
Worksheet 4 - Multiple and non-
linear regression models 

Multiple and non-linear regression references 

Quinn & Keough (2002) - Chpt 6  

Question 1 - Multiple Linear Regression 
Paruelo & Lauenroth (1996) analyzed the geographic distribution and the effects of climate variables on the relative 
abundance of a number of plant functional types (PFT's) including shrubs, forbs, succulents (e.g. cacti), C3 grasses 
and C4 grasses. They used data from 73 sites across temperate central North America (see pareulo.syd) and 
calculated the relative abundance of C3 grasses at each site as a response variable 

Open the paruelo data file. HINT. 

Q1-1. In the table below, list the assumptions of multiple linear regression along with how violations of 
each assumption are diagnosed and/or the risks of violations are minimized. 

Format of paruelo.csv data file

C3 LAT LONG MAP JJAMAP DJFMAP

.. .. .. .. .. ..

C3 Relative abundance of C3 grasses at each site - response 
variable

LAT Latitude in centesimal degrees - predictor variable
LONG Longitude in centesimal degrees - predictor variable
MAP Mean annual precipitation (mm) - predictor variable

MAT Mean annual temperature (0C) - predictor variable
JJAMAP Proportion of MAP that fell in June, July and August - 

predictor variable
DJFMAP Proportion of MAP that fell in December, January and 

Febrary - predictor variable

Assumption Diagnostic/Risk Minimization

I.

II.

III.



 
 
Q1-2. Construct a scatterplot matrix to investigate these assumptions(HINT) 
 

a. Focussing on the assumptions of Normality, Homogeneity of Variance and Linearity, is 

there evidence of violations of these assumptions (y or n)?   

b. Try applying a temporary square root transformation (HINT). Does this improve some of 

these specific assumptions (y or n)?   

c. Is there any evidence that the assumption of Collinearity is likely to be violated (y or n)?

  

d. Collinearity occurs when one or more of the predictor variables are correlated, therefore 
this assumption can also be examined by calculating the pairwise correlation coefficients 
between all the predictor variables (HINT). Which predictor variables are highly correlated? 

  

 
 
Q1-3. (Multi)collinearity can also be diagnosed by tolerance and variance inflation factor (VIF) 
measures. 

a. Calculate the VIF values for each of the predictor variables (HINT).  

b. Calculate the tolerance values for each of the predictor variables (HINT). 

c. Is there any evidence of (multi)collinearity, and if so, which variables are responsible for 
violations of this assumption? 

IV.

V.

Predictor Tolerane VIF
LAT

LONG

MAP

MAT

JJAMAP

log10(DJFMAP)



  

 
 
We obviously cannot easily incorporate all 6 predictors into the one model, because of the collinearity problem. 
Paruelo and Lauenroth (1996) separated the predictors into two groups for their analyses. One group included LAT 
and LONG and the other included MAP, MAT, JJAMAP and DJFMAP. We will focus on the relationship between the 
square root relative abundance of C3 plants and latitude and longitude. This relationship will investigate the 
geographic pattern in abundance of C3 plants.  

 
 
Q1-4. Just like Paruelo and Lauenroth (1996), we will fit the multiplicative model for LAT and LONG.  

a. Write out the full multiplicative model 

  

b. Check the assumptions of this linear model. In particular, check collinearity. HINT  

c. Obviously, this model will violate collinearity. It is highly likely that LAT and LONG will be 
related to the LAT:LONG interaction term. It turns out that if we centre the variables, then 
the individual terms will no longer be correlated to the interaction. Centre the LAT and 
LONG variables (HINT) and (HINT)  

 
 
Q1-5. Fit a linear multiplicative model on the centrered LAT and LONG (HINT) 

a. Examine the diagnostic plots (HINT) specially the residual plot to confirm no further 
evidence of violations of the analysis assumptions  

b. Complete the following table (HINT). 

 
Q1-6. Examine the partial regression plots of LAT and LONG (HINT).  
 
 
Q1-7. There is clearly an interaction between LAT and LONG. This indicates that the degree to which 

Coefficient Estimate t-value P-value
Intercept

cLAT

cLONG

cLAT:cLONG



latitude effects the relative abundance of C3 plants depends on longitude. To investigate this further, we 
will examine the simple effects of latitude at a specific range of longitudes. The levels of longitude that we 
will use are the mean longitude value as well as the mean plus or minus 1 SD and plus or minus 2 SD. 

a. Calculate the five levels of longitude on which the simple effects of latitude will be 
investigated. (HINT, HINT, etc).  

b. Investigate the simple effects of latitude on the relative abundance of C3 plants for each of 
these levels of longitude. (HINT), (HINT), etc).  

 

Question 2 - Multiple Linear Regression 
Loyn (1987) modeled the abundance of forest birds with six predictor variables (patch area, distance to nearest patch, 
distance to nearest larger patch, grazing intensity, altitude and years since the patch had been isolated). 

Open the loyn data file. HINT. 

Q2-1. In the table below, list the assumptions of multiple linear regression along with how violations of 
each assumption are diagnosed and/or the risks of violations are minimized. 

 
 

Format of loyn.csv data file

ABUND DIST LDIST AREA GRAZE ALT YR.ISOL

.. .. .. .. .. .. ..

ABUND Abundance of forest birds in patch- response variable
DIST Distance to nearest patch - predictor variable
LDIST Distance to nearest larger patch - predictor variable
AREA Size of the patch - predictor variable
GRAZE Grazing intensity (1 to 5, representing light to heavy) - predictor 

variable
ALT Altitude - predictor variable
YR.ISOL Number of years since the patch was isolated - predictor variable

Assumption Diagnostic/Risk Minimization

I.

II.

III.

IV.

V.



Q2-2. Construct a scatterplot matrix to investigate these assumptions(HINT) 
 

a. Focussing on the assumptions of Normality, Homogeneity of Variance and Linearity, is 

there evidence of violations of these assumptions (y or n)?   

b. Try applying a temporary log10 transformation to the skewed variables(HINT). Does this 

improve some of these specific assumptions (y or n)?  

c. Is there any evidence that the assumption of Collinearity is likely to be violated (y or n)?

 

d. Collinearity occurs when one or more of the predictor variables are correlated, therefore 
this assumption can also be examined by calculating the pairwise correlation coefficients 
between all the predictor variables (use transformed versions for those that required it) 
(HINT). Which predictor variables are highly correlated? 

  

 
 
Since none of the predictor variables are highly correlated to one another, we can include all in the linear model 
fitting.  

 
 
Q2-3. Fit an additive linear model relating ABUND to each of the predictor variables, but no interactions 
(HINT) 

a. Examine the diagnostic plots (HINT) specially the residual plot to confirm no further 
evidence of violations of the analysis assumptions  

b. Were any of the partial regression slopes significantly different from 0? Which one(s)? 

 

Predictor Tolerance VIF
log10(DIST)

log10(LDIST)

log10(AREA)

GRAZE

ALT

YR.ISOL



 
 
Q2-4. We would now like to be able to find the 'best' regression model. Calculate the adjusted r2 (HINT), 
AIC (HINT) and BIC (HINT) for the full regression containing all six predictor variables. 

Q2-5. Compare all possible models and select the 'best' model based on AIC and BIC (HINT). Note that 
this requires loading the biology package!. 

 
 

Question 3 - Hierachical partitioning 
An alternative model selection procedure is called hierarchical partitioning. Hierarchical partitioning essentially 
determines the contributions of each predictor variable as both an individual predictor as well as a joint predictor in 
explaining the variation in the response variable. We will use hierarchical partitioning for model selection on the Loyn 
(1987) data set. 

Open the loyn data file. HINT. 

Q3-1. Perform the hierarchical partitioning  

Q3-2. There are no formal hypothesis tests to determine what constitutes a significant contribution, and 

Coefficient Estimate t-value P-value
Intercept

log10(DIST)

log10(LDIST)

log10(AREA)

GRAZE

ALT

YR.ISOL

Model Adj. r2 AIC BIC

Full

Selection 
based 
on:

Model (e.g. ABUND ~ log10(DIST) + ALT) Adj. 
r2 AIC

Adj. r2

AIC

BIC



therefore which predictor variables to retain in the model. However, there are two ways in which 
significance of predictors can be inferred: 

a. Retain all those predictors whose total contribution is greater than an appropriate critical 
correlation coefficient. We do this by first Convert the r2 values into standardized, 
normal z-scores (via correlation coefficients) and then comparing these scores to a 
critical z-score of 1.65 (for 0.05). Perform these calculations for the individual and total 
contributions and indicate which of the variables contribute the most to the explained 
variance in forest bird abundance. 

  

b. The second method is to use a randomization procedure to generate a distribution of 
partitioned r2 values. The hier.part package comes with one such routine, that performs a 
randomization procedure for the independent contributions only. Run the randomization 
procedure and indicate which of the variables contribute the most to the explained 
variance in forest bird abundance. 

  

Question 4 - Polynomial regression 
Rademaker and Cerqueira (2006), compiled data from the literature on the reproductive traits of opossoms 
(Didelphis) so as to investigate latitudinal trends in reproductive output. In particular, they were interested in whether 
there were any patterns in mean litter size across a longitudinal gradient from 44oN to 34oS. Analyses of data 
compiled from second hand sources are called metaanalyses and are very usefull at revealing overal trends across a 
range of studies. 

Format of rademaker.csv data files

SPECIES LATITUDE L/Y MAOP MLS REFERENCE

D.v. 44 2 16.8 8.4

Tyndale-
Biscoe and 
Mackenzie 
(1976)

D.v. 41 1.5 14.1 9.4 Hossler et al. 
(1994)

D.v. 41.5 ? ? 8.6 Reynolds 
(1952)

D.v. 41 2 18 9
Wiseman and 
Hendrickson 
(1950)

D.v. 40 2 15.8 7.9 Sanderson 
(1961)

... ... ... ... ... ...

SPECIES Didelphid species (D.al.=Didelphis albiventris, 
D.au.=Didelphis aurita, D.m.=Didelphis 
marsupialis, D.v.=Didelphis virginiana - Descriptor 
variable



Open the rademaker data file. 

The main variables of interest in this data set are MLS (mean litter size) and LATITUDE. The other variables were 
included so as to enable you to see how meta data might be collected and collated from a number of other sources. 

The relationship between two continuous variables can be analyzed by simple linear regression, as was seen in 
question 1. Before performing the analysis we need to check the assumptions. To evaluate the assumptions of 
linearity, normality and homogeneity of variance, construct a scatterplot of MLS against LATITUDE including a 
lowess smoother and boxplots on the axes. (HINT) 

Q4-1. Is there any evidence that any of the assumptions are likely to be violated?  

To get an appreciation of what a residual plot would look like when there is some evidence that the linearity 
assumption has been violated, perform the simple linear regression (by fitting a linear model) purely for the 
purpose of examining the regression diagnostics (particularly the residual plot)  

Q4-2. How would you describe the residual plot? 

 

For this sort of trend that is clearly non-linear (yet the boxplots suggest normal data), transformations are of no use. 
Therefore, rather than attempt to model the data on a simple linear relationship (straight line), it is better to attempt to 
model the data on a curvilinear linear relationship (curved line). Note it is important to make the distinction between 
line (relationship) linearity and model linearity 

Q4-3. If the assumptions are otherwise met, perform the second order polynomial regression analysis (fit 
the quadratic polynomial model), examine the output, and use the information to construct the 
regression equation relating the number of mean litter size to latitude:  

Q4-4. In polynomial regression, there are two hypotheses of interest. Firstly, as there are two slopes, we 
are now interested in whether the individual slopes are equal to one another and to zero (that is, does 

LATITUDE Lattitude (degees) of study site - Predictor variable
L/Y Mean number of litter per year - Response 

variable
MAOP Mean annual offspring production - Response 

variable
MLS Mean litter size - Response variable
REFERENCE Original source of data

DV = intercept + slope1 x IV2 + slope2 x IV

Mean litter size   =    +    x  latitude2   +    x  latitude



the overall model explain our data better than just a horizontal line (no trend). Secondly, we are interested 
in whether the second order polynomial model fits the data any better than a simple first order 
(straight-line) model. Test these null hypotheses.  

a. The slopes  significantly different from one 

another and to 0 (F = , df = , , P = )  

b. The second order polynomial regression model  
fit the data significantly better than a first order (straight line) regression model (F = 

, df = , , P = )  

Q4-5. What are your conclusions (statistical and biological)?  
 

  

Q4-6. Such an outcome might also be accompanied by a scatterpoint that illustrates the relationship 
between the mean litter size and latitude. Construct a scatterplot without a smoother or marginal 
boxplots (HINT). Include a quadratic (second order) trendline on this graph (HINT).  
 

Question 5 - Nonlinear Regression 
Peake and Quinn (1993) investigated the relationship between the size of mussel clumps (m2) and the number of 
other invertebrate species supported. 

Open the peake data file. HINT. 

 

(choose correct option)

(choose correct option)

Format of peake.csv data file

AREA SPECIES INDIV

516.0 3 18
469.06 7 60
462.25 6 57
... ... ...

AREA Area of the mussel clump (m2)- predictor variable
SPECIES Number of other invertebrate species found in the 

mussel clumps - response variable
INDIV Number of other invertebrate individuals found in the 

mussel clumps - ignore this response variable



 
Q5-1. For this question we will focus on an examination of the relationship between the number of species 
occupying a mussel clump and the size of the mussel clump. Construct a scatterplot to investigate the 
assumptions of simple linear regression(HINT) 
 

a. Focussing on the assumptions of Normality, Homogeneity of Variance and Linearity, is 

there evidence of violations of these assumptions (y or n)?   

 
 
Q5-2. Although we could try a logarithmic transformation of the AREA variable, species/area curves are 
known to be non-linear. We might expect that small clumps would only support a small number of species. 
However, as area increases, there should be a dramatic increase in the number of species supported. 
Finally, further increases in area should see the number of species approach an asymptote. Species-area 
data are often modeled with non-linear functions: 

a. Try fitting a second order polynomial trendline through these data. E.g. Species = α*Area 
+ β*Area2 + c (note that this is just an extension of y=mx+c)  

b. Try fitting a power trendline through these data. E.g. Species = α(Area)β where the 
number of Species is proportional to the Area to the power of some coefficient (β).  

c. Which model is the most appropriate for these data and why? 

.  

Species = &alpha(Area)&beta
 

whereby the number of Species is proportional to the Area to the power of some coefficient (&beta). Fit the 
above power function to the data (HINT).  
 
 
 
Q5-3. Fit the above power function to the data and complete the following table (HINT). 

 
 
Q5-4. Examine the residual plot (HINT).  
 
 
Q5-4. What conclusions (statistical and biological) would you draw from the analysis? 

.  
 
 
Q5-5. Create a plot of species number against mussel clump area (HINT). 

Parameter Estimate t-value P-value
&alpha

&beta



a. Fit the nonlinear trend line to this plot (HINT)  

 
 

Welcome to the end of Worksheet 4! 


