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Outline

* Shortest path: Real-time application

» Framework for shortest path
in stochastic time-dependent networks

* Numerical results

« Conclusion
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Shortest Path: Real time application

Top = E"rODl D

t—I-TOA

Shortest path (least expected travel time): Toa + Tap < Top
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Congestion level (network state)

Time-dependent network state:  Toa(t) Tap(t+704)

Link is congested if DS>0.95 and Vk/Vo >2.4

Vo: # cars passed the detector (Vo), DS: degree of saturation value,
Vk: estimated traffic count having the same DS under free flow conditions

SWI N SWINBURNE
B U R UNIVERSITY OF
TECHNOLOGY
» N E ® Swinburne Intelligent Transport Systems Lab http://caia.swin.edu.au/cv/hvu/  hvu@swin.edu.au Page 10

Swinburne University of Technology



Spatial dependency
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Real Time

LET () = minfon)
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SWIN e LET: Least Expected Travel time
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Outline

» Framework for shortest path
in stochastic time-dependent networks
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The Framework

Bellman’s optimality equation:

up;(t) = m'“[ Z Pri;j (Ui;(8) + ui; (¢ + Uf;(2)))]

ukp(t) =0 . ukz’(t): LET between node i and the des-
tination node D at time t if the incoming
link (k,z) is in state s

time dependent : expected travel time between nodes
g7at time t € [7,, 7,41) under link state r

time independent
he prob. that link (i,7) is in state r
SWI N SWINBURNE v i i i i i i

e incoming link (k,i) is in state s
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Framework Cont.

M
uf,(t) = r;;ir;l[ 7 (t) +u§j(t+U£”j(t)))]

th(i,g)T
PO = [ Py, €)de ~ b Zpkw
h(i)r=1

Pij(t,g)dg is the prob. traveling from node ¢ to
J requires time between § and £ + dg,
t € [, Th41) given (k,i) is in state s

thi,j)r is the travel time threshold for link (i, 7)
to be in state r
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Temporal Dependency

- |

7, tE[ThTht1) Tha1
i
U (t) = 7y, t4 lij lij length of link (i,3)
gl S S,

n > 1 number of time zones a car crosses while
traveling link (4,7)

1 2
Ly = v 16 Thdn — Thtn—1)
l;j =0
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Outline

* Numerical results
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Simple Network
MW
interval (0.5)
(i, 1) 4 4 5
(i, 2) 5 5 6
(1,D) 5 5 4
(1,3) 4 4 3
(3,D) 3 3 5
(2,D) 4 4 5
2,4) 4 4 5
(4,D) 4 4 5
(i, 1) 15 15 16
! (i, 2) 14 16 14
(1,D) 15 15 17
(1,3) 16 15 15
(3,D) 15 16 14
(2,D) 14 16 16
2,4) 15 16 16
(4,D) 14 16 15
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Results 1

Route Actual travel Percentage difference
time (w2)

Method 1 Node i-1-D 19
Method 2 Node i-1-D 19 0
Method 3 Node i-2-D 21 0.11

Method 1 utilizes both temporal and spatial dependences (our framework)
Method 2 uses full travel time distribution [1]
Method 3 utilizes spatial travel time correlation only and is time-independent [2]

[1] Gao, S. and I. Chabini, “Optimal routing policy problems in stochastic time-dependent networks,” Transportation Research Part
B: Methodological, Vol. 40, No. 2, 2006, pp. 93-122.

[2] Fan, Y. Y., R. E. Kalaba, and J. E., “Moore, Shortest paths in stochastic networks with correlated link costs,” Computers and
Mathematics with Applications, Vol. 49, No. 9-10, 2005, pp.1549-1564.
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Grid Network
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Outline

« Conclusion
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Conclusion

» The proposed framework can achieve similar
accuracy with a much smaller set of parameters
compared to the case when the full joint distribution of
network travel times is required.

» Both temporal and spatial correlations are handled
while the framework remains simple.

* Improvements in optimal route choice decisions are
shown via examples.
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