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Abstract

This paper presents an automatic building detection technique using LIDAR

data and multispectral imagery. Two masks are obtained from the LIDAR

data: a ‘primary building mask’ and a ‘secondary building mask’. The pri-

mary building mask indicates the void areas where the laser does not reach

below a certain height threshold. The secondary building mask indicates the

filled areas, from where the laser reflects, above the same threshold. Line

segments are extracted from around the void areas in the primary building

mask. Line segments around trees are removed using the normalized differ-

ence vegetation index derived from the orthorectified multispectral images.

The initial building positions are obtained based on the remaining line seg-

ments. The complete buildings are detected from their initial positions using

the two masks and multispectral images in the YIQ colour system. It is

experimentally shown that the proposed technique can successfully detect

urban residential buildings, when assessed in terms of 15 indices including
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completeness, correctness and quality.

Key words: Building detection, LIDAR, point cloud, multispectral,
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1. Introduction1

Building detection from remotely sensed data is important to the real2

estate industry, city planning, homeland security, disaster (flood or bush3

fire) management and many other applications. The automated extraction4

of building boundaries is also a crucial step towards generating city models5

(Cheng et al., 2008). Consequently, a large number of building detection6

techniques have been reported over the last few decades.7

However, 100% successful automatic building detection is still an unre-8

alized goal. There are several reasons to explain this situation (Sohn and9

Dowman, 2007). These include:10

• Scene complexity : most of the scenes usually contain very rich informa-11

tion which provides a large number of cues with geometric or chromatic12

co-similarity to buildings, but belong to non-building objects.13

• Incomplete cue extraction: there is always a significant loss of relevant14

building cues due to occlusions, poor contrast, shadows and disadvan-15

tageous image perspective.16

• Sensor dependency : the primary data to support the building detec-17

tion is available from a variety of sources with different resolution, each18

source having its own advantages and disadvantages for building detec-19

tion.20
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Lee et al. (2008) have categorized building detection techniques into three21

groups. Firstly, there are many algorithms which use 2D or 3D information22

from photogrammetric imagery (Mayer, 1999). The complexity of separating23

buildings from other objects increases with the increase of image resolution24

as high-resolution images contain more detailed information (Cheng et al.,25

2008), along with occlusions and shadows (Yong and Huayi, 2008). The26

derivation of 3D information, for example, the depth information from stereo27

by multiple images (Sun et al., 2005), is even more complicated (Vu et al.,28

2009). In addition, nearby trees of similar height also make the use of such29

derived range data difficult (Lee et al., 2008).30

Secondly, there have been several attempts to detect building regions from31

LIDAR (LIght Detection And Ranging) data. This task has been largely32

solved by classifying the LIDAR points according to whether they belong33

to bare-earth, buildings, or other object classes (Lee et al., 2008). In fact,34

the introduction of LIDAR has offered a favourable option for improving35

the level of automation in the building detection process when compared36

to image-based detection (Vu et al., 2009). Oude Elberink (2008) has dis-37

cussed a number of problems with building detection using LIDAR data and38

it has been shown that the use of raw or interpolated data can influence39

the detection performance (Demir et al., 2009). Moreover, there may be40

poor horizontal accuracy for building edges (Yong and Huayi, 2008) and it41

is hard to obtain a detailed and geometrically precise boundary using only42

LIDAR point clouds (Cheng et al., 2008). The quality of regularized building43

boundaries also depends on LIDAR resolution (Sampath and Shan, 2007).44

LIDAR and photogrammetric imagery each have particular advantages45
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and disadvantages in horizontal and vertical positioning accuracy. Compared46

with photogrammetric imagery, LIDAR generally provides more accurate47

height information but less accurate boundary lines. Unfortunately, some48

regions in LIDAR data have null values due to self-occlusion of a building49

or if they contain water. Photogrammetric imagery can provide extensive50

2D information such as high-resolution texture and colour information as51

well as 3D information from stereo images. As a result, several authors have52

promoted an integration of LIDAR data and imagery as a means of advancing53

building detection (Rottensteiner et al., 2005; Yong and Huayi, 2008; Cheng54

et al., 2008; Demir et al., 2009).55

The third category of methods does use both LIDAR data and pho-56

togrammetric imagery. More specifically, intensity and height information57

in LIDAR data can be used with texture and region boundary information58

in aerial imagery to improve accuracy (Lee et al., 2008).59

However, the question of how to integrate the two data sources for build-60

ing boundary extraction still arises; few approaches with technical details61

have thus far been published (Rottensteiner et al., 2005). The question of62

how to combine the two different data sources in an optimal way so that63

their weaknesses can be compensated effectively is an active area of current64

research (Yong and Huayi, 2008).65

Regarding performance evaluation, there is a current lack of uniform and66

rigorous evaluation systems, and an absence of standards (Rutzinger et al.,67

2009). Indeed, evaluation results are often missing from published accounts68

of building detection (Yong and Huayi, 2008); the use of 1 to 2 evaluation69

indices only has characterized many studies (Demir et al., 2009; Vu et al.,70
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2009).71

This paper aims at following two goals: a successful integration of the72

LIDAR data and photogrammetric imagery for building detection so that the73

increased detection performance is obtained and development of an automatic74

performance evaluation system using 15 evaluation indices.75

The proposed automatic building detection technique uses raw LIDAR76

data and orthoimagery. Two masks are obtained from the LIDAR data: a77

‘primary building mask’ and an ‘secondary building mask’. Line segments78

around the black shapes (absence of height data) in the primary building79

mask constitute the initial building positions. The final buildings are then de-80

tected extending their initial positions using the multispectral images, trans-81

formed into the YIQ (intensity, hue and saturation) colour system. The two82

masks ensure accurate delineation of the buildings. In particular, the pri-83

mary building mask helps separate detected buildings when they are very84

close to each other and the secondary building mask helps to avoid exten-85

sions to initial positions outside a building when the roof and ground have86

similar colour information. It is experimentally shown that the proposed87

technique can detect rectilinear buildings with a favourable success rate, es-88

pecially within the Australian urban environment for which it was primarily89

developed.90

The proposed detection technique has similarities to that reported by91

Sohn and Dowman (2007) and Cheng et al. (2008) in the sense that it uses92

line segments and a regularization step (adjustment) employing dominant93

line angles.94

The proposed automatic evaluation system uses both object- and pixel-95
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based indices. In addition, though the pixel-based evaluation indirectly re-96

flects the horizontal accuracy, the geometric evaluation is introduced as a97

means of direct estimation of the horizontal, geometric or positional accu-98

racy.99

The performance of the proposed building detection approach has been100

evaluated through using 15 indices in three categories, these being object-101

based, pixel-based and geometric. Most of the indices have been adopted102

from the literature and the remainder are proposed here for a more complete103

evaluation.104

The rest of the paper is organized as follows: Section 2 presents a review105

of both existing integration techniques for photogrammetric imagery and106

LIDAR data for both building detection and performance evaluation systems.107

Section 3 details the proposed building detection technique. The proposed108

evaluation system with experimental test results is discussed in Section 4.109

Finally, concluding remarks are offered in Section 5.110

2. Related Work111

2.1. Integration of LIDAR and Imagery112

Building detection techniques integrating LIDAR data and imagery can113

be divided into two groups. Firstly, there are techniques which use the LI-114

DAR data as the primary cue for building detection and employ the imagery115

only to remove vegetation (Rottensteiner et al., 2005; Vu et al., 2009). As a116

result, they suffer from poor horizontal accuracy for the detected buildings.117

Rottensteiner et al. (2005) employed the Dempster-Shafer theory as a data118

fusion framework to classify points as buildings, trees, grassland or bare soil.119
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However, the detection performance was adversely affected for small build-120

ings (Rottensteiner et al., 2007). The reason is that if the Dempster-Shafer121

model is not properly trained, then the miss-classification rate increases con-122

siderably (Khoshelham et al., 2008). Vu et al. (2009) used a morphological123

scale-space for extracting building footprints from the elevation data and124

then removed vegetation areas using the spectral data. The detection per-125

formance was low and high computational complexity was reported because126

of using the scale-space.127

Secondly, there are integration techniques (Haala and Brenner, 1999;128

Chen et al., 2004; Sohn and Dowman, 2007; Lee et al., 2008; Demir et al.,129

2009) which use both the LIDAR data and the imagery as the primary cues130

to delineate building outlines. They also employ the imagery to remove veg-131

etation. Consequently, they offer better horizontal accuracy for the detected132

buildings. The proposed building detection technique falls into this group.133

Haala and Brenner (1999) applied a pixel-based classification where the nor-134

malized DSM (nDSM) was used as an additional channel to the three spec-135

tral bands of the aerial imagery. Chen et al. (2004) followed a region-based136

segmentation of nDSM and orthoimages and then used a knowledge-based137

classification to detect building. However, this method did not show how to138

cope with erroneous lines (Sohn and Dowman, 2007) and could not detect139

small buildings.140

Sohn and Dowman (2007) employed a data-driven approach on the optical141

imagery and a model-driven approach on the point cloud to extract rectilin-142

ear lines around buildings. Extracted lines were regularized by analyzing the143

dominant line angles. Cheng et al. (2008) proposed a similar technique with144
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precise geometric position. Lee et al. (2008) extracted the initial building145

boundaries from the LIDAR data and then enhanced the initial boundaries146

using colour information, after which edge matching and perceptual group-147

ing techniques were applied to yield the final building boundaries. Demir148

et al. (2009) applied four different methods to achieve an improvement by149

combining the advantages and disadvantages of these approaches and used150

the edge information from images for quality improvement of the detected151

buildings.152

2.2. Evaluation Systems153

Performance evaluation systems reported in the literature can be divided154

into two groups: those using overlapping thresholds (Rottensteiner et al.,155

2005; Rutzinger et al., 2009; Lee et al., 2008) and those not using any thresh-156

olds (Shan and Lee, 2005; Shufelt, 1999). Threshold-based systems use one157

or more overlapping thresholds while making correspondences between de-158

tected and reference building sets. The problem with threshold-based sys-159

tems is that they are subjective and likely to be controversial since there is160

no unique way to select the thresholds (Shufelt, 1999).161

The evaluation systems can also be categorized into pixel-based systems162

(Rottensteiner et al., 2005; Rutzinger et al., 2009; Lee et al., 2008) and object-163

based systems (Rutzinger et al., 2009). While the latter counts the number164

of buildings and offers a quick assessment, the former is based on the number165

of pixels and provides more rigorous evaluation (Song and Haithcoat, 2005).166

The pixel-based evaluation indirectly corresponds to the horizontal accuracy167

of the detected building footprints.168

In Rottensteiner et al. (2005) and Rutzinger et al. (2009), a correspon-169
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dence was established between a detected building and a reference building170

if they overlapped each other either strongly, more than 80% overlap, or par-171

tially, 50% to 80% overlap. Both of the above evaluation systems do not172

reflect the actual detection scenario. Firstly, the presence of false positive173

and false negative detections is not considered at all. Secondly, there may174

be many-to-many relationships between the detected and reference sets and175

such relationships are considered as error (Shan and Lee, 2005). Finally,176

merging and splitting of the detected buildings as in Rutzinger et al. (2009)177

does not necessarily correspond to the actual performance.178

Without using a particular overlapping threshold, Shufelt (1999) showed179

the detection performance graphically as the overlapped area varied from180

0-100%. Shan and Lee (2005) presented results by histograms showing the181

frequency of buildings as functions of underlap, overlap, extralap, crosslap,182

and fitness. The number of false negative buildings was indicated by the183

frequency at 100% underlap and the number of false positive buildings was184

indicated by the frequency both at crosslap 0 and 0% fitness.185

3. Proposed Building Detection Technique186

The proposed automatic building detection technique uses LIDAR data187

and colour orthoimagery. It has four major steps. Firstly, two masks, a188

‘primary building mask’ and an ‘secondary building mask’, are generated189

from the LIDAR data. The primary building mask indicates the void areas190

where there are no laser returns below a certain height threshold. The sec-191

ondary building mask indicates the filled areas, from where returns indicate192

an elevated object above the same height threshold. Secondly, line segments193
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from around the void areas in the primary building mask are extracted. Line194

segments around trees are removed using Normalized Difference Vegetation195

Index (NDVI) values derived from the multispectral images. Thirdly, ini-196

tial building positions are recovered based on the remaining line segments.197

Finally, the complete building footprints are obtained from their initial po-198

sitions using the two masks and the orthoimagery in the YIQ colour system.199

3.1. Overview200

Fig. 1 shows the flow diagram of the proposed building detection tech-201

nique. The input information consists of a LIDAR point cloud, a DEM202

(digital elevation model) and multispectral orthoimagery. The point cloud203

and orthoimagery are registered to each other before being used as inputs.204

The primary and secondary building masks are first derived from the LIDAR205

data, along with NDVI values from the orthoimagery. The initial building206

positions are derived from the primary building mask. The colour informa-207

tion in the multispectral images is usually in the RGB system and therefore is208

converted into the YIQ system. The final buildings are obtained by extending209

their initial positions using the two masks and the YIQ colour information.210

The following subsections detail the proposed detection technique. Sec-211

tion 4.4.1 presents the sensitivity analysis of important parameters used by212

the detection algorithm.213

3.2. Height Threshold and Masks214

While the primary building mask Mp is used for obtaining the initial215

building positions as rectangular areas, the secondary building mask Ms is216
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used as an indication of a maximum building size around an initial building217

position during the detection of a final building from its initial position.218

All pixels in Mp are initially assigned 0 (false), but in Ms are assigned219

1 (true). The two masks are derived simultaneously by first dividing Mp220

(and hence Ms) into tiles of size 450× 450 image pixels, since there may be221

different representative ground heights Hg in a large area. Hg is calculated222

separately for each tile from the corresponding DEM data. The DEM and223

LIDAR data are also grouped following the tiles of Mp. For each tile, Hg is224

simply estimated as the average of the height data from the corresponding225

DEM. Fig. 2(a)-(b) shows the tiles of masks on an orthoimage and the groups226

of LIDAR data.227

In order to obtain the masks for each tile, a threshold Th = Hg + 2.5m228

is applied. If the LIDAR height of a point (x, y) is less than Th, the cor-229

responding pixel in Mp is assigned 1. If the height is greater than Th, the230

corresponding pixel in Ms is assigned 0. In addition, since the horizontal231

resolution of LIDAR data is generally lower than that of the orthoimage, all232

the pixels in a 5× 5 neighbourhood of (x, y) are also assigned 1 for Mp or 0233

for Ms. The size of the neighbourhood can be adjusted based on the relative234

resolutions of the LIDAR data and the orthoimage.235

From Fig. 2(c) it can be seen that the majority of the buildings are distin-236

guishable in the primary building mask. However, when buildings are very237

close to each other, many are not clearly distinguishable in the secondary238

building mask, as shown in Fig. 2(d). Colour information from the orthoim-239

agery is therefore used for more accurate detection of the buildings (Section240

3.4).241
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3.3. Initial Building Positions242

Initial building positions Bini = {bini,i}, 1 ≤ i ≤ m, where m is the num-243

ber of detected positions, are detected as rectangular patches from the pri-244

mary building mask Mp, with the black areas in Fig. 2(c) being the initial245

building positions. This section describes how each of those areas is detected246

as a rectangle or as a combination of two or more rectangles.247

Three steps are followed to obtain Bini from Mp. Firstly, lines around248

the black shapes from Mp are formed. Secondly, the lines are adjusted and249

extended. Finally, rectangular shapes are obtained using these lines.250

3.3.1. Line Detection251

The Canny edge detector (Canny, 1986) is first used to find all the edges252

in Mp and then the short edges are discarded. Edges of less than 3m (20253

pixels) in length are considered short, assuming that the minimum building254

length or width is 3m.255

Since there may be noise and local variation introduced by the neighbour-256

hood filling technique during the mask generation phase, a Gaussian kernel257

with scale σ = 3 is utilized to smooth each edge.258

Corners (absolute curvature maxima points) are then detected on each259

of the smoothed curves using a fast corner detector described in Awrangjeb260

et al. (2009). The smoothed curves are then decomposed into line segments.261

On each edge, all the pixels between two corners or a corner and an endpoint262

or two endpoints when enough corners are not available, are considered as263

separate line segments. Again, short line segments, whose lengths are less264

than 3m, are discarded.265
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The detected corners and edge endpoints may not be well localized to266

the building corners. In order to align the detected line segments with the267

building edges, a least-squares straight-line fitting technique is applied. With268

each line segment a point Pin is recorded. This ‘inside-point’ indicates on269

which side of the line the building is recorded.270

Obviously, some line segments around trees are obtained and in order to271

avoid further processing of these, a rectangle of 3m width on the building272

side is formed. The sigma of the NDVI value Υ inside the rectangle is then273

employed, such that for a line segment if the mean of Υ is above a threshold274

Tndvi = 48, the line segment is classed as a tree-edge and removed. After the275

application of the NDVI threshold on the extracted lines, the removed lines276

are shown in Fig. 3(a) with circles at their centres.277

It was found that the NDVI did not have a high discriminating power.278

Many of the tree-edges could not be removed using Tndvi. If a low Tndvi value279

was applied these tree-edges could be removed, but many important line seg-280

ments which indicate the initial positions of buildings were also removed. A281

similar effect was reported by Rottensteiner et al. (2007) who applied a post-282

classification technique to improve the performance. Consequently, in this283

investigation a minimum building length threshold (3m) has been applied to284

the extracted line segments to remove small vegetation areas. In addition,285

assuming that the buildings and their sides are locally parallel or perpendic-286

ular to each other, the line segments are adjusted as discussed below. This287

adjustment procedure removes a tree-edge which is neither locally parallel288

nor perpendicular when compared to its neighbouring line segments.289
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3.3.2. Adjusting and Extending Lines290

Under the assumption that the longer lines are more likely to be build-291

ing edges, the extracted lines are sorted based on their lengths. Then, in292

an iterative procedure starting from the longest line li and taking it as a293

reference, the angle between the reference li and each line lj in its neigh-294

bourhood is estimated. A circular neighbourhood around the centre of li is295

then considered. The radius of this neighbourhood is set as the maximum296

building length, 50m in this investigation. If li and lj are either parallel or297

perpendicular to each other, to within a π
8

angular difference, the rotation298

angle θr for lj is estimated.299

There may be buildings of different orientations in an area. This means300

that one building or a group of buildings may have a different orientation301

when compared to others in the neighbourhood. In order to avoid wrong302

adjustments of the extracted lines, the lowest rotation angle θr is recorded303

for each lj over all iterations.304

The above iterative procedure may be optionally terminated after a sig-305

nificant number of iterations, say 50% of the number of total extracted lines.306

After the iterative procedure, each lj and its Pin are rotated with respect to307

the line centre by its recorded angle θr. If a rotation angle is not recorded308

for lj, then this lj is removed as a tree-edge. After the above adjustment309

procedure, the removed lines are shown in Fig. 3(b) with circles at their310

centres.311

Each of the adjusted line segments may not represent a complete side312

of a building. The line may be disrupted by trees, noise introduced in the313

edge detection process, and by the neighbourhood filling effect. Therefore,314
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both ends of each adjusted line C1C2 are extended by considering a rectangle315

of length Le = 3m and width We = 3m on each side (see Fig. 4(a) for C2).316

Inside the rectangle the percentage of black pixels in Mp, Ω, should be high317

and more than 70%, and the mean Υ should be low at less than 48. This318

extension process continues iteratively and if any of the conditions fail at any319

iteration, We is halved. The process stops when We is less than the successive320

LIDAR point distance (i.e., ≤ 0.4m in this case).321

3.3.3. Initial Buildings322

Since long line segments represent more accurate building edges than323

short ones, the extended line segments are sorted again in descending order324

based on their lengths. In an iterative procedure, an initial building position325

is detected using the first longest line segment, another using the second326

longest line segment and so on. The rectangular positions are recorded in327

a set Bini = bini,i, where 0 ≤ i ≤ m, of four-points, one for each corner of a328

rectangle. Bini is initially empty. Before detecting a rectangle using a line329

segment C1C2 in each iteration, C1C2 is tested to ascertain whether it is330

already in a detected rectangle bini,i.331

In order to detect a new rectangle using C1C2, an initial rectangle C1C2NM ,332

with length Lb = |C1C2| and width Wb = 1.5m, is formed on the building side.333

Then three sides MN , C1M and C2N of C1C2NM are extended outwards334

with respect to Pin (Fig. 4(b)) using the same technique as that applied to335

extend the extracted lines, as discussed above.336

After extension of three sides, if any of the sides of C1C2NM is not at337

least 3m, C1C2 is removed as a tree-edge. Fig. 3(c) shows the initial building338

positions.339
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3.4. Final Building Positions340

The final building positions are obtained from their initial positions by341

extending each of the four sides. Image colour information and the two masks342

Mp and Ms are considered during the extension. The colour information is343

basically used to extend the initial positions; Mp is used to avoid unexpected344

extension of an initial position over more than one actual buildings, and Ms345

is used to avoid unexpected extension of an initial position beyond the actual346

building roof.347

In practice, there are different shapes of rectilinear buildings. We have348

adopted a definition whereby a simple rectangular building (or building-part)349

is termed an ‘I’ shape. Two adjoining perpendicular ‘I’ shapes then form350

either an ‘L’ or ‘T’ shape building, whereas three connected rectangular351

building parts form a ‘U’ shape, and four connected rectangular parts around352

an open central area are termed a ‘C’ shape building.353

If there are different rectangular initial positions for the same building, it354

could be for one of the following two reasons. Firstly, an ‘I’ shape building355

may be detected more than once. Secondly, the building is ‘L’, ‘T’, ‘U’ or ‘C’356

shaped. In both of the above cases, the initial positions may overlap partly357

or fully before or after their extensions. While in the first case, an overlap is358

unexpected and has a negative impact in the detection performance, in the359

second case an overlap is considered as a natural overlap and is expected to360

join different detected parts of the same building, if necessary in any later361

applications.362

However, it is hard to decide which overlap is unexpected and which363

is natural. If an initial building is completely within an already extended364
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building or building part, it is removed assuming that it is an unexpected365

overlap. Otherwise, it is extended assuming that it is a natural overlap.366

Before extending initial positions to obtain final positions, a preprocessing367

step is executed.368

3.4.1. Preprocessing Initial Buildings369

An initial building position may go outside the actual building roof due to370

a misregistration between the orthoimage and the LIDAR data. In order to371

avoid this, since the initial position will be extended outwards while obtaining372

the final position, its length and width are reduced by 15% before extension.373

For each reduced building position ABCD, the dominant colour threshold374

pairs TY = [lY , hY ], TI = [lI , hI ] and TQ = [lQ, hQ] are estimated for intensity375

Y, hue I and saturation Q, respectively. Each dominant colour threshold376

pair indicates a range denoted by its low l and high h values.377

In order to find threshold pairs for each band (Y ∈ [0, 1], I ∈ [−0.5957, 0.5957]378

and Q ∈ [−0.5226, 0.5226]), a histogram is generated for its values within379

ABCD, over 10 bins for Y or 20 bins for I and Q. Fig. 5 shows different380

types of histograms. The uphill and downhill histograms in Figs. 5(a)-(b)381

are two basic histograms and, practically, a histogram of Y, I or Q is a com-382

bination of these two. Fig. 5(c) shows one of the simple combinations that383

occurred most frequently in the experiments conducted for this investigation.384

The histogram is divided into n parts, where n ≥ 1. The value of n is usu-385

ally 1, but may be greater than 1 if more colours appear on the building roof.386

Each part is from a minimum frequency bin to the next minimum frequency387

bin, or from a minimum frequency bin to the next maximum frequency bin,388

or from a maximum frequency bin to the next minimum frequency bin, if389
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enough neighbouring minimum frequency bins are not available. For exam-390

ple, the hue histogram in Fig. 5(c) is divided into two parts. Part 1 is391

between Min 1 to Min 2, but Part 2 is from Min 2 to Max 2 since there is392

no Min 3.393

The histogram parts are sorted in descending order based on their total394

number of points, or total frequencies, ti, where 1 ≤ i ≤ n. Starting from395

the part that has the highest total points max(ti), points are accumulated396

for each part from its maximum bin towards its minimum bins, adding the397

next largest bin at a time. The accumulation stops for a part if the number398

of accumulated points is at least 97% of this part and low and high thresh-399

old values are recorded at stop positions. In this way threshold pairs are400

estimated for other parts iteratively and the iteration terminates if the total401

number of points of the already used parts is at least 90% of ABCD. This402

means parts having very low ti values are not considered, which helps to403

avoid extension of an initial position towards a vegetation area whose small404

region is on the roof and within the initial position, but the major region is405

outside the building.406

3.4.2. Extending Initial Positions407

The initial building positions Bini = {bini,i} are sorted in descending or-408

der of their length or area, since both of these sorted lists were found to409

offer the same performance. Then in order to obtain final building positions410

Bfin = {bfin,i}, all initial positions are extended one after another, starting411

from the one having the longest length or largest area.412

To extend an initial position bini,i denoted by a rectangle ABCD, its413

four sides are extended separately. To extend a side, say AB, a rectangle414
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ABNM , with length Lf = |AB| and width Wf = 0.35m, opposite to Pin, is415

considered. For ABNM the percentages of Y, I and Q within threshold pairs416

TY = [lY , hY ], TI = [lI , hI ] and TQ = [lQ, hQ], respectively, are computed. Let417

these percentages be λ, χ and µ. The percentages of black pixels in the418

primary and secondary building masks for ABNM are also computed. Let419

these percentages be ς and ν. If λ, χ and µ are above 40% and ν is above 90%,420

AB is extended by replacing M by A and N by B. This extension procedure421

of AB continues iteratively and in each iteration the value of ς is checked422

and it should either be the same as or less than in the previous iteration. If ς423

becomes below 10% there is a high probability that the extension procedure424

will soon end. However, if ς starts increasing thereafter it is the position425

where AB is being extended over a neighbouring object, either a building426

or a tree. If this is the case, the extension procedure for AB immediately427

terminates. Otherwise, if any other condition fails, for example, if any of λ, χ428

and µ is below 40% or ν is below 90%, Wf is divided by 2 and the extension429

of AB continues. The procedure finally terminates if Wf is less than the430

image ground resolution (i.e., < 0.1m in this investigation). After extension431

of all four sides of ABCD, the extended rectangle is obtained. Fig. 6 shows432

the final detected buildings in four tested scenes.433

4. Performance Evaluation434

The proposed threshold-free evaluation system makes one-to-one corre-435

spondences using nearest centre distances between detected and reference436

buildings. The reference buildings are obtained using manual measurement437

from the orthoimagery (Section 4.1). Altogether 15 indices are used in three438

19



categories (object-based, pixel-based and geometric) to evaluate the perfor-439

mance. Most of these have been adopted from the literature and the rest are440

proposed for a more complete evaluation (Section 4.2). Section 4.3 details441

the experimented data sets and Section 4.4 presents results and a discussion.442

4.1. Evaluation System443

For evaluation, two sets of data were used, in which each building is444

represented either as a rectangular entity, for ‘I’ shape building, or a set of445

rectangular entities, for ‘L’, ‘U’ and ‘C’ shapes. The first set Bd = {bd,i},446

where 0 ≤ i ≤ m and m is the number of detected rectangular entities, is447

known as the detected set. It is obtained from the proposed automatic build-448

ing detection technique. Each entity bd,i is an array of four vertices and the449

centre (intersection of two diagonals) of a rectangular detected entity. The450

second set Br = {br,j}, where 0 ≤ j ≤ n and n is the number of reference451

entities, is termed the reference set. It is obtained from manual building452

measurement within the orthoimagery. Each entity br,j is an array of four453

vertices and the centre of the rectangular reference entity.454

To find the reference set Br, manual image measurement is used. Any455

building-like objects above the height threshold Th (Section 3.2) are included456

in Br. As a result some garages (car-ports) whose heights are above Th are457

also included, but some building parts (verandas) whose heights are below458

Th are excluded. Different building parts are referred to separate rectangular459

entities. Consequently, there is one entity for ‘I’ shape, two entities for ‘L’460

shape, three entities for ‘U’ shape, four entities for ‘C’ shape and so on.461

It is natural that different rectangular entities of the same building over-462

lap each other. In Br, two overlapping entities must always belong to the463
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same building and represent two connected building parts (Fig. 7(a)). Such464

an overlap is defined as a natural overlap and for identification purposes a465

building identification number bid is assigned to each reference entity, this466

being stored in br,j, in addition to the four vertices. Entities of the same467

building are assigned the same bid, but those of the different buildings are468

assigned different bid values.469

In Bd, the situation is different. Here two overlapping entities may belong470

to the same building and represent two connected building parts. In such a471

case, this overlap is a natural overlap (Fig. 7(a)) and it is not counted as an472

error in the proposed evaluation. In all other cases, the overlap is counted473

as an error in the evaluation system. For example, the overlapping entities474

may represent the same building (multiple detection, Fig. 7(b)) or constitute475

combinations of true and false detections (Figs. 7(c)-(e)).476

In an approach similar to that of Song and Haithcoat (2005), a detected477

entity is counted as correct if any of its part overlaps a reference entity. How-478

ever, unlike existing evaluation systems (Rottensteiner et al., 2005; Rutzinger479

et al., 2009), a pseudo one-to-one correspondence is established between the480

detected and reference sets without using any thresholds. Pseudo one-to-one481

correspondence means that each entity in one set has at most one correspon-482

dence in the other set. If a detected entity overlaps only one reference entity483

which is not overlapped by any other detected entity, then a true correspon-484

dence is established between them. If a detected entity overlaps more than485

one reference entity, then the nearest reference entity (based on the distance486

between centres) is considered as a true correspondence for the detected en-487

tity. The same rule is applied when a reference entity is overlapped by more488
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than one detected entity. As a consequence, there will be no correspondence489

for false positive and false negative entities.490

4.2. Evaluation Indices491

Altogether, 15 performance evaluation indices in three categories have492

been adopted: object-based evaluation, area- or pixel-based evaluation and493

geometric evaluation. For pixel-based evaluation, pixels in the orthoimage494

are used for all detected and reference entities. The geometric evaluation is495

separated from the other two as such a evaluation estimates the positional496

accuracy and counts neither the number of objects nor the number of pix-497

els. In the following subsections, different indices in the three categories498

are discussed. Note that the definitions of true positive (TP), true negative499

(TN), false positive (FP) and false negative (FN) have been adopted from500

Lee et al. (2003). In addition, a new term multiple detection (MD), which501

indicates that for an entity presented in the reference set there are two or502

more entities in the detected set, has also been used.503

4.2.1. Object-based Indices504

The following seven indices are used for object-based evaluation to evalu-505

ate the number of buildings counted. Completeness Cm, also known as detec-506

tion rate (Song and Haithcoat, 2005) or producer’s accuracy (Foody, 2002),507

correctness Cr, also known as user’s accuracy (Foody, 2002) and quality Ql508

have been adopted from Rutzinger et al. (2009). The remaining four are509

defined as:510

1. Multiple detection rate is the percentage of multiply and correctly de-

tected entities in the detected set. As shown in Fig. 7(b), a building or
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a building part can be detected more than once and all these detected

entities correspond to a single entity in the reference set. The closest

detected entity with respect to the reference entity is marked as a TP

and all others as MDs. The multiple detection rate is defined as

Md =
|MD|

|TP |+ |FP |+ |MD|
, (1)

where |.| denotes the set cardinality. Note that |TP |+ |FP |+ |MD|511

denotes the total number of entities in the detected set.512

2. Detection overlap rate is the percentage of overlap in the detected set.

It is defined as

Do =
Od

|TP |+ |FP |+ |MD|
, (2)

where Od is the number of detected entities that overlap other detected513

entities. However, the natural overlaps are excluded.514

3. Detection cross-lap rate is defined as the percentage of detected entities

which overlap more than one reference entities and expressed as:

Crd =
Cld

|TP |+ |FP |+ |MD|
, (3)

where Cld is the number of detected entities which overlap more than515

one reference entity and the natural overlaps are again excluded.516

4. Reference cross-lap rate is defined as the percentage of reference entities

which are overlapped by more than one detected entity and this is

expressed as

Crr =
Clr

|TP |+ |FN |
, (4)

where Clr is the number of reference entities which are overlapped by517

multiple detected entities, with the natural overlaps being excluded.518
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A good building detection system should have high Cm and Cr values,519

but low Md, Do, Crd and Crr values, while 1− Cr indicates the false alarm520

rate of the system. Ql makes a compromise between Cm and Cr (Heipke521

et al., 1997).522

4.2.2. Pixel-based Indices523

For area- or pixel-based evaluation, pixels in the orthoimage are used for524

all detected and reference entities. For an FP detected entity, all the pixels525

within it are FPp pixels (subscript p stands for pixels). For an FN reference526

entity, all the pixels within it are FNp pixels. For a TP detected entity,527

there are two types of pixels: all the pixels within it that also appear in the528

corresponding reference TP entity are TPp pixels and the rest are FPp pixels.529

Similarly, for a TP reference entity, there are two types of pixels. All the530

pixels within it that also appear in the corresponding detected TP entity are531

TPp pixels (counted only once) and the rest are FNp pixels with all other532

pixels being TNp pixels. Note that within the natural overlapping area the533

pixels are counted only once though they may be detected twice (as they534

are common to two detected entities on the same building). MDs are not535

considered in the pixel-based evaluation.536

A total of 7 pixel-based evaluation indices are used, these being: com-537

pleteness Cmp, also known as matched overlay (Song and Haithcoat, 2005)538

and detection rate (Lee et al., 2003), correctness Crp and quality Qlp from539

Rutzinger et al. (2009); area omission error Aoe and area commission error540

Ace from Song and Haithcoat (2005) and branching factor Bf and miss factor541

Mf from Lee et al. (2003). A good building detection system should have542

high Cmp and Crp values, but low Aoe, Ace, Bf and Mf values, while 1− Crp543
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indicates the false alarm rate of the system with respect to the building area.544

Qlp makes a compromise between Cmp and Crp (Heipke et al., 1997).545

4.2.3. Geometric Index546

As the geometry of the actual and detected buildings often differs signifi-547

cantly and the generally lower spatial resolution of the LIDAR data prohibits548

geometrically accurate building detection, the geometric evaluation system549

is rarely found in the literature. The shape similarity indices presented in550

Song and Haithcoat (2005) fall into this category and are application specific,551

for example, for cadastral management. Since it is assumed that both the552

reference and detected entities are rectangular, local changes in shapes are553

avoided and the shape indices are not considered.554

Song and Haithcoat (2005) utilized root-mean-square-error (RMSE) val-555

ues in order to estimate the geometric positional accuracy. For each one-to-556

one correspondence between detected and reference set, RMSE is measured557

as the average distance between a pair of detected and reference entities.558

Therefore, the RMSE is measured for TPs only, but not for FPs, FNs and559

MDs.560

4.3. Data Sets561

The test data set employed here was captured over Fairfield, NSW, Aus-562

tralia using an Optech laser scanner. Four sub-areas were used, the first563

covering an area of 248m× 210m (Fig. 6(a)), the second covering an area of564

155m× 219m (Fig. 6(b)), the third covering an area of 228m× 189m (Fig.565

6(c)) and the fourth covering an area of 586m× 415m (Fig. 6(d)). While the566

first two areas contain only residential buildings, the last two areas contain567
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both residential and industrial buildings. The first three areas were used568

for objective evaluation using 15 indices, while the fourth is a bigger area569

containing around 400 buildings and was used for visualization only. Last-570

pulse LIDAR data with a point spacing of 0.5m was used. A DEM (with 1m571

spacing) and four RGB colour orthophotos with a resolution of 0.15m were572

available for these areas. The fact that the orthoimage did not contain an573

infrared band was circumvented by computing a pseudo-NDVI image using574

the assumption that the three image bands are in the order of IR-Red-Green575

in order to be used in the standard NDVI formula (Kidwell, 1997).576

The orthoimagery had been created using a bare-earth DEM, so that the577

roofs and the tree-tops were displaced with respect to the LIDAR data. Thus,578

data alignment was not perfect. Apart from this registration problem, there579

were also problems with shadows in the orthophotos, so the pseudo-NDVI580

image did not provide as much information as expected.581

Reference data sets were created by monoscopic image measurement using582

the Barista software (Barista, 2009). All rectangular structures, recognizable583

as buildings and above the height threshold Th (Section 4.1) were digitized.584

The reference data included garden sheds, garages, etc., that were sometimes585

as small as 10m2 in area. Altogether, 70, 62 and 60 buildings from the first586

three scenes formed the reference sets.587

4.4. Results and Discussion588

The algorithm was implemented and tested using Matlab 7.8.0 (R2009a)589

on a Windows XP machine with 3.00GHz of Intel(R) Core(TM)2 Duo CPU590

and 3.23GB of RAM. The average running time for first three scenes was591

about 13.5 minutes. The majority of time was taken up with accessing, load-592
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ing and storing the high volume of input and intermediate data. Memory-593

related limitations in Matlab precluded the possibility of conducting an ex-594

periment covering all 2400 buildings within the Fairfield data set. Such exper-595

imental validation will be possible once the algorithms are fully implemented596

within the Barista software.597

The experimentation was carried out in two phases. Firstly, a sensitivity598

analysis of five important parameters (tile size, black pixel threshold, NDVI599

threshold, area reduction (reducing length and width of initial buildings)600

and colour similarity) was carried out to test how the detection algorithm601

performed when parameter values were changed. The standard parameter602

values were chosen for the test data sets. Secondly, the detection performance603

was evaluated using 15 indices in three categories when all the parameters604

were set at their chosen standard values.605

4.4.1. Sensitivity Analysis606

For sensitivity analysis five different values for each of the five parameters607

were used and object and pixel-based qualities were estimated. The reason for608

choosing quality as a measurement for sensitivity analysis is that it provides609

a balance between completeness and correctness (Heipke et al., 1997). The610

following values were used for the six parameters:611

• Tile size: 400× 400, 450× 450, 500× 500, 550× 550 and 600× 600612

pixels;613

• Black pixel threshold : 0.6, 0.7, 0.8, 0.9 and 1.0;614

• NDVI threshold : 32, 40, 48, 56 and 64;615
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• Area reduction: 0.1, 0.15, 0.2, 0.25 and 3.0 and616

• Colour similarity : 0.2, 0.3, 0.4, 0.5 and 0.6.617

Fig. 8, in which the numbers 1 to 5 along the x -axis indicate the five618

values for each parameter, graphically illustrates the results. When one of619

the parameters was changed, others were set at their standard values. The620

pixel-based quality was given more weight than the object-based quality in621

the choice of the standard value for each parameter. Overall, one parameter622

- area reduction - was found to be moderately sensitive, while the other four623

were found less sensitive.624

While the highest object-based quality was achieved at 20% area reduc-625

tion and the highest pixel-based quality was achieved at 10% area reduction,626

at 15% area reduction both of these qualities were slightly lower than their627

highest values. Both the object- and pixel-based qualities were highest when628

the color similarity was 40%. For the tile size and NDVI threshold, the chosen629

values were 450× 450 pixels and 48, respectively, when pixel-based qualities630

were highest and object-based qualities were slightly below the highest. An631

opposite scenario was observed when the black pixel threshold was 90%.632

While a smaller tile size makes the mask generation procedure a bit ex-633

pensive, a larger tile size may not clearly distinguish some buildings in a634

sloping tile because the estimated height threshold may not perfectly sepa-635

rate ground and above ground objects throughout the tile. A small NDVI636

threshold may remove some buildings as vegetation if building roofs have637

colours that are similar to trees. In contrast, a large NDVI threshold may638

detect some trees as buildings.639
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Table 1: Object-based evaluation results in percentages (Cm = completeness, Cr = cor-

rectness, Ql = quality, Md = multiple detection rate, Do = Detection overlap rate, Crd =

detection cross-lap rate and Crr = reference cross-lap rate).

Scenes Cm Cr Ql Md Do Crd Crr

Scene 1 97.14 97.14 95.31 2.60 6.85 2.74 7.14

Scene 2 95.94 96.55 92.08 4.62 5.00 1.67 4.84

Scene 3 98.33 99.25 90.94 11.60 28.57 14.29 33.33

Average 97.14 97.9 92.78 6.27 13.47 6.23 15.11

A smaller than 90% black pixel threshold may result in a nearby tree being640

included as a building part, for example. The same may happen if a more641

than 40% colour similarity is used when the building roof has a similar colour642

to the tree. While a smaller than 15% area reduction (length and width of643

initial buildings reduced by 15%) may not fully correct the registration error,644

a larger area reduction may stop the extension of the initial position if the roof645

has slightly different colours. This is why the pixel-based quality dropped646

more rapidly than the object-based quality, which indicates that though the647

buildings are correctly detected they are not correctly delineated. This is648

also evident from the evaluation results discussed below.649

4.4.2. Evaluation using Standard Parameter Values650

Table 1 shows the object-based evaluation results and Table 2 shows the651

pixel-based evaluation results. The geometric accuracy (RMSE) for the three652

scenes was 1.98m, 1.91m and 1.86m with an average accuracy of 13 pixels653

(1.92m).654

In object-based evaluation, more than 97% completeness and correct-655
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Table 2: Pixel-based evaluation results in percentages (Cmp = completeness, Crp = cor-

rectness, Qlp = quality, Aoe = area omission error, Ace = area commission error, Bf =

branching factor and Mf = miss factor).

Scenes Cmp Crp Qlp Aoe Ace Bf Mf

Scene 1 77.32 89.29 70.07 22.68 10.35 12.00 29.33

Scene 2 77.97 87.05 67.40 22.03 12.67 14.87 28.26

Scene 3 79.51 90.35 72.11 20.49 7.54 10.68 25.77

Average 78.27 88.90 69.86 21.74 10.19 12.52 27.79

ness resulted in an average 92% quality with at least 6% of buildings being656

detected multiple times. The reference cross-lap rate was higher than the657

detection cross-lap rate, since some nearby trees were detected along with658

the actual buildings. In pixel-based evaluation, while 78% of building areas659

were completely detected, resulting in a 21% omission error, 89% of detected660

areas were correct, offering a 10% commission error. Since the miss factor661

and omission error were larger than the branching factor and commission662

error, respectively, the false positive rate of the proposed technique is lower663

than its false negative rate.664

Overall, in both object- and pixel-based evaluations, the proposed detec-665

tion technique performed better on Scene 1 than on Scene 2 in terms of all666

indices except cross-lap and detection overlap rates. There were two reasons667

for this: a) some true buildings were detected twice in Scene 1, and b) in Scene668

1 though all true buildings were detected with some of them being missed669

partially, some false buildings (actually trees) were also detected. Scene 3670

performed better than Scenes 1 and 2 in pixel-based evaluation whereas Scene671
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3 gave higher cross-lap and detection overlap rates in object-based evaluation672

due to multiple detection of complex industrial buildings. In the geometric673

evaluation, in terms of RMSE, there was at least 0.05m better positional674

accuracy for Scene 3 than for Scenes 1 and 2.675

It was found that the use of NDVI (actually pseudo NDVI in this case) did676

not perform well in distinguishing between trees and building roofs, especially677

when both were of similar colour. While a low NDVI threshold removed some678

true buildings, a high NDVI threshold detected some trees as buildings. The679

difference in first- and last-pulse LIDAR data was also investigated to remove680

trees, as was done in Rottensteiner et al. (2005), but was found less useful.681

The outcome regarding NDVI and the difference in first and last pulse data682

supports the finding of an earlier study by Rottensteiner et al. (2007).683

Since different published detection techniques follow different evaluation684

systems on different data sets, they are difficult to compare. As with the685

proposed detection technique, Sohn and Dowman (2007) and Cheng et al.686

(2008) also used line segments and building geometry adjustment using dom-687

inant line angles. Unlike Cheng et al. (2008) and the proposed technique,688

Sohn and Dowman (2007) used specific building models to fit the LIDAR689

points. While the proposed technique introduces a threshold-free evaluation690

system, both of these existing techniques employ threshold-based evaluation691

systems.692

In terms of object-based correctness the proposed technique performed693

much better than that of Cheng et al. (2008). The method of Sohn and Dow-694

man (2007) offered slightly higher pixel-based performance than the proposed695

technique because of the adopted evaluation system (Rottensteiner et al.,696

31



2005), which excluded FP and FN buildings from evaluation and established697

many-to-many relationships between the detected and reference sets. Estab-698

lishing one-to-one correspondences by the proposed detector increases the699

number of FP and FN buildings and the proposed evaluation system consid-700

ers all of them.701

The same Fairfield data set was previously employed by Rottensteiner702

et al. (2005), Rottensteiner et al. (2007) and Rutzinger et al. (2009) to in-703

vestigate automated building extraction. However, in those investigations,704

two different threshold-based evaluation systems were employed and the705

Dempster-Shafer (DS) detector was evaluated using completeness, correct-706

ness and quality. Rutzinger et al. (2009) has presented results of pixel-based707

evaluation of the DS detector showing that it can offer higher completeness708

(92.1%) and quality (81.8%) than the proposed detector. However, in object-709

based evaluation the DS detector offered much lower completeness (44.2%)710

and quality (43.1%) than the proposed detector. The superior performance711

of the DS detector in pixel-based evaluation was largely due to the adopted712

evaluation systems, Rottensteiner et al. (2005) and Rutzinger et al. (2009))713

which excluded FP and FN buildings from evaluation and established many-714

to-many relationships between the detected and reference sets. Moreover,715

unlike the proposed detector the DS detector was excessively sensitive to716

small buildings (performance deteriorated with the decrease of building size)717

and buildings smaller than 30m2 could not be detected (Rottensteiner et al.,718

2007).719
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5. Conclusion720

This paper has proposed an automatic building detection technique using721

LIDAR data and multispectral imagery. The initial building positions are722

obtained from the primary building mask derived from LIDAR data. The723

final building positions are obtained by extending their initial positions based724

on colour information, and the two masks ensure the accurate delineation725

of the buildings. In particular, the primary building mask helps separate726

building detections when they are very close to each other and the secondary727

building mask helps to confine the extension of initial positions outside a728

building when the roof and ground have similar colour information.729

Experimental testing has shown that the proposed technique can detect730

urban residential and industrial buildings of different shapes with a very high731

success rate. However, the technique can display shortcomings in areas of732

high-terrain slope and those with dense high-rise buildings of rapidly varying733

height within a given tile size, since in such areas the average DEM height734

may not necessarily correspond to the actual ground height. Extension of the735

algorithm’s functionality to better accommodate such situations is currently736

under investigation.737

Another important observation from the presented results is that object-738

based completeness (detection rate 97%) is high when compared to pixel-739

based completeness (matching overlay 78%). However, the geometric po-740

sitional accuracy remains relatively poor (13 pixels) for mapping purposes;741

although not for applications where building detection is the primary goal.742

This observation indicates that some of the truly detected buildings are not743

completely delineated due to small local variations along the roof boundary,744

33



occlusion by nearby trees or different roof colours in and out of the initial745

building position. Consequently, the proposed detection technique can be746

applied in city planning, homeland security, disaster (flood or bushfire) man-747

agement and building change detection with high reliability, but it is not as748

yet applicable to cadastral mapping and accurate roof plane extraction, both749

of which require higher pixel-based and geometric accuracy.750
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Figure 1: Flow diagram of the proposed building detection technique.
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Figure 2: (a) A test scene, (b) LIDAR data (shown in gray-scale), (c) primary building

mask and (d) secondary building mask.
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Figure 3: (a) Application of NDVI and (b) line-adjustment to remove tree-edges. Lines

with small circles at centres are removed. (c) Initial building positions.

Figure 4: (a) Extending a line segment (b) Forming an initial building by extending three

sides of a rectangle on a line segment. Arrows indicate extension directions.
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Figure 5: Basic histograms: (a) uphill and (b) downhill. (c) a combination of basics

uphill-downhill-uphill.
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Figure 6: Detected buildings on the orthoimages.
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Figure 7: Different types of detection overlaps: (a) natural, (b) multiple detection, (c)

false-false, (d) true-true and (e) true-false.

Figure 8: Sensitivity of different parameters.
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