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1. INTRODUCTION

The framework of abstract interpretation [Cousot and Cousot 1977] provides the

basis for a semantic approach to dataflow analysis. A program analysis is viewed as

a nonstandard, abstract semantics defined over a domain of data descriptions. An

abstract semantics is constructed by replacing operations in a suitable concrete se-

mantics with corresponding abstract operations defined on data descriptions. Pro-

gram analyses are defined by providing finitely computable abstract interpretations

which preserve interesting aspects of program behavior.

Describing program analysis as a nonstandard semantics is more than a theo-

retical exercise in aesthetics. The semantic approach allows us to focus on the

abstraction of data. The framework of abstract interpretation then determines an

abstract semantic domain and an abstract semantics. Formal justification of pro-

gram analyses is reduced to proving conditions on the relation between data and

data descriptions and on the elementary operations defined on the data descrip-

tions. This approach eases both the development and the justification of program

analyses.

In the case of logic programming languages, “data” corresponds to substitutions

and atoms. The basic operations on data typically include unification, composition

of substitutions, and projection of substitutions onto variables of interest. Proving

the safety of an abstract unification function is the major step in proving the safety

of abstractions for logic programs. Introductory material for the subject of abstract

interpretation of logic programs can be found for example in Debray [1992], Cousot

and Cousot [1992], Jones and S@ndergaard [1987], and Bruynooghe and Boulanger

[1994].

It is often the case that program analyses aim to provide a combination of dif-

ferent types of information. Typical examples in the context of logic programs

are analyses for: groundless and sharing [Codish et al. 1991; Jacobs and Langen

1992; Muthukumar and Hermenegildo 1992; Sszmdergaard 1986], modes and types

[Janssens and Bruynooghe 1992; Horiuchi 1992], sharing and freeness [Muthuku-

mar and Hermenegildo 1991; Sundararajan and Conery 1992], etc. Typically, such

combined analyses provide more information than that obtained by combining the

results of the individual analyses. Moreover, efficiency can also improve as the in-

creased precision reduces the number of irrelevant analysis paths which the abstract

computation is obliged to follow. However, the design, implementation, and formal

justification of combined analyses usually require new efforts which do not directly

benefit from previously designed analyses.

In this article we observe that in many cases it is possible to provide combined

analyses which benefit from previously defined analyses, maintain a high degree

of precision, and improve the efficiency of analyses. In particular, this is the case

when the analyses being composed contain a sufficient degree of ‘(overlapping”

information. For example, recent proposals to achieve better sharing analyses by

combining together the advantages of various old analyses [Cortesi and Fi16 1993;

Sundararajan and Conery 1992] can be derived automatically with little effort.

The theoretical background for the current article was laid down by Cousot and

Cousot [1979]. There, the authors illustrate that although some precision can be

gained by removing redundancies from combined domains, still further precision is
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gained by introducing new basic operations. Here, we focus first on the precision

that can be gained simply by removing redundancies. We illustrate for the case of

logic programs that this often provides a practical technique for providing precise

combined analyses. We also propose and illustrate an approach which allows deriv-

ing more precise information by removing redundancies and combining lower-level

operations in previously defined analyses.

The rest of the article is structured as follows. Section 2 reviews the theoreti-

cal background for our technique. This includes a brief introduction to abstract

interpretation following Cousot and Cousot [1977] as well as the definitions for

combining domains as given in Cousot and Cousot [1979]. We close Section 2 with

an example for logic programs which demonstrates how S@ndergaard)s domain for

(pair) sharing and groundless analysis [S@ndergaard 1986] can be constructed by

combining corresponding groundless and sharing domains. In Section 3 we in-

troduce an alternative domain for this type of analysis proposed in Jacobs and

Langen [1992]. We identify the advantages of the two alternative domains and

propose to provide the best of both worlds by combining the analyses respectively

described in Codish et al. [1991] and in Muthukumar and Hermenegildo [1992]

for these domains. Another example involves combining the sharing analysis of

Codish et al, [1991] with the Shari ng+Freeness analysis presented in Muthukumar

and Hermenegildo [1991] and Muthukumar et al. [1992]. Section 4 provides an

experimental evaluation of our approach. The combined analyses have been imple-

mented in the context of the &-Prolog compiler [Bueno et al. 1994; Hermenegildo

and Greene 1990; Muthukumar and Hermenegildo 1991; 1992] by reusing compo-

nents of previously defined analyses. The results obtained are at least as good

as those obtained in recently developed analyzers which completely redesign and

reimplement the basic operations. Finally, Section 5 concludes and proposes some

directions for further experimentation. This article is a revised version of Codish

et al. [1993].

2. BACKGROUND

In the following we summarize briefly the theory of abstract interpretation as de-

fined in Cousot and Cousot [1977]. The theory for combining domains follows the

description in Cousot and Cousot [1979].

Abstract Interpretation

We assume the standard framework of abstract interpretation as defined in terms

of Galois insertions.

Definition 2.1. ( Galois Insertion). A Galois insertion is a quadruple (E, a, D, y)

where:

(1) (E, ZE) and (D, LD) are complete lattices called concrete and abstract domains

respectively;

(2)a:E+ Dandy: D + E are monotonic functions called abstraction and

concretization functions respectively; and

(3) a(~(d)) = d and e ZE ~(a(e)) for every d E D and e E E.

In practice it is sufficient to specify only v (or a). In the following we adhere to

this policy.

ACM TransactIons on Programming Languages and Systems, Vol 17, No 1, January 1995



Improving Abstract Interpretations by Combining Domains . 31

T T

./\ /\
ev

‘\/+ Od\/
o 1

1,
-L

Fig. 1. Sign and Parzty lattices.

Ezampie 2.2. Let Sign = { 1,0, ~, ~,T } and Parity = { 1, od, ev, T } be

the complete lattices illustrated in Figure 1. Let

‘Y8*gn =

[

l~O,O~{O},+W{zlzZO},~~{z Izs O}, T+ Z};

?’parzty = J-%0, ev~{zlz mod2=O}, od+{z lzmod2=l}, T++ 2}.

The following specifies the notion of approximation which is then lifted from the

primitive domains to function domains:

Definition 2.3. (Approximation). Let (E, a, D, y) be a Galois insertion, and

let p : E --+ E and ph : D + D be monotonic functions. We say that d c D -y-

approximates e c E, denoted d cxy e, if e GE ~(d). We say that pd y-approximates

p, denoted p~ cc~ p, ifVd ~ D. e 6 E. d cc~ e * p~(d) cc7 p(e).

Example 2.4. Consider the functions: inc, dec, oh : 2? --+ .Z defined respec-

tively by Jx. x + 1, Az.x – 1, and AZ.Z div 2. Possible approximations for these

functions over Sign and Parity are given by:

1 0 + ~ T 1 od ev T

inc$ 1 + ; T T inc~ 1 ev od T

dec~ J- – T – T dec~ 1 ev od T

div~ -L 0 + – T div~ 1 T T T

Concrete semantics are typically defined as least fixed points of an operator on

programs. Typically, the meaning of a program P may be expressed as [P] =

lfp(fp) where fp : Den --+ Den is a monotonic operator on a domain of denota-

tions Den. A program analysis will typically be defined by introducing an ap-

propriate Galois insertion (Den, a, Den~ , ~) and constructing an approximation

fj$ : Den~ + Den~ of fp so that the least fixed point of f$ is finitely computable.

This construction often takes a systematic approach which involves replacing the

basic operations in the concrete semantic operator fp by corresponding abstract op-

erations in f$ (e.g., Cousot and Cousot [1992] and Nielson [1988]). Given that these

abstract operations approximate the concrete operations it is generally straight-

forward to prove that the derived abstract semantic operator approximates the

concrete semantic operator. The fundamental theorem of abstract interpretation

provides the following result:

THEOREM 2.5. Let (E, a, D, ~) be a Galois insertion, and let M : E + E

and p* : D + D be monotonic functions such that PA -y-approximates p. Then

~fP(PA) % ~fP(P) .
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The “d” of abstract interpretation can be described as involving the following

steps: (1) to choose an appropriate concrete semantics; (2) to identify a suitable

notion of data description; and (3) to provide good approximations of the basic

operations in the concrete semantics. Once this is done the foundation is laid for

deriving, more or less automatically, a semantics-based program analysis. APPIY-

ing suitable optimization to the fixpoint algorithm used in the description do-

main, an analysis that is also efficient can be built essentially automatically from

it [Bruynooghe 1991; Muthukumar and Hermenegildo 1992; Le Charlier and Van

Hentenryck 1994]. In the case of logic programs the main step is to provide a notion

of abstract substitutions and an abstract unification algorithm. Other operations

include “projection” and “composition” which safely project (i.e., on a finite set of

variables) and compose descriptions.

The subject of this article is centered around the practicality of given an ap-

propriate concrete semantics — point (1) above — and having found two or more

notions of description — point (2) above — together with corresponding approx-

imations of the basic operations in the concrete semantics — point (3) above —

automatically constructing an approximation of the basic operations for a combined

notion of description. Given this construction a combined analysis is derived by

abstracting the concrete semantics.

Direct-Product Analysis

Let E be a concrete domain, and let (E, a,, D,, ~, ) i E { 1,2 } be Galois insertions.

The direct-product domain is a quadruple (E, CYX,D, -yX) where D = D1 x Dz,

7X : D -+ E is defined by A(dl, d2).yl(d1) flE~2(dz), and aX : E --+ D is defined by

~e.(a~(e), az(e)).

The direct-product domain is not a Galois insertion. Consider for example the

domain Parity x Sign (see Example 2.2). Observe that aX (YX (T, O)) = CYx({O}) =

(ev, O) which is in violation of Definition 2.1. However, given a function p : E + E

and corresponding y,-approximations p# : Dz + Di for i E { 1, 2 }, the direct-

product function p: : D --+ D defined by ~(dl, d2). (,u#(dl), p~(d2)) is a yX -

approximation of p. The direct-product function corresponds to performing the

independent analyses p~ and p$.

Following Cousot and Cousot [1979] we proceed to lift the direct-product domain

by considering the equivalence relation induced by y,. This provides a Galois

insertion. Moreover, sharper analyses can be obtained by performing operations on

the new reduced-product domain.

Reduced-Product Analysis

Let (E, a,, Dt, v, , z ~) {1,2}, be Galois insertions, and let (E, aX, D, VX) be the

corresponding direct-product domain. The relation s ~ D x D induced by 7X is

defined by d ~ d’ e YX ( d) = 7X( d’). The reduced-product domain is a quadruple

(E, a., D=, 7*) where a, : E + D= is defined by Ae. [a X(e)]= and where Vi : D= --+

E is defined by ~ [d] ~. -yX ( d). It is straightforward to show that the reduced-product

domain is well defined and is a Galois insertion,

Let p : E + E be a concrete function, and let p; : D, + D,, i c { 1,2 }, be

corresponding Tz-approximations. The reduced-produci, function pf : D= + D= is

defined by ~[d]~. [(p~(dl), ,@(dz))]= where (all, dz) = n~ [d]=, namely, the smallest

ACM Transactmns on Pro~amming Languages and Systems, Vol. 17, No, 1, January 1995
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represent ative of the equivalence class [d] ~. It is straightforward to show that

the reduced-product function p: is well defined and is a ~,-approximation of p.

Moreover, in general the reduced-product function is no less precise than the direct-

product function. Example 2.6 illustrates that p: is potentially more precise than

A The reduced-product function corresponds to performing the original analysesP. .

over the reduced-product domain, namely, over a domain of representatives that

contain no redundant information. In practice, a constructive definition of the

reduced-product function must be given. Intuitively, this involves specifying how

the smallest representative of an equivalence class is to be found. Formally, one

should prove (a) that a representative of the equivalence class has been chosen —

correctness; and (b) that the representative is minimal — optirrzality.

Example 2.6. Consider the following program fragment under the initial as-

sumption that z = O. A parity analysis will start with the abstract initial invari-

ant x = ev while a sign analysis will begin with the assumption z = O. After

considering the first program statement the direct- and reduced-product analyses

give respectively div~ (eu, O) = (T, O) and div~(ev, O) = (T, O)=. In the reduced-

product domain (T} O) - ( eti, O) so after considering the second program statement

the reduced-product analysis gives inc~ (T, 0)= = ( OO!,~) ~ which is more precise

than the corresponding direct-product analysis inc~ (T, O) = (T, ~).

F
J{X=o}

Fz:=zdiv2

{Z=o}

F

Z:=a+l

{X=l}

direct-product

analysis for s

{ (ev,o) }

{ (To)}

{ (T>+)}

Example 2.6 demonstrates how considering t

reduced-product

analysis for z

{ (Cv?o) }=

{ (Cv!o) }=

{ (od,+) }_—

e interaction between the analysis
domains can sharpen precision. However, further precision may be obtained by

redefining the abstract operations:

Example 2.7. Define dec~ : (Parity x Sign)= ~ (Parity x Sign)= such that

dec~ is the same as dec~ except that dec~ ( od, ~) = ( ev, ~). This is clearly safe

and provides a potentially sharper analysis.

program reduced-product reduced-product

fragment analysis analysis with:
dec~(od, ~) = (ew, ~)

J
{X=l}

{ (Od,+) }= { (Od)+) }=

F

m:=z —1

{X=o}
{ (ev,T) }= { (eti>+) }=
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An

As

for

unification direct-product reduced-product

analysis analysis

({x },{ })

{EL}

({x },{ })

J
({x, Y },{ (x, Y), (Y, Z), (X, Z) }) ({ X, Y},{ })

Fig. 2. Direct- and reduced-product analyses.

Example for Logic Programs

a simple example for logic programs, we illustrate how S@ndergaard’s domain

sharing and groundless analysis [S@ndergaard 1986] can be represented as the

reduced product of corresponding sharing and groundless domains. The resulting

reduced-product analysis is equivalent to that derived from the abstract unifica-

tion of Codish et al. [1991] for this domain. First we provide some preliminary

definitions:

Let Var denote an enumerable set of variables and PVar < Var a distinguished

(enumerable) set of variables which may occur in programs. Let Sub denote the set

of idempotent substitutions. Informally, a set of program variables {zl, . . . . z~} ~

PVar share or are aliased if in some execution of the program they may be bound

to terms il, . . . , in, such that va~s(tl) n . . . n vars(tn ) # 0. A program variable is

ground if it is bound to a term t such that vars(t) = 0. A program variable is linear

if it is bound to a term which contains only single occurrences of variables.

Definite groundless information is described by means of a set of program vari-

ables: D1 = 2pvar. Possible (pair) sharing information is described by symmetric

binary relations on PVar: D2 = 2(pvarxpvar). For a relation R E Dz, xRy denotes

that x and y are bound to terms which may share a variable; ZRZ denotes that

x is bound to a possibly nonlinear term. For convenience we will let an arbitrary

relation R on PVar denote the smallest symmetric relation which contains R.

Example 28 Consider the (abstract) unification h( U, U, g( U, V)) = lL(X, Y,

Z) under the abstract substitutions { X } E D1 and 0 E D2 specifying that X is

definitely ground and that there is no possible sharing between the other variables

which are definitely linear. A simple groundless analysis will determine that after

the unification the variablm { X, Y, U } will be ground. A (pair) sharing analysis

which does not consider information in D1 may determine that after unification

there is at most sharing between {(X, Y), (Y, Z), (X, Z), (X, U), (Y, U), (Z, U),

(Z, V)}. The same analyses performed on a reduced-product domain will eliminate

the sharing on ground variables. Figure 2 illustrates the results of these analyses

reflected on the variables { X, Y, Z }. Such an analysis is described in Codish et al.

[1991] as a formalization of S$ndergaard [1986].

In the following section we present a more complex example and propose an

approach to provide better precision by removing redundancies at intermediate

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 1, January 1995
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unification I ASub Sharimz

I

Fig. 3. Pair- and set-sharing analyses.

lower-level steps of abstract unification.

3. COMBINING SET SHARING WITH PAIR SHARING

The following illustrates the practical benefit of combining domains for a somewhat

more realistic example. We consider the combination of two different sharing anal-

yses, one over the domain ASub of S@ndergaard [1986] and another one over the

domain Sharing of Jacobs and Langen [1992].

The domain ASub is that described above as the reduced product D1 * D2. An
abstract substitution (G, R) c ASU b describes those substitutions which make (at

least) all the variables in G ground and have no more pair sharing than specified

by R. The concretization function, 7A,Swb : A Sub --+ 2sub, is defined by

{

V(z, y) E PVar2 : ( z E G + gmwd(zO) )

‘YAS.b(G, R) = @ ( z # ?J A Vrz?’s(ze) n Va?’s(yo) # 0 * z R

( z Jt z * linear(d) )

The Sharing = 22pvar domain keeps track of set sharing. The

A

}

y)A.

concretization

function is de%ned in terms of the occurrences of a variable U in a substitution:

Occ$(e, u) = {x Gdom(e) I u 6 ws(xe)}.

If OCCS(O, U) = V then 6 maps the variables in V to terms which share the variable

U. The concretization function ysha~,~g : Shuring -+ 2 ‘Ub is defined as follows:

‘2’Sh..wg(fi) = {o E sub I VU ~ Var. OCCS(6,U) E K,}.

As mentioned before, the abstract substitution is composed of sets of program

variables. Intuitively, each set in the abstract substitution containing variables

VI,. . . , Vn represents the fact that there may be one or more shared variables oc-

curring in the terms to which VI, . . . . Vm are bound. If a variable v does not occur

in any set, then there is no variable that may occur in the terms to which v is

bound, and thus those terms are definitely ground. If a variable v appears only

in a singleton set, then the terms to which it is bound may contain only variables

which do not appear in any other term.

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 1, January 1995
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The advantage of the ASU b domain is that it captures information about linearity

which is not captured in Sharing. In ASub whenever a term is known to be linear

it is possible to infer that the variables contained in the term do not share, while

in Sharing such sharing must be assumed. On the other hand, the Sharing domain

is more powerful in the way groundless is propagated among variables. The rea-

son is that Sharing not only represents when two terms possibly share, but also

which variables are possibly shared and which are definitely not shared. Thus, it

can represent that a set of terms share all their variables, and therefore infer the

groundless of one term from the groundless of the others.

These differences make the two abstract domains incomparable in the sense that

each gives better results for some programs [Bueno et al. 1994; Cortesi et al. 1992].

Several attempts have been made to enrich one domain or the other to give better

results [Cortesi and Fil& 1992; Sundararajan and Conery 1992]. Other combinations

focus on adding other types of information while at the same time improving the

sharing information [Muthukumar and Hermenegildo 1991]. These attempts all

involve redefinition of the basic operations for the new domains. We propose the

reduced-product domain as the straightforward way to obtain a combined analysis.

Moreover, we claim that reasonable precision can be maintained without redefining

the abstract unification algorithms.

It is important to note that since the reduced product is defined for two ab-

stract domains and their abstraction (or concretization) functions, once the reduced

product has been determined for them, it can be used with any abstract unifica-

tion algorithm defined for the original abstract domains. In fact, in the following

examples and in the evaluation of the technique given in Section 4, the abstract

unification algorithms used are the respectively improved versions [Codish et al.

1991; Muthukumar and Hermenegildo 1992] of the abstract algorithms originally

given for each domain.

Example 3.1. Consider the unification p(X, Y, Z) = p(a, f(A, B), C) with a

call pattern of the form { X w U, Y w f(U, V), Z t+ j(U, W) }, namely, where

X, Y, and Z are bound to linear terms which share a common variable. Figure

3 illustrates the results of abstract unification for the domains ASU b and Sharing.

The square boxes indicate redundant information.

The Sharing analysis indicates that the pairs (Y, Z), (Y, C), (A, Z), (A, C),

(B, Z), (B, C) in the ASub analysis are redundant since they are not subsets of a

set obtained by the Sharing analysis. On the other hand the AS ub analysis indicates

that the set {Y, A, 1?} in the Sharing analysis is redundant since (A, l?) is not in

ASub. Hence a reduced-product analysis would result in {{X}, {( Y, -4), ( Y, ~), (Z,

C)}} for ASub and {0, {Y, A}, {Y, B}, {Z, C}} for Sharing.

In the cent ext of this example, we adopt the following Reduce function which

yields the minimal representative of an element of the reduced product given an

arbitrary representative.

Definition 3.2.

Reduce : ASub x Sharing + ASub x Sharing : ((G, .R), 5’) H ((G’, ~’), .$’)

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 1, January 1995
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equations I pair X set sharing

J’

{

w’=f(A, B),

X =f(a, a),

Y= A,Z=B

{

W= f(/t, B),

x =f(a, a),
Y= A,Z=B

J’

{

W= f(A, B),

x =f(a, a),
Y= A,Z=B

J’

{

W= f(A, B),

x = ?(U, a),
Y= A>Z=B

}

0,

}

}

{x},

}

{x

{

~ (x, Y), (Y, Z),

}{

O,{x, Y, Z}, {X}, {Y},

‘ (x)z) ‘ {Z}, {W}, {A}){B}
}

{l%’;:’;~’}’{ )
O,{x, Y, Z}, {X}, {Y}, {Z},

{A, W}, {B, W},-]

{1
(A, W), (B, W), (A, Y), (W, Y),

(Y, Z), (A, Z), (W, Z) I
}{~,}

(A, W), (B, W), (A, Y),
(lV,Y),(B,Z), (W, Z),

m ]{

@,{B, W, Z),
{A, W, Y},

I{A)B, w, Y,z}]

Fig. 4. Applying Reduce at intermediate steps.

where

s’ =
@ =

G’ =
Pairs(s) =

{s E S I sn G = 0, Pairs(s) ~ l?},

R n ($p~, s x s),

g?’owui(s’),

{(x, Y) Esxslx #Y}.

The idea is that Reduce removes redundancies from the representation of an

abstract substitution while preserving its meaning. This is achieved by: (1) elim-

inating from S those sets which indicate sharing not present in (G, R), obtaining

S’; (2) eliminating from R those pairs which indicate sharing not present in S’,

obtaining R’; and (3) deriving those variables which are ground according to S’,

obtaining G’. Proving the correctness of Definition 3.2 is not difficult. It is similar

to proving correctness of the other abstract operations. Showing that it is optimal

— that it provides a minimal representation — is more difficult. It involves show-

ing that an element with more groundless or less (pair or set) sharing violates the

correctness condition.
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An additional gain in precision can be obtained if redundant information is re-

moved not only after each basic operation (abstract unification), but also at interme-

diate steps inside the implementation of the corresponding algorithms. We illustrate

this point for the combination of the ASU b and Sharing domains. The abstract uni-

fication algorithms for the ASub and Sharing domains defined in Codish et al. [1991]

and Jacobs and Langen [1992] both follow the same basic strategy when solving an

abstract unification E&i consisting of an equation E and an abstract substitution 6,

namely, first reducing the equation E to a solved form rngu(E) = { el, . . . . en}, and

then solving each of the abstract equations eZ6, in turn with 61 = 6 and 6,+1 the

solution of eZ6Z. Consequently, the Reduce function can be applied at the interme-

diate steps after solving each equation in the process. Removing redundancies at

intermediate steps improves both precision and efficiency of analyses. The following

example demonstrates this point.

Example 3.3. Consider E = {p(W, X, Y, Z) = p(f(A, B) If(a, u), A, B)}, with

rngu(E) = {W = ~(A, B), X = ~(a, a), Y = A, Z = B}, call substitutions U!l =

(0, {(X, Y), (Y, Z), (Z, X)}) c ASub and d,= {0, {X, Y, Z}, {X}, {Y}, {Z}, {W},

{A}, {B}} E Sharing.

Figure 4 contains the results at the intermediate steps of the (combined) abstract

unification algorithm in the case of a direct-product analysis. The sharing infor-

mation in boxes is removed if the Reduce function is applied at intermediate steps

in the algorithm. If intermediate redundancies are not removed then the result is

less precise (indicating that Y and Z possibly share).

4. EVALUATION

This section presents and compares the analysis results obtained for the following

domains:

m

The analyses for the domains P, S, and SF are based on the algorithms described

in Codish et al. [1991], Muthukumar and Hermenegildo [1991; 1992], and Muthuku-

mar et al. [1992] respectively. The implementations for the reduced-product anal-

yses are provided through the Reduce function specified in Definition 3.2. In the

present implementation the Red uce function is not applied at intermediate steps of

the abstract unification algorithms. The analyses have been performed within the

framework of the &-Prolog compiler. This framework, implemented in Prolog, is

based on the abstract interpretation framework of Bruynooghe [1991], optimized

with the specialized domain-independent fixpoint algorithm defined in Muthuku-

mar and Hermenegildo [1992]. The framework is based on a collecting semantics

which specifies both answer substitutions for the initial goal as well as the inter-

mediate bindings of variables before and after each call in the body of a clause.

Approximations of these intermediate bindings are relevant for many applications

such as, for example, program parallelization. The choice of abstract domain is a
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Table I. Program Sizes and Analysis Times

Program sizes Analysis times in milliseconds

Program # clauses # Vars s P SF P*S

serialize 12 44 9290 839 2620 1870 2530

init-subst 14 53 569 1250 660 829 1080 1

II zrammar II 16 I 17 II

[
deriv 62 170 2819 2630 , w.. -

rdtok 68 196 5670

P*S

Lumap-color 13 25 4600 1040 1629 5760 2939

170 140 250 269 349

browse 38 115 51860 1609 25559 49590 29549

bid 53 98 1129 1000 1259 1429 1759
7110 3550 4289

4450 6879 6389 11510

I read Ii 92 I 3 I144 8790J 8380 9760 11069 12919

boyer 146 118 11040 3949 14600 7709 10480

peephole 155 357 20760 7990 14890 23029 25589

ann 222 594 93509 16789 44639 53269 65269

parameter of the system passed to the fixpoint algorithm which in turn calls the

appropriate abstract operators. The system thus allows the comparison of precision

of different analyses as well as of their relative efficiency.

The abstract operations for the domains S and SF were already supported by

the existing implementation of the framework. In order to provide the results for

the combined analyses, an implementation of the operations for the P domain was

added. Once this was done, integrating the P * S and P *SF analyses in the system

required a few additional lines of code which, each time an abstract function is called

by the fixpoint algorithm, calls the corresponding abstract functions (e.g., for P and

for S), performs the Reduce function over the information inferred by each analyzer,

and returns the resulting information to the fixpoint algorithm.

When comparing the accuracy of the various analyses we consider a variety of

criteria including information about groundless, linearity, pair sharing, and set

sharing. The pair sharing of an element S of Sharing is obtained as

{ (X, Y) E s x s I s s S }. Similarly, the set sharing of an element (G, R) of ASub
is obtained by considering the independent components of the transitive closure of

R and removing the redundant sets as in the computation of S’ in Definition 3.2.

The programs used in our evaluation are a standard set of benchmark programs.

A description of the programs can be found in Codish et al. [1993]. Table I

lists the programs, notes their sizes, and shows the analysis times in milliseconds

(SparcStation IPC, Sicstus 2.1, native code). Size measures include the number

of clauses and variables in the program. When counting clauses we note that the

original programs are transformed to remove ‘~if-then-else” and “or” structures from

all clauses. Moreover, we do not count variables in facts because the analyses collect

information about facts in the clauses that call them.

Example 4.1. Figure 5 illustrates the output from the set-sharing analysis S

(on the left) and from the reduced-product P% analysis (on the right) for one

clause of the serialize program. The results of the analyses are indicated as

comments within the text of the clause. The %S and xP notations indicate respec-

tively information from the Shari ng and ASU b domains. For this clause we count 65

possibly shared sets in the Sharing analysis in contrast to the more precise 9 in the

reduced-product analysis.
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arrange ([ Xl L], tree(Tl, X,T2)) :-

%S [[X] ,[X, L] ,[x,L, Tfl, [x, L, Tl, T21 )

X [x, L, T21, [X, Tll, [x, Tl,T21, [x>T2]

% 3ELI$CL3TII, [L, TI, T21, [L, T2], [TI
% 1, [TI, TZI , [T21 , [LII , [L211

split (L, X, Ll, L2) ,

%S [[X] ,[X,L] ,[X,L,T1l, [X, L, T1,T21 ,

% [x, L, TI, T2,L11, [x, L, TI, T2,LI,L21

% ,[X,L, TI, T2,L21, [X, L, T1,LII, [X,L

% ,TI, L1, L21, [X, L, TI,L21, [X, L,T21,

% [x, L, T2, LIl, [X, L> T2, Lt, L2]>[x,L,

% T2,L21 ,[X,L,L1l, [X, L, L1,L21 ,[X,L

x ,L21, [X, T1l, [X, T1, T21, [X, T21, [L,

% T1, T2, LII, [L, T1, T2,L1,L21, [L, TI,

% T2,L2] ,[L, T1,L1l, [L, T1,L1,L21 ,[L

% ,TI, L2] ,[L, T2, L11 ,[L, T2, L1, L2H, [

% L, T2,L21 , [L,LII ,[L,L1,Lz1 >[L,L21

% , [TII , [Tl ,T21 , [T211

arrange (LI , T1 ) ,

%s [[xl ,[X, LI, [X, L, TI, T2,LII, [X, L,

% T1, T2, L1, L2] ,[X,L, T1, LI], [X,L, TI

% ,L1,L21, [x, L,T21, [x, L, T2,L21, [x,

x L,L21 ,[X, T21, [L, TI$T2$L11, [L, TI,

% T’2,L1,L21 ,[L, T1,LII, [L, TI,L1>L21

z , [L, T2 ,L21 , [L,L’21 , [T211

arrange (L2, T2) .

xs [[xl, [x, L], [X, L, Tl, T2,Ll,L2], [x,

% L, T1, L1] ,[X, L, T2, L21 ,[L, T1, T2,LI

Z ,L2] ,[L, TI,L1l, [L, T2,L211

arrange ([X IL] ,tree(Tl, X, T2)) :-

%S [[X], [L], [TII , [T21 , [Lll , [L211

%P [1, [1

split (L, X, Ll, L2),

M [[xI >[X,L] , [L,LII , [L,L21 , [TII , [T211

%P [1 ,[[L,LI, [X, LI, [L, L1l, [L,L211

arrange(Ll ,Tl) ,

%s [[xl, [x, L], [L, Tl,Lll, [L,L2] ,[T211

%P [] ,[[L, L], [L1, LI] ,[L,T1], [L,L1] ,

% [L,L21 , [X,L~ , [T1,LI]I

arrange(L2 ,T2) .

M [[X] >[X,L] ,[L, T1>L1l, [L, T2,L211

~P [I, [[L, LI, [LI, LII ,[L2, L21 ,[x,Ll ,

% [L, TII ,[L, T21 ,[L, L1l, CL, L21,

~ [TI, LII >[T2>L211

Fig. 5. Example output for Sharing and reduced-product analyses.

Results

Table II indicates the total number of pairs and sets which possibly share in the

S, P, and SF analyses and for the reduced-product analyses. Apart from the

init-subst benchmark, the results for pair sharing in the reduced-product analyses

are almost identical to those in the F’ analyses. Note that the numbers here refer

to the amount of possible sharing, and hence more precise analyses indicate less

sharing.

In addition, we have found that for our benchmarks, all analyses give almost the

same groundless information, with one exception. In init -subst, the S analysis

(as well as the reduced-product analyses) derives 126 definitely ground occurrences

of variables in the various program points whereas the P analysis finds only 33

such occurrences. Those unrecognized ground variables are at the origin of the

great difference in shared pairs between the P analysis and the P * S analysis in

the init-subst benchmark already mentioned above,

For set sharing however, the reduced-product analyses give significantly better

information than the S analysis for several benchmarks. Also the time needed to

perform the reduced-product analysis is often significantly better than the time

needed to perform both analyses separately. Finally, we observed in our experi-

ments that the reduced-product analysis does not improve the linearity information

derived by the P analysis.
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Table II. Number of Shared Pairs and Sets in Analysis Results

no. of shared pairs no. of shared sets

Program s P SF P*S P*SF s P SF P*S P*SF

serialize 235 35 137 35 35 502 41 208 24 24

init-subst 5 72 5 5 5 5 92 5 5 5

map-color 76 74 73 73 73 108 145 101 101 101

gra-ar 11 11 11 11 11 5 14 5 5 5

browse 196 104 167 104 104 671 606 628 547 547

bid 11 0 0 0 0 17 0 0 0 0

deriv o 0 0 0 0 0 0 0 0 0

rdt ok 185 48 51 48 48 219 57 47 44 44

read 11 1 1 1 1 12 1 1 1 1

boyer 242 93 222 93 93 417 132 375 100 100

peephole 386 310 310 310 310 623 579 417 417 417

ann 1935 1690 1694 1690 1690 3230 6447 2543 2543 2543

Discussion

The first observation is that the results obtained for the reduced-product analyses

are at least as precise as (and often more precise than) those obtained by the

individual analyses. It is also interesting to note that P*SF does not improve the

results of P*S in terms of sharing (although it of course provides additional freeness

information). This is not surprising since freeness information provides only a

restricted form of linearity information, i.e., that obtained from the knowledge that

any free variable is also a linear term. Thus, P*S seems an excellent sharing analysis

for the benchmarks used.

Although not of direct relevance to domain combination issues, the results provide

an interesting comparison of the domains P, S, and S1’. We observe that linearity

information (present in P, not present in S, and partially present in SF) proves to

be a powerful instrument for increasing the accuracy of sharing analyses.

Although it is easy to contrive examples for which the domains which capture set

sharing provide a more powerful groundless propagation, it is interesting to note

that in practice all oft he domains provide almost identical groundless information.

This is partially due to the fact that our analyses are goal dependent and because

in most programs groundless typically propagates in a top-down, left-to-right di-

rection. The init-subst benchmark is an exception since it contains a predicate in

which groundless information propagates from right-to-left even when it is called

with the most instantiated query mode. This is due to the way the program is

written to take advantage of tail recursion. We believe that this phenomenon may

actually show up more often in actual applications in which efficiency has been a

major consideration during coding, and also when partially instantiated structures

are used. Also, we expect the difference between the base domains with respect to

groundless propagation and consequently with respect to both types of sharing to

be more notable when performing goal-independent analyses [Barbuti et al. 1993;

Codish et al. 1994a; 1994 b]. It is our belief that for such analyses, combining

domains is even more beneficial.

The analysis times in Table I also provide interesting insight. The time cost of

the combined analysis is in many cases substantially better than the sum of the

costs of the individual analyses. However, in some cases it is slightly worse. This
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is the result of the interplay between different factors:

—Computing the reduced product does create extra work (which depends on the

size of the inputs to the Reduce function).

—The reduced-product analysis has a “loop-merging” effect — a single pass over

the program is sufficient for the combined analysis instead of two passes for the

individual analyses.

—Improved accuracy in the combined analysis reduces the size of the inputs of

domain-dependent operations, such as abstract unification, projection, composi-

tion, and including the reduced product.

In the case of the P * S analyses, this is a major effect due to the significant

gain in accuracy. The effect is less visible in the P * SF analyses since the SF

component is already more precise.

—The effects of “loop merging” can be distorted in the processing of recursive

clauses where a number of fixpoint iterations are needed. This number can differ

for the P, S, and combined analyses (in the P * S analysis a positive effect

for serialize, init-subst, brovse, rdtok, boyer, and a negative effect for

peephole; in the P* SF analysis a positive effect for tmous e and a negative effect

for serialize, rdt ok, peephole). The difference in time depends very much

on amount of work during the iterations.

5. CONCLUSIONS AND FUTURE WORK

VVe have shown how in practice it is possible to maintain precision in a combined

reduced-product analysis and obtain reasonable analysis times without redefining

the basic operations. We have also indicated that more precision can by achieved by

breaking up the abstract operations into a sequence of smaller steps and applying

the reduce function at each intermediate point. However, as shown in Example 2.7,

an even sharper analysis may be obtained by redefining the abstract operations on

the product domain. The less “overlapping” information the two domains have, the

more likely this is. The advantage of the general approach is that proofs of correct-

ness for the new domains are not required, and implementations can be reused. To

illustrate this we have implemented a series of sharing analyses previously proposed

and constructed two new ones as combinations of these. There are strong indica-

tions that our automatically combined analyses in fact compare well with other

new proposals suggested in recent literature [Cortesi and Fi16 1993; Sundararajan

and Conery 1992] both from the point of view of efficiency and accuracy.

An important insight acquired from this work is the realization of the ease in prac-

tice of the combination process, which certainly required a much smaller amount

of work than that taken by the original analyzers also implemented by us. This

is of practical importance because the precision and efficiency of many analyses

can be improved by combining various standard domains such as those described

in this article. In many cases the improvement in efficiency is crucial for practical

implementations.

Cortesi et al. [1994] have recently developed another approach for combining

domains based on the so-called notion of open products. Their work proposes a

systematic and modular approach in which the analysis designer can redefine the

operations on the product domain. Using this approach the designer can focus
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on the individual components of the product domain while specifying the effect of

other components through so-called queries. Besides reducing the complexity of the

design task, the approach is reported to reduce also the amount of analysis-specific

code. However, there is a time penalty, since a direct implementation of an analysis

for a particular product domain is reported to be twice as fast.
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