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AAbboouutt
This presentation is a brief 

revision of basic statistical 
concepts. 

Links… 
Throughout the presentation, 
marks in the form of (qk2002, …) 
provide references to sections 
within the recommended 
statistical text; 
 

Quinn, G. P. and Keough, M. J. 
(2002). Experimental Design and 
Data Analysis for Biologists. 
Cambridge University Press, 
Cambridge. 

 
Words and phrases in purple 
type face provide tooltip-style 
extra information, while blue type 

face provide links to popups that 
contain additional information 
and or definitions. 

Navigation… 
Navigation buttons on the right 
hand side of each page provide 
(from top to bottom) ‘Previous 
Page’, ‘Next Page’, ‘First Page’, 
‘Last Page’, ‘Go Back’ and ‘Quit’ 
navigational shortcuts. 



 

 Purpose of graphical displays -3- 

PPuurrppoossee  ooff  ggrraapphhiiccaall  ddiissppllaayyss

••  Exploratory data analysis (EDA) 
− checking assumptions of parametric statistical 

analyses (normality, equal variance ) 
− identifying unusual values (outliers ) 

− evaluating the appropriateness of a particular 
statistical model  

••  Analysis 
− model fitting  

••  Presentation & communication of results



 

 Type of analysis -4- 

Continuous variables: contain 
observations that can potentially 
take on any values. 

TTyyppee  ooff  aannaallyyssiiss

••  Many statistical analyses fit a model to data 

••  Statistical models usually contain 
− a response (dependent) variable (Y) 

continuous  
− predictor (independent) variable(s) (X1, X2) 

continuous and/or categorical  
 
Linear models  take the following form: 
Y = constant + coefficient1 × X1 + coefficient2 × X2 + … 
+ error 



 

 Type of analysis -5- 

LLiinneeaarr  mmooddeellss  --  ccoommppaarriinngg  ggrroouuppss
••  Analysis of variance (ANOVA) 

••  Y is continuous, X1, X2… are categorical factors 
comprising 2 or more groups 

••  Partition variance in Y into 
− explained by model (between groups) 
− not explained by model (within groups or residual 

or error) 

••  Statistical Null Hypothesis  (H0): 
− Y population means of each group are equal 

(µ1=µ2 =...)
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EExxaammppllee  ––  ccoommppaarriinngg  ggrroouuppss
Medley and Clements (1998) recorded the species 
diversity of diatom communities from between 4 and 7 
stations at each of 4 zinc levels in streams in the Rocky 
Mountains (qk2002, Box 8.1). 
 

••  Is there a difference in the mean diatom species 
diversity between stream stations with different zinc 
levels? 
− Y is diatom species diversity 
− X is zinc-level groups (Background, Low, Medium, 

High) 
− Replicate units are the stations on the streams



 

 Type of analysis -7- 

LLiinneeaarr  mmooddeellss  --  bbiivvaarriiaattee  rreellaattiioonnsshhiippss  
••  Regression analysis 

••  Y is continuous 

••  X1, X2… are continuous 

••  Partition variance in Y into 
− explained by model (linear relationship with Xs) 
− not explained by model (residual or error) 

••  Statistical Null Hypotheses: 
− no linear relationships  between Y and X1 or X2.., 

i.e. the population slope between Y and X1 and/or 
Y and X2.. = 0



 

 Type of analysis -8- 

EExxaammppllee  ––  bbiivvaarriiaattee  rreellaattiioonnsshhiippss  
Christenson et al. (1996) measured the density of 
riparian trees and the basal area of course woody 
debris (CWD) on the shoreline of 16 lakes in North 
America (qk2002, Box 5.3). 
 

••  Is there a linear relationship between CWD basal 
area and the riparian tree density? 
− Y is CWD basal area 
− X is riparian tree density 
− Replicate units are the 16 lakes



 

 Assumptions of analysis -9- 

AAssssuummppttiioonnss  ooff  aannaallyyssiiss  

••  Apply to response variable Y at each X 

••  Normality of observations (Y) at each X 
− symmetrical distribution is important 
− positive skew common with biological variables 

••  Similar variances of Y at each X (homogeneity of 
variances) 
− variances independent of means 

••  Independence of observations 
− design and data collection issue



 

 Assumptions of analysis -10- 

CChheecckkiinngg  aassssuummppttiioonnss  ––  ((EEDDAA))  
 
Explore the: 

••  Shape of sample (and therefore population) 
− is Y normally distributed (symmetrical) or skewed 

at each X? 

••  Spread of sample (and therefore population) 
− are Y variances similar for different X?



 

  -11- 

  

  

EExxpplloorriinngg  ssaammppllee  ddaattaa  



 

 Exploring sample data -12- 

DDiissttrriibbuuttiioonnss  ooff  bbiioollooggiiccaall  ddaattaa
 
Bell-shaped symmetrical 
distribution: 

••  Normal (Gaussian) 
distribution 

 
 
Common skewed 
asymmetrical distributions: 

••  Log-normal 

••  Poisson

Pr(Y)

Y

Pr(Y)

Y



 

 Exploring sample data -13- 

CCoommmmoonn  sskkeewweedd  ddiissttrriibbuuttiioonnss  

Log-normal distribution: 

••  when µ proportional to σ 

••  measurement data, e.g. length, weight ... 
 

Poisson distribution: 

••  when µ = σ2 

••  count data, e.g. numbers of individuals



 

 Exploring sample data -14- 

FFrreeqquueennccyy  ddiissttrriibbuuttiioonnss  
Observations grouped into classes (e.g. size or 
number). 
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 Exploring sample data -15- 

BBooxxpplloottss  
 

median

hinge

hinge

smallest value

largest value

outlier

25 % of values

"

GROUP

V
A

R
IA

B
LE

*

"

"

spread

}

}

}
}



 

 Exploring sample data -16- 

BBooxxpplloottss  
 

1. Ideal 2. Skewed

3. Outliers 4. Unequal variance



 

 Exploring sample data -17- 

EExxaammpplleess  ooff  BBooxxpplloottss  
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(qk2002, Fig 4.5) 

 



 

 Exploring sample data -18- 

DDoottpplloottss  
 

••  Each observation is represented by a dot 

••  For example, concentration of SO4
2- and Cl- for 39 

sites from forested watersheds in North America  
(qk2002, Fig 4.5) 
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 Exploring sample data -19- 

SSccaatttteerrpplloottss  
 

••  For plotting bivariate data 

••  Value of two variables are recorded for each 
observation 

••  Each variable is plotted on one of the axes (X or Y) 

••  Symbols (points) represent each observation 

••  Used to assess the relationship between two 
variables



 

 Exploring sample data -20- 

SSccaatttteerrpplloottss  
Relationship between the number of burrows and crab 
density for two sites on Christmas Island (qk2002, Fig 
4.5) 
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 Exploring sample data -21- 

SSccaatttteerrpplloott  mmaattrriixx  ((SSPPLLOOMM))  
••  Extension of scatterplot 

••  For plotting relationships between three or more 
variables on single graph 

••  Pairwise bivariate plots in multiple SPLOM panels 

••  Univariate plots (boxplots, histograms) in diagonal 
panels 



 

 Exploring sample data -22- 

SSPPLLOOMM  
 

SO4 
− concentration of SO4

2- 
 
CL 

− concentration of Cl- 

••   

••  ELEVATION 
− site elevation 

••  (qk2002, Fig 4.6)
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 Transformations -23- 

TTrraannssffoorrmmaattiioonnss  

••  Mainly used for response variable 

••  Improve normality 

••  Remove relationship between mean and variance, 
therefore make variances more similar in different 
populations 

••  Reduce influence of outliers 

••  Make relationships between variables more linear 
(regression analysis) 
− sometimes transform both response and predictor 

variables 



 

 Transformations -24- 

TTrraannssffoorrmmaattiioonnss  

  
log-normal normal 

Y = log(Y) 
 
 
 

Vertical lines on both graphs represent corresponding data 
values and thus the relative spacing of data on the X-axis.  
Note that transformations only alter the scale of the data, they 
DO NOT change the order of the data 



 

 Transformations -25- 

TTrraannssffoorrmmaattiioonnss
Log transformations 
Lognormal    Normal 

Y = log(Y) 
Log transformations are often useful for normalizing measurement data – 
use log(Y+c) where c is constant for data with zeros. 
 
Power transformations 
Poisson    Normal 

Y = n√Y  (i.e.Y= √Y, Y= 4√Y) 
Power transformations are often useful for normalizing count data – use 
4th root to correct more extreme skew 
 
Arcsine √ transformations 
Square    Normal 

Y = sin-1(√Y) 
Arcsine √ transformations are occasionally useful for normalizing 
proportions



 

 Transformations -26- 

EExxaammppllee  ––  LLoogg--ttrraannssffoorrmmaattiioonn  
 
Frequency distributions for raw and transformed (log10) 
Cl- concentration from forested North American 
streams.  (qk2002, Fig 4.9) 
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Log scale of X-axis 
mimics a log 
transformation 



 

 Outliers -27- 

OOuuttlliieerrss  

••  Observations very different from rest of the 
sample 
− identified as ∗ or o in boxplots (see slide 15) 

••  Observations that are far from fitted model 
− identified as large residuals from fitted model 
− can have large influence on estimates of model 

parameters and statistical tests 

••  Two types of outliers might be different 
− latter more important for linear models 
 



 

 Outliers -28- 

DDeeaalliinngg  wwiitthh  oouuttlliieerrss  
••  Check if outliers are mistakes 

− error in data entry or measuring equipment 
− if so, omit value 

••  Extreme values in a skewed distribution 
− transform data 

••  Alternatively, run analysis twice 
− outliers included vs outliers excluded 
− if outcome and conclusions differ then outliers are 

influential – consider robust analyses



 

 If assumptions are not met -29- 

IIff  aassssuummppttiioonnss  aarree  nnoott  mmeett  

••  Check and deal with outliers 

••  Transformation 
− might fix non-normality (and outliers) and unequal 

variances 

••  Alternative robust analyses 
 
 
 
 
 
 



 

 Alternative analyses -30- 

AAlltteerrnnaattiivvee  aannaallyysseess  

••  Generalised linear models (qk…) 
− models that can handle a range of distributions 
− mormal, log-normal, poisson etc. 
− require specific software (R, S-Plus etc.) 

••  Robust parametric tests (qk…) 
− can handle unequal variances 
− only for simple models (single predictors) 
 
 



 

 Alternative analyses (cont.) -31- 

AAlltteerrnnaattiivvee  aannaallyysseess  ((ccoonntt..))  

••  Non-parametric rank tests (qk…) 
− do not assume any specific distribution (e.g. 

normality) 
− usually assume equal distribution shapes 

between groups (i.e. equal variances) 
− only suitable for simple analyses – do not deal 

well with interactions or complex models 

••  Non-parametric randomization tests (qk…) 
− do not assume any specific distribution (e.g. 

normality) 



 

 Alternative analyses (cont.) -32- 

− only suitable for simple analyses – do not seem to 
deal well with interactions or complex models 

− useful for non-random sampling situations or 
unusual data types 

− require specific software 



 

NNoorrmmaalliittyy  
Normality refers to the state of a variable that is normally 
distributed.  The normal (or Gaussian) distribution is a 
symmetrical probability distribution with a characteristic bell-
shape.  Statistical procedures that use sample means to 

characterize populations, 
assume that the 
observations that make up 
the sample (and thus the 
population) are normally 
distributed.  Likewise, 

measures of the spread of data (often based on deviation 
from the center –mean) assume equal spread either side of 
the mean. 

Click anywhere to close
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HHoommooggeenneeiittyy  ((eeqquuaalliittyy))  ooff  vvaarriiaannccee
hypothesis tests for 

linear models (based on 
ordinary least squares 
estimation), assume that the 
response variable is equally 
variable at each level of the 
predictor variable (or 
combination of levels when 
multiple predictor variables).  
If this assumption is not met, 
interval estimates and 
statistical tests may be 
unreliable. 

Unequal variances are 
often the result of non-

normality.  When the 
response variable follows a 
lognormal or a Poisson 
distribution, a relationship 
between mean and variance 
(of the response variable at 
each level of predictor 
variable) is expected. Often, 
appropriate normalizing 
transformations will also 
improve the degree  of 
homogeneity.  Alternatively, 
unequal variances can also be 
caused by unusual values 
(ouliers). 

Click anywhere to close 



 

MMooddeell  ffiittttiinngg  
Statistical models are fitted to data to test the effect of one or 
more predictor variables (continuous or categorical) on a 
response (dependent) variable. Such models take on the form: 
 

response variable = model+error 
 
where the model component incorporates the predictor 
variable(s) and the parameters that relate each predictor 
variable to the response variable. 

Click anywhere to close 
 
 
 

 
 



 

LLiinneeaarr  mmooddeellss  
The term ’linear’ in linear model does not refer to the shape of 
the relationship between predictor variable(s) and the 
response variable. That is, it does not imply a straight-line 
relationship.  The term ’linear’ refers to the linear combination 
of parameters in the statistical model. That is, the parameters 
that relate the predictor variable(s) to the response variable 
are neither exponents, nor are they multiplied by or divided by 
any other parameter. 
 
Y = α × X + error and Y = Xα + error are linear models 
Y = 2α × X +error and Y = α/β × X + error are not 
 

Click anywhere to close 
 
 
 
 



 

SSttaattiissttiiccaall  nnuullll  hhyyppootthheessiiss  
Logically, predictions cannot be proved –only disproved. 

Therefore to investigate a hypothesis, we attempt to disprove 
a null hypothesis. A null hypothesis therefore covers all 
possible outcomes except the prediction in the hypothesis. 
 

A statistical null hypothesis is a null hypothesis 
expressed in terms of a statistical hypothesis test. For 
example a regression analysis tests the null hypothesis that 
there is no relationship between two (or more) continuous 
variables. Statistically, regression analysis tests whether the 
population regression slope between the variables is equal to 
0. 

Click anywhere to close 
 
 
 



 

LLiinneeaarr  rreellaattiioonnsshhiipp  
Unlike, in the phrase ’linear model’, the term ’linear’ in linear 
relationship or linear regression does refer to the shape of the 
relationship between predictor variable(s) and the response 
variable. A significant outcome from a linear regression, 
suggests that the response variable is linearly related to the 
predictor variable(s). Hence the relationship between one 
predictor variable and a response variable can be 
characterized by a straight line with a uniform slope and a y-
intercept: 
 
Y = intercept + regression slope × X 

Click anywhere to close 



 

PPaarraammeettrriicc  vvss  nnoonn--ppaarraammeettrriicc  
aannaallyysseess  

Parametric tests make distributional assumptions about the 
population(s) from which the data were sampled. Hence, they 
can only be applied to data from which the probability 
distribution(s) for the sampled population(s) can be specified.  
As an example, statistical tests that are based on the t 
distribution assume that the populations from which the 
samples were collected are normal. Contrastingly, 
nonparametric rank based tests do not make any 
distributional assumptions since they generate their own 
probability distribution for the particular test statistic. 
Observations are ranked and the ranks are then randomized a 
large number of times (each time recalculating the test 
statistic) to generate a probability distribution of the rank-
based test statistic. 

 Click anywhere to close 
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