

Analyzing frequencies

- Not all dependent variables are normally distributed
- Frequencies (percentages) do not follow normal distributions

Goodness of fit test

Aims

- Investigate whether observed ratios follow expected ratios
- E.g. is the sex ratio likely to differ from 1:1

Data

- Counts (frequency) of units in each category
- H₀:
 - Observed data came from a population which has the specified expected frequencies
 O – E = 0

1

Goodness of fit test

Assumptions

- Observations must be classified independently
- No more than 20% of categories have expected frequencies < 5
- > chisq.test(c(obs),p=c(exp))\$exp
 - Where obs are the observed counts and exp are the expected proportions

Contingency tables

Aims

- Cross-classification of two or more variables
- Investigating the association of two categorical variables

Data

Two or more categorical predictor variables
 If have 3 or more variables – best to use log-linear models (G tests)

Dependent variable

Counts – number of observations

Contingency tables

● H₀:

Equivalent to no interaction between categorical variables in ANOVA

		Categorical 1		
		Α	В	C
rical 2	1			
Catego	2			

Contingency tables

-

Assumptions

- Observations must be classified independently
- No more than 20% of categories have expected frequencies < 5
 Fishers exact test for 2x2

Chi-square (χ²)

- Simple to calculate
- df = (rows-1)(cols-1)

Fishers exact test

- useful if have small sample sizes (problem with assumptions)
- Computationally intense

Generalized linear models

Aims

- Investigate the effects of one or more factors on a response variable
- Accommodates a range of distributions

Data

- Response variable
 - Normally distribution same as regression/ANOVA
 Poisson distribution log-linear modeling
 Binomially distribution logistic regression
 - · -
- Predictor variables
 - Categorical
 - Continuous logistic regression

Generalized linear models

- Link function
 - Poisson distribution log-linear modeling
 Log(µ)
 - Binomially distribution logistic regression
 logit

Log-linear models

Aims

- Investigating the association of two or more categorical variables
 Whether there is an interaction between two or more
 - categorical variables

Data

- Response variable
 - Poisson distribution log-linear modelling
- Predictor variables
 Categorical

Log-linear models

XX

Assumptions

- Observations must be classified independently
- Response variable follows a Poisson distribution

Log-linear models Analysis sequence Design experiment/survey Collect data Fit full generalized linear model '.glmF <- glm(RESPONSE-CAT1+CAT2+CAT1:CAT2, family=poisson, data)</p> Test H₀ (compare reduced model to full model) > anova(*.glmF, test="Chisq")

Logistic regression

-) 🍫

Aims

• Investigate the relationship between a continuous predictor variable and a binary response variable

Data

- Response variable
 binary distribution
 0 or 1, dead or alive,
 yes or no,
 present or absent
- Predictor variables
- Continuous

Logistic regression

Assumptions

- Response variable follows a binomial distribution
 Absence of collinearity
- Correlation matrix (SPLOM)

