected frequencies < 5

Fishers exact test – for 2x2

Chi-square (χ2)
Simple to calculate
df = (rows-1)(cols-1)

Fishers exact test
useful if have small sample sizes (problem with assumptions)
Computationally intense
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Contingency tables

Analysis sequence
Design experiment/survey
Collect data
Construct contingency table

Test assumptions

Perform test

> *.x2 <- chisq.test(*.tab, correct=F)> *.x2 <- chisq.test(*.tab, correct=F)

> *.tab <- xtabs(response~cat1+cat2, dataset)> *.tab <- xtabs(response~cat1+cat2, dataset)

> *.x2 <- fisher.test(*.tab)> *.x2 <- fisher.test(*.tab)

> chisq.test(*.tab, correct=F)$exp> chisq.test(*.tab, correct=F)$exp
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Generalized linear models

Aims
Investigate the effects of one or more factors on a 
response variable
Accommodates a range of distributions 

Data
Response variable

Normally distribution – same as regression/ANOVA
Poisson distribution – log-linear modeling
Binomially distribution – logistic regression

Predictor variables
Categorical
Continuous – logistic regression
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Generalized linear models

Link function
Poisson distribution – log-linear modeling

Log(µ)
Binomially distribution – logistic regression

logit
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Log-linear models

Aims
Investigating the association of two or more 
categorical variables

Whether there is an interaction between two or more 
categorical variables

Data
Response variable

Poisson distribution – log-linear modelling
Predictor variables

Categorical
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Log-linear models

Poisson distribution
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Log-linear models

H0:
Predictor variable(s) independent

No interactions

Log-linear model
Full model
Reduced model

Fit of model measured by log-likelihood (LL)

Difference between full and reduced model (G2) 
indicates importance of interaction term
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Log-likelihood
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Log-linear models

Assumptions
Observations must be classified independently
Response variable follows a Poisson distribution
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Log-linear models

Analysis sequence
Design experiment/survey
Collect data
Fit full generalized linear model

Test H0 (compare reduced model to full model)
> *.glmF <- glm(RESPONSE~CAT1+CAT2+CAT1:CAT2, family=poisson, data)> *.glmF <- glm(RESPONSE~CAT1+CAT2+CAT1:CAT2, family=poisson, data)

> anova(*.glmF, test="Chisq")> anova(*.glmF, test="Chisq")
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Generalized linear models

Aims
Investigate the effects of one or more factors on a 
response variable
Accommodates a range of distributions 

Data
Response variable

Normally distribution – same as regression/ANOVA
Poisson distribution – log-linear modeling
Binomially distribution – logistic regression

Predictor variables
Categorical
Continuous – logistic regression
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Logistic regression

Aims
Investigate the relationship between a continuous 
predictor variable and a binary response variable

Data
Response variable

binary distribution
0 or 1, dead or alive, 
yes or no, 
present or absent

Predictor variables
Continuous
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Logistic regression

Binomial distribution
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Logistic regression

Log-linear model
Full model
Reduced model

H0:
Population slope (β1) equals 0

Fit of model measured by log-likelihood (LL)

Difference between full and reduced model (G2) 
indicates importance of slope

Where g(x) is the probability 
of being either 1 or 0
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Logistic regression

Assumptions
Response variable follows a binomial distribution
Absence of collinearity

Correlation matrix (SPLOM)
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Log-linear models

Analysis sequence
Design experiment/survey
Collect data
Fit generalized linear model

Test H0

Calculate % variation explained

Calculate LD50
> 1-(*.glm$dev / *.glm$null)> 1-(*.glm$dev / *.glm$null)

> *.glm <- glm(RESPONSE~PREDICTOR, family=binomial, data)> *.glm <- glm(RESPONSE~PREDICTOR, family=binomial, data)

> summary(*.glm)> summary(*.glm)

> -*.glm$coef[1] / *.glm$coef[2]> -*.glm$coef[1] / *.glm$coef[2]

Intercept Slope


