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Fundamental Diagram
I Consider a one-dimensional flow (vehicles along a freeway)
I The functional relationship between flow and density is the

fundamental diagram (Greenshields, 1935)
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I Intuitively makes sense to have a unimodal FD in one dimension
I What should happen in a network?
I How should one even define network flow?

(No prescribed direction)
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Macroscopic Fundamental Diagrams
I Simplest idea: relate arithmetic means of link density and flow
I If network has link set Λ:

ρ =
1
|Λ|

∑
λ∈Λ

ρλ, J =
1
|Λ|

∑
λ∈Λ

Jλ

I ρλ is density of link λ and Jλ is its flow

Geroliminis & Daganzo 2008
Empirical data from Yokohama

Buisson & Ladier 2009
Empirical data from Toulouse
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Two Extreme Cases

I Existence of MFDs is trivial:
I If all links have the same FD
I and if the distribution of congestion is always perfectly uniform
I then network MFD coincides with common link FD

I This is not very interesting...
I Existence of MFDs is impossible:

I If one has a network and is free to vary the demand on each link in
any way imaginable, then no MFD can exist

I e.g. half the links have ρλ = 1 and other half have ρλ = 0, then
ρ = 1/2 and J = 0

I e.g. all links have ρλ = 1/2, then ρ = 1/2 but J > 0
(could even have J = Jmax)

I Existence of MFDs clearly not independent of demand
I MFDs are interesting because there is something in between
I In practice, on many networks the demand will rise and fall in a

fairly constrained way during a typical day
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What are MFDs?
Consider a fixed network with link set Λ
First of all, one needs to agree on what ρ and J mean.

I ρλ(t) and Jλ(t) are stochastic processes
I Aggregate variables

ρ(t) =
1
|Λ|

∑
λ∈Λ

ρλ(t) J(t) =
1
|Λ|

∑
λ∈Λ

Jλ(t)

I MFD is the relationship between EJ(t) and Eρ(t)
I Can be interested in instantaneous or stationary MFDs

I “Heterogeneity” is also important

h(t) =

√
1
|Λ|

∑
λ∈Λ

[ρλ(t)− ρ(t)]2

Helbing 2009; Mazloumian, Geroliminis & Helbing 2010;
Geroliminis & Sun 2011; de Gier, G & Zhang 2013

I J, ρ, h all stochastic processes
I In time dependent context, heterogeneity can explain hysteresis
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Asymmetric Simple Exclusion Process (ASEP)
“Everything should be made as simple as possible, but not simpler”

(Albert Einstein)
I Want an Ising model of traffic flow
I One-dimensional stochastic cellular automata very popular in

statistical mechanics starting in 1990s
I Such models do a reasonable job of explaining qualitative

behaviour of freeway traffic
I “Phantom” jams emerge as consequence of collective behaviour

I Cellular automata are discrete dynamical systems
I Space, time, and state variables are discrete

I ASEP with open boundaries:

I If x1(t) = 0, then with probability α, x1(t + 1) = 1
I For each cell i = 1, . . . , L with xi(t) = 1

I If xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t + 1) = 1
I Else xi (t + 1) = 1

I If xL(t) = 1, then with probability β, xL(t + 1) = 0
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Nagel-Schreckenberg process

I NaSch generalizes ASEP

I Vehicles can have different speeds 0, 1, . . . , vmax

I Let xn and vn denote the position & speed of the nth vehicle
I Let dn denote the gap in front of the nth vehicle
I The NaSch rules are as follows:

I vn 7→ min(vn + 1, vmax)
I vn 7→ min(vn, dn)
I vn 7→ max(vn − 1, 0) with probability p
I xn 7→ xn + vn
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NetNaSch model
Goal: Minimal stat-mech model that can mimic realistic traffic signals

I Take multiple NaSch models and glue them together

α1,β1

α2,β2

α3,β3 α4,β4

α5,β5

α6,β6

α7,β7α8,β8

γ1 δ1

γ2
δ2

γ3δ3

γ4
δ4

p1

p2 p3

p4

I Need to include:
I Multiple lanes with lane changing
I Turning decisions (random)
I Input and output

(endogenous/exogenous)
I Appropriate rules for how vehicles

traverse intersections

Varying all the αλ, βλ, γλ, δλ,pn... cannot give an MFD
Varying a lower-dimensional space of parameters can
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Static demand – Approach to Stationarity
Generate MFD by setting αλ = α, βλ = β, γλ = δλ = 0 for all λ ∈ Λ
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I Intersections governed by model of SCATS with adaptive linking
I Instantaneous MFD converges to stationary curve
I Although there is uniform boundary demand, the density

distribution in the network is not homogeneous
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Static demand – Stationary MFDs

I Use MFDs to quantify performance of signal systems
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I Anisotropic demand can still produce well-defined MFD
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Static demand – Stationary MFDs

I Use MFDs to quantify performance of signal systems
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Self-organizing traffic lights

I SOTL is a toy model of a highly adaptive acyclic signal system
I Always gives green to phase with the highest demand
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I SOTL has lower heterogeneity than SCATS
I Accounts for its better MFD
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Time-dependent demand
I Vary α, β over 24 hours to mimic am/pm peaks
I Hysteresis observed - clockwise and anticlockwise

Buisson & Ladier 2009
Empirical data from Toulouse
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Time-dependent demand

I Hysteresis in MFD consequence of heterogeneity
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Two-bin model
I Consider two adjacent networks (bins) exchanging vehicles
I Each bin has same well-defined MFD J(ρ)

dρ1

dt
=

a1 − b1J(ρ1) + p2J(ρ2)− p1J(ρ1)

L1

dρ2

dt
=

a2 − b2J(ρ2) + p1J(ρ1)− p2J(ρ2)

L2

I Let bin 1 be boundary layer, bin 2 the interior

Loading Recovery
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Open Problems

I Can we observe anticlockwise hysteresis empirically?
I Can we understand cross-correlations between flow, density and

density heterogeneity?
I How does driver adaptivity affect the shape of MFDs?

I How should one partition networks in order to produce
well-defined MFDs?

I Several groups are attempting to use MFDs as a basis for
perimeter control?
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Details of the model

Paths

Consider a particular node n in a traffic network

n

mn

nm′

Definition
A path P is an ordered pair of lanes
(λ, λ′) with λ ∈ mn and λ′ ∈ nm′

I Vehicles can only move from one
link to another along paths

I Ignore the actual dynamics
through the intersection

I No cells in the intersection – we
use paths to glue the CA on
adjacent links together
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Details of the model

Phases

We can’t simply let all paths be traversed at once – vehicles would
crash inside the intersection

n
P1

P2 P3

P4

P5

P6P7

P8

Definition
A phase P of node n is a subset of the
paths belonging to n

I At each instant node n has a
current phase Pcurrent

I Only paths in Pcurrent may be
traversed

I Implement traffic signals using
phases

I Time t :
Pcurrent = P1 = {P1, . . . ,P8}
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Phases

We can’t simply let all paths be traversed at once – vehicles would
crash inside the intersection

n

P9
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P14
P15

P16

Definition
A phase P of node n is a subset of the
paths belonging to n

I At each instant node n has a
current phase Pcurrent

I Only paths in Pcurrent may be
traversed

I Implement traffic signals using
phases

I Time t + ∆t :
Pcurrent = P2 = {P9, . . . ,P16}



Details of the model

Lane changing (dynamic)

In order to model freeways or urban networks we need multiple lanes
and lane changing

2 3

2 3

I If min(vn + 1,d (f )
n , vmax) > min(vn + 1,dn, vmax) the lane change

is desirable
I If d (b)

n ≥ v (b)
n the lane change is safe

I If desirable and safe accept with probability pchange

I Allow only left→right (right→left) at odd (even) time steps
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Details of the model

Lane changing (topological)

l′l′′ l′′′
l

l ′

l ′′

l ′′′

I Red car:
not needed
not allowed

I Blue car:
not needed
is allowed

I Green car:
needed

I Each vehicle wants to be in a lane for which there exists a path
consistent with its desired turn

I Only allow dynamical lane changing if it doesn’t contradict
topological lane changing – only blue car can
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Details of the model

Boundaries

I We must consider open systems
I So some links only have one endpoint in the network

I Do not model traffic flow on boundary links

I Each boundary lane λ has a fixed average density ρλ
I This is a boundary condition
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Details of the model

Turning decisions

I Each vehicle should know which link it wants to turn into when it
reaches the end of its current link

I In this sense the model should be agent-based
I A sophisticated approach would use origin-destination data and

route planning algorithms
I We take a simple approach
I For each node n, inlink l = mn, & outlink l ′ = nm′, we input

P(l → l ′) = P(vehicle on link l wants to turn into link l ′)
I Turning decision made when vehicle first enters a link
I Turning decisions affect lane changing dynamics
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Details of the model

Mark paths

l′,3
l

λ
l ′

I Consider each lane λ of each link l

I Let v be the last vehicle on λ
I Suppose x(v) + v(v) > length(λ)

I If there exists P ∈ Pcurrent with:
I inlane(P) = λ
I outlane(P) has unoccupied first cell
I outlink(P) = turn(v)

I Then associate v↔ P (in this case we say P is marked)
I Else stop v at the end of λ
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