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Fundamental Diagram

» Consider a one-dimensional flow (vehicles along a freeway)

» The functional relationship between flow and density is the
fundamental diagram (Greenshields, 1935)

Open Problems
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» Consider a one-dimensional flow (vehicles along a freeway)

» The functional relationship between flow and density is the
fundamental diagram (Greenshields, 1935)
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Fundamental Diagram

» Consider a one-dimensional flow (vehicles along a freeway)

» The functional relationship between flow and density is the
fundamental diagram (Greenshields, 1935)
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» Intuitively makes sense to have a unimodal FD in one dimension
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Fundamental Diagram

» Consider a one-dimensional flow (vehicles along a freeway)

» The functional relationship between flow and density is the
fundamental diagram (Greenshields, 1935)
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» Intuitively makes sense to have a unimodal FD in one dimension
» What should happen in a network?
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Fundamental Diagram

» Consider a one-dimensional flow (vehicles along a freeway)

» The functional relationship between flow and density is the
fundamental diagram (Greenshields, 1935)

0.0 02 04 0.6 08 10
density

» Intuitively makes sense to have a unimodal FD in one dimension
» What should happen in a network?

» How should one even define network flow?
(No prescribed direction)
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Macroscopic Fundamental Diagrams

» Simplest idea: relate arithmetic means of link density and flow
» If network has link set A

p= IMZPA, |A|ZJ)\

AEA AeA
> p, is density of link A and J,, is its flow
-
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k* (vhAn-km) Mean global occupancy (%)
Geroliminis & Daganzo 2008 Buisson & Ladier 2009

Empirical data from Yokohama Empirical data from Toulouse
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Two Extreme Cases

» Existence of MFDs is trivial:
» If all links have the same FD
» and if the distribution of congestion is always perfectly uniform
» then network MFD coincides with common link FD
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Two Extreme Cases

» Existence of MFDs is trivial:

If all links have the same FD

and if the distribution of congestion is always perfectly uniform
then network MFD coincides with common link FD

This is not very interesting...
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Two Extreme Cases

» Existence of MFDs is trivial:
If all links have the same FD
and if the distribution of congestion is always perfectly uniform
then network MFD coincides with common link FD
This is not very interesting...
» Existence of MFDs is impossible:
» If one has a network and is free to vary the demand on each link in
any way imaginable, then no MFD can exist
» e.g. half the links have p) = 1 and other half have p) = 0, then
p=1/2andJ =0
> e.g. all links have px =1/2,thenp=1/2butJ >0
(could even have J = Jmax)
» Existence of MFDs clearly not independent of demand

v
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Two Extreme Cases

» Existence of MFDs is trivial:
If all links have the same FD
and if the distribution of congestion is always perfectly uniform
then network MFD coincides with common link FD
This is not very interesting...
» Existence of MFDs is impossible:
» If one has a network and is free to vary the demand on each link in
any way imaginable, then no MFD can exist
» e.g. half the links have p) = 1 and other half have p) = 0, then
p=1/2andJ =0
> e.g. all links have px =1/2,thenp=1/2butJ >0
(could even have J = Jmax)
» Existence of MFDs clearly not independent of demand
» MFDs are interesting because there is something in between

» In practice, on many networks the demand will rise and fall in a
fairly constrained way during a typical day

v
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What are MFDs?

Consider a fixed network with link set A
First of all, one needs to agree on what p and J mean.

> pa(t) and Jy(t) are stochastic processes
» Aggregate variables

plt) = 77 2 alt) I = 77 S ()

AEA AEA

» MFD is the relationship between EJ(t) and Ep(t)
» Can be interested in instantaneous or stationary MFDs
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What are MFDs?

Consider a fixed network with link set A
First of all, one needs to agree on what p and J mean.

> pa(t) and Jy(t) are stochastic processes
» Aggregate variables

1 1
p(t) = ng(t) J(t) = W;mt)

» MFD is the relationship between EJ(t) and Ep(t)
» Can be interested in instantaneous or stationary MFDs
» “Heterogeneity” is also important

h(t) = \/|l| S Ioa(t) - (O

A€

Helbing 2009; Mazloumian, Geroliminis & Helbing 2010;
Geroliminis & Sun 2011; de Gier, G & Zhang 2013
» J, p, hall stochastic processes
» In time dependent context, heterogeneity can explain hysteresis
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Asymmetric Simple Exclusion Process (ASEP)
“Everything should be made as simple as possible, but not simpler’
(Albert Einstein)

v

Want an Ising model of traffic flow

One-dimensional stochastic cellular automata very popular in
statistical mechanics starting in 1990s
» Such models do a reasonable job of explaining qualitative
behaviour of freeway traffic
» “Phantom” jams emerge as consequence of collective behaviour
Cellular automata are discrete dynamical systems

Space, time, and state variables are discrete

[T T T B T TTTTTTT1
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Asymmetric Simple Exclusion Process (ASEP)
“Everything should be made as simple as possible, but not simpler’
(Albert Einstein)
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Want an Ising model of traffic flow
One-dimensional stochastic cellular automata very popular in
statistical mechanics starting in 1990s
» Such models do a reasonable job of explaining qualitative
behaviour of freeway traffic
» “Phantom” jams emerge as consequence of collective behaviour

Cellular automata are discrete dynamical systems
Space, time, and state variables are discrete
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ASEP with open boundaries:
» If x1(t) = 0, then with probability o, x1(t+ 1) =1
» Foreachcelli=1,...,Lwith x;(t) =1
> If x;11(t) = 0 then with probability p, x;(t +1) = 0and x;;1(t+1) =1
> Else xj(t+1) =1
> If x.(t) = 1, then with probability 8, x,(t+1) =0
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Nagel-Schreckenberg process

» NaSch generalizes ASEP

[T T T T BT T T TTTTT]
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Nagel-Schreckenberg process

» NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]
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Nagel-Schreckenberg process

» NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

» Let x, and v, denote the position & speed of the nth vehicle
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Nagel-Schreckenberg process

» NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

» Let x, and v, denote the position & speed of the nth vehicle
» Let d, denote the gap in front of the nth vehicle
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Nagel-Schreckenberg process

v

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

v

v
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Nagel-Schreckenberg process

v

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

> V= min(va+ 1, Vinax)

v

v

v
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Nagel-Schreckenberg process

v

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

> V= min(va+ 1, Vinax)
> Vp — min( vy, dn)

v

v

v
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Nagel-Schreckenberg process

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

> V= min(va+ 1, Vinax)
> Vp — min( vy, dn)
> v, — max(v, — 1,0) with probability p

v
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Nagel-Schreckenberg process

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

[T T T T M TR T[T TT]

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

> V= min(va+ 1, Vinax)

> Vp — min( vy, dn)

> v, — max(v, — 1,0) with probability p

> Xp+> Xn+ Vp
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Nagel-Schreckenberg process
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» Vehicles can have different speeds 0,1, ..., Vimax
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Nagel-Schreckenberg process

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
The NaSch rules are as follows:

> V= min(va+ 1, Vinax)

> Vp — min( vy, dn)

> v, — max(v, — 1,0) with probability p
> Xn > Xnp+ Vo
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Nagel-Schreckenberg process

NaSch generalizes ASEP
» Vehicles can have different speeds 0,1, ..., Vimax

Let x, and v, denote the position & speed of the nth vehicle
Let d, denote the gap in front of the nth vehicle
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NetNaSch model

Goal: Minimal stat-mech model that can mimic realistic traffic signals
» Take multiple NaSch models and glue them together

3,83 4,04
» Need to include:
az,2 pz‘ gZ 'p3 as,Bs > Multi.ple Iang; with lane changing
2 » Turning decisions (random)
Y1167 d3|73 » Input and output
04 (endogenous/exogenous)
a1 pl‘ V4 ‘p4 6% » Appropriate rules for how vehicles
traverse intersections
ag,fs  az,f7

Varying all the ay, Bx, vx, O, Pn-.. cannot give an MFD
Varying a lower-dimensional space of parameters can
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Static demand — Approach to Stationarity
Generate MFD by setting ay = «, Sy = 8, va =y =0forall A e A

network flow

SCATS-L: isotropic and time independent rates (=0, &=0), p, = 0.1

05

O 1st fhr
0.451 X 2nd hr
A 3rd hr

0.4F O 4th hr
g@( %}m X sth hr

0.350 ) <] _sth hr

0 B 9 <%t+ 4

0.25F £ %3 %ﬁ <~}3®

02r 4 -

0.15F ég x

-]
0.1F SRS
0.05
% 02 0.8

0.4 0.6
network density

network density heterogeneity

o
N

o
o
@

o
-

o
1=
5]

o

0

Open Problems

SCATS-L: isotropic and time independent rates (=0, 8=0), p; = 0.1

O 1st hr
X 2nd hr
A 3rd hr
O 4th hr

5th hr
<] 6th hr

A
&
a2l

b

|

e 9,
PR
B |

o

iﬁ

iy

0.2

0.4 0.6
network density

0.8

» Intersections governed by model of SCATS with adaptive linking
» Instantaneous MFD converges to stationary curve

» Although there is uniform boundary demand, the density
distribution in the network is not homogeneous
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Static demand — Stationary MFDs

» Use MFDs to quantify performance of signal systems

Isotropic and time independent rates (y=0, 5=0) , p,=01at6 hr

O SOTL
0.45F X SCATS-L
o & A\ SCATS-F|

network flow
B
Fop
® 8
&
=

0 02 0.4 06 0.8 1
network density

Open Problems
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Static demand — Stationary MFDs

» Use MFDs to quantify performance of signal systems

Isotropic and time independent rates (y=0, 5=0) , p,=01at6 hr Anisotropic and time independent rates (=0, 3=0) , p. = 0.1 at 6 hr
0. T T T 0.5
O soTL O soTL
0.4s| X SCATS-L 0451 X SCATS-L|
g @ /\ SCATS-F| oz /A SCATS-F|
0.4f 0.4 1
o4 E;
0.35 A g 0.35 4 o
*
oA HA
= 03f : = 03l
] & & A0
£ o250 B A E 0.25- & %A
5 *x g #
S 02F £ 021
A B
0150 * 015 B el
[ @
0.1F K AT 0.1r %
0.05- 0.05 :
0 H H H H 0 1 1 A MXA
0 0.2 0.4 0.6 0.8 1 0 0.2 0. 0.6 0.8 1
network density network density

Isotropic boundary demand Higher demand on west side
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Static demand — Stationary MFDs

network flow

» Use MFDs to quantify performance of signal systems

Isotropic and time independent rates (y=0, 5=0) , p,=01at6 hr

O SOTL
X SCATS-L
A\ SCATS-F|

0 0.2 0.4 0.6 0.8

network density

Isotropic boundary demand
» Anisotropic demand can still produce well-defined MFD

network flow

Anisotropic and time independent rates (=0, §=0) , pr= 0.1at6hr

O soTL
X SCATS-L
A SCATS-F

WEL
=)

0.8

0. 0.6
network density

Higher demand on west side

Open Problems
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Self-organizing traffic lights

» SOTL is a toy model of a highly adaptive acyclic signal system
» Always gives green to phase with the highest demand

SCATS-L: isotropic and time independent rates (=0, 3=0), p =01 SOTL: isotropic and time independent rates (=0, 5=0), p =01
0.4 T 0.4
0O 1st hr 0O 1st hr
X 2nd hr X 2nd hr
0.35[1 A 3rd hr 4 &) % 03511 A 3rd hr
O 4th hr # ,% o X & O ath hr
3 A
> 03 sth hr <§(+ Pl X > 03 Sth hr
T <] 6th hr 4 3 <1 _6th hr
Sos : @ / o025 ol n &@\ X
go. I A® X@ X
3 ]
2 & £
2 02 Py = 02 E‘f
7] ]
0.15- 0.15
% P % o
£ A £ &
< 01 W c 01
§] X
005 0.05- =
e ‘ ol | ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
network density network density

» SOTL has lower heterogeneity than SCATS
» Accounts for its better MFD
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Time-dependent demand

» Vary «a, 5 over 24 hours to mimic am/pm peaks
» Hysteresis observed - clockwise and anticlockwise

SOTL: time dependent rates, n= 0.1(y=0,8=0)

* May 30, 2008 O 0~4hr

700 + June 6, 2008 X 4~8hr
June 13, 2008 A 8~12hr
O 12~16hr ||
z 000 ) 16~ 20nr | |
£ .
3 2
E 400 H
:
300
E
2
200
"
100
0 ] 0 ; .
0 5 10 15 20 25 30 (] 02 04 0.6 038 1
Mean global occupancy (%) network density
Buisson & Ladier 2009 Zhang, G & de Gier 2013

Empirical data from Toulouse Simulated data
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Time-dependent demand

» Hysteresis in MFD consequence of heterogeneity

SOTL: time dependent rates, p =0 1(y=0,8=0) SOTL: time dependent rates (=0, 5=0), pp=01
0.5 T T T T 0.4 T T T
O 0~4hr 0O 0~ 4hr
~ X 4~ 8ghr
X e 0.351 A g~12nr ]
A g~12hr
O 12~ 16hr
O 12~ 16hr 0al 16 ~ 20hr ||
16 ~ 20hr N /
2 ST
3 § 0.251 q
2 g
x 5]
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» Consider two adjacent networks (bins) exchanging vehicles
» Each bin has same well-defined MFD J(p)

dp1 a1 — biJ(p1) + p2J(p2) — p1d(p1)

L
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» Let bin 1 be boundary layer, bin 2 the interior
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Two-bin model

» Consider two adjacent networks (bins) exchanging vehicles
» Each bin has same well-defined MFD J(p)

dp1 a1 — biJ(p1) + p2J(p2) — p1d(p1)

dt L
dp2 @ — baJ(p2) + p1d(p1) — p2J(p2)
dt Ly

» Let bin 1 be boundary layer, bin 2 the interior
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Open Problems

Open Problems

» Can we observe anticlockwise hysteresis empirically?

» Can we understand cross-correlations between flow, density and
density heterogeneity?

» How does driver adaptivity affect the shape of MFDs?

» How should one partition networks in order to produce
well-defined MFDs?

» Several groups are attempting to use MFDs as a basis for
perimeter control?
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Paths

Consider a particular node nin a traffic network

Definition
A path P is an ordered pair of lanes
(A, M) with A € mnand X € nm’

» Vehicles can only move from one
link to another along paths

» Ignore the actual dynamics
through the intersection

» No cells in the intersection — we
use paths to glue the CA on
adjacent links together
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Phases

We can’t simply let all paths be traversed at once — vehicles would
crash inside the intersection

fd

P7IP6

Definition
A phase P of node nis a subset of the
paths belonging to n

» At each instant node n has a
current phase Peyrent

» Only paths in Peyrene May be
traversed

» Implement traffic signals using
phases

» Time t:
Pcurrent:P1 = {P1,...,P3}
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Phases

We can’t simply let all paths be traversed at once — vehicles would
crash inside the intersection

|

16] )

Definition
A phase P of node nis a subset of the
paths belonging to n

» At each instant node n has a
current phase Peyrent

» Only paths in Peyrene May be
traversed

» Implement traffic signals using
phases

» Time t + At:
Peurent = P2 = {Pa, ..., Pis}
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In order to model freeways or urban networks we need multiple lanes
and lane changing
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Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes

and lane changing
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is desirable

v

v

v

It dP > vP) the lane change is safe
If desirable and safe accept with probability pchange
Allow only left—right (right—left) at odd (even) time steps

af)

If min(vy + 1, d\"”, Vinax) > min(v, + 1, dh, Viax) the lane change
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Lane changing (topological)

» Red car:
not needed
not allowed

» Blue car:
| not needed
is allowed

» Green car:
needed

— B

|//l

» Each vehicle wants to be in a lane for which there exists a path
consistent with its desired turn

» Only allow dynamical lane changing if it doesn’t contradict
topological lane changing — only blue car can
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Boundaries

» We must consider open systems
» So some links only have one endpoint in the network

linked direction

I master node @ slave node

O non-subsystem node © boundary node

» Do not model traffic flow on boundary links

» Each boundary lane X has a fixed average density px
» This is a boundary condition
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Turning decisions

» Each vehicle should know which link it wants to turn into when it
reaches the end of its current link

» In this sense the model should be agent-based

» A sophisticated approach would use origin-destination data and
route planning algorithms

» We take a simple approach

» For each node n, inlink / = mn, & outlink /' = nm’, we input
P(/ — I') = P(vehicle on link / wants to turn into link /")

» Turning decision made when vehicle first enters a link
» Turning decisions affect lane changing dynamics
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Mark paths

L g /

Consider each lane X of each link /
Let v be the last vehicle on A
Suppose x(V) + v(v) > length()\)
If there exists P € Peyprent With:
> inlane(P) = A
» outlane(P) has unoccupied first cell
» outlink(P) = turn(v)

Then associate v «» P (in this case we say P is marked)
Else stop v at the end of A

vV v v Yy

v

v
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» If P must give way to another marked path P’ of n
» Stop the vehicle v « P on the last cell of inlane(P)

» Else move the vehicle v « P to the first cell of outlane(P)
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