

An opportunistic client user interface to support centralized ride share planning

Michael Rigby, Antonio Krüger and Stephan Winter

Geomatics Discipline Department of Infrastructure Engineering Melbourne, Australia

Opportunistic ride sharing example

THE EVOLUTION STARTS HERE

State of the Art

-Various commercial and personal centralized ride-share applications: CoWaG (GER), flinc (GER), Avego (USA), Zimride (USA), Coseats (AUS)

-Require <u>precise</u> spatio-temporal information about the client's origin and destination

-Apply <u>heuristics</u> for ride-matching

-<u>Scale and granularity</u> issues, e.g., rural vs. urban environments, exact pick-up or drop-off locations, or just the closest available.

State of the Art

-These require:

<u>Additional private information</u>, e.g., age, telephone numbers, first and last names, social media accounts (Facebook, Google+, etc.).

<u>Additional communication channels</u> for subsequent negotiations, e.g., to confirm pick-up and drop-off locations or visual identification, via e.g., voice or text.

Problem Statement

Existing ride-sharing systems are rigid. They rely on the communication of discrete spatio-temporal constraints and additional private information from both vehicle and client to perform ride-matching.

Problematic for two reasons:

Privacy issues, e.g. location, other meta data,
Ad-hoc communications cannot be immediately quantified.

Hypothesis

The proposed architecture provides an effective <u>client user interface</u> for use in ride-sharing applications.

Effective:

-The communication of all available rides satisfying a client's spatio-temporal constraints.

-The protection of the vehicle's current location and destination, and the client's current location.

Timegeography

Vehicle movement can be represented using timegeography concepts

1. Classical

Free space, Hägerstrand (1970)

2. Modern extensions

Network space, Miller (1999) Probabilistic, Winter (2009)

Vehicle accessibility

Launch pads

Visualized Launicht padse stability

Strategy

Launch Pads

-Communicate the vehicle's *local accessibility*, within the spatiotemporal limits of its OD constraints

-Discrete points in space-time — ideal for describing pick-up and drop-off options

-Visualised according to the service stability of the location

-Removes visual clutter in 2D

Proposed Strategy

Allow the client to explore mobility options in a mobile context, without (1) knowing the individual destinations of vehicles and (2) without revealing their own location.

OppRide strategy:

- 1. Intuitive visualisation of vehicle accessibility
- 2. Architecture protecting privacy client ↔ vehicle
- 3. Either human or autonomic driver vehicles

OppRide Architecture

-Centralized authority (a trusted entity) performs ride-matching

-Client creates a *mobility request*, selecting their destination <u>first</u>

-Vehicle launch pads are <u>only</u> revealed to the client if all of their OD constraints in their request can be satisfied:

-Origin point	-Departure time
-Destination point	-Arrival time

-Individual vehicle IDs hidden – only their potential is shown

-Upon selecting a pad, the client can make a *mobility contract* with the corresponding vehicle. After which the positions of both parties are shared.

Experiment Design

Experiment Design

-To test the effectiveness of our approach we develop a MAS -Repast, JAVA

-Micro level

-Abstracted (grid) transportation network

-Client and vehicle agent types

-Shortest path calculation: Dijkstra's algorithm

Service Coverage

-Observing vehicle accessibility only (we do not consider client constraints)

-Vehicle agents move between random O and D in zones 1-4, 6-9, around a centralized *service area* in zone 5.

-Observe the *service coverage* of vehicles with a flexibility of ¹/₃ their shortest path length:

→Vehicle diversity

The mean number of different vehicle agents observed per vertex, per time step

→Vehicle counts

The mean number of discrete vehicle agent visits per vertex, per time step

Probability of pick-up

-Introduce a client's OD constraints and observe their success of getting a ride within zone 5.

-Vehicle agents again move between random O and D in zones 1-4, 6-9.

-Observe a client's probability of pick-up whilst varying:

→Vehicle Agent Population size→Vehicle Agent Flexibility

Results – Service Coverage

Results – Service Coverage

Vehicle flexibility: ¹/₃

Population Size	Diversity	Counts
1	0.11	0.25
5	0.55	1.22
10	1.11	2.52
20	2.21	4.96
40	4.47	10.07

Significant service coverage exists with a sufficient population size

THE EVOLUTION STARTS HERE

Results – Pr

Greater flexibility

- Larger launch pads
- Greater probability of pick-up

THE EVOLUTION STARTS HERE

Discussion

Discussion

-Ride matching is a complex task.

-The observed results reflect the behaviour of transportation in reality

Private taxi -Unlimited flexibility

-Can satisfying a client's OD constraints with very high probability **Public bus**

-Fixed route, no flexibility

-Perchance intersection of client OD constraints with the bus' accessibility

-It is a system designer's responsibility to search for a balance between vehicle population size and flexibility

Proof of concept

-By quantifying flexibility and including this in a representation of a vehicle's accessibility we can see that latent potential exists for exploitation by clients.

-Effective in regards to communicating potential using launch pads concept -Effective in regards to protecting privacy using our OppRide architecture

-When used in a mobile context, OppRide can facilitate opportunistic ridesharing behaviour.

Conclusion

-Key Contributions:

- •Formal incorporation of flexibility into a representation of vehicle accessibility
- •Communication of vehicle accessibility using launch pads
- ■Architecture which protects privacy client ↔ vehicle
- -Balance is required between flexibility and vehicle population size

Further Work

-Continuous representation using OSM data (in progress)

-Negotiation of discretised pick-up and drop-off locations client ↔ vehicle

-Alternative ride-sharing architectures, e.g., landing pads, re-negotiation process, and multiple clients

-Effects of heterogeneous vehicle flexibilities and client preferences

-Applications of utility measures, .e.g., dynamic fare schemes, carbon emissions, etc.

Questions

rigbym@student.unimelb.edu.au winter@unimelb.edu.au krueger@dfki.de

Further Work

Example. Continuous WIP

THE EVOLUTION STARTS HERE