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a b s t r a c t

Automatic 3D extraction of building roofs from remotely sensed data is important for many applications
including city modelling. This paper proposes a new method for automatic 3D roof extraction through an
effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using
the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two
groups. The first group contains the ground points that are exploited to constitute a ‘ground mask’.
The second group contains the non-ground points which are segmented using an innovative image line
guided segmentation technique to extract the roof planes. The image lines are extracted from the grey-
scale version of the orthoimage and then classified into several classes such as ‘ground’, ‘tree’, ‘roof edge’
and ‘roof ridge’ using the ground mask and colour and texture information from the orthoimagery. During
segmentation of the non-ground LIDAR points, the lines from the latter two classes are used as baselines
to locate the nearby LIDAR points of the neighbouring planes. For each plane a robust seed region is
thereby defined using the nearby non-ground LIDAR points of a baseline and this region is iteratively
grown to extract the complete roof plane. Finally, a newly proposed rule-based procedure is applied to
remove planes constructed on trees. Experimental results show that the proposed method can success-
fully remove vegetation and so offers high extraction rates.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Up to date 3D building models are important for many GIS
(Geographic Information System) applications such as urban plan-
ning, disaster management and automatic city planning (Gröger
and Plümer, 2012). Therefore, 3D building reconstruction has been
an area of active research within the photogrammetric, remote
sensing and computer vision communities for the last two decades.
Building reconstruction implies the extraction of 3D building infor-
mation, which includes corners, edges and planes of the building
facades and roofs from remotely sensed data such as aerial imagery
and LIDAR (Light Detection And Ranging) data. The facades and
roofs are then reconstructed using the available information.
Although the problem is well understood and in many cases accu-
rate modelling results are delivered, the major drawback is that the
current level of automation is comparatively low (Cheng et al.,
2011).

Three-dimensional building roof reconstruction from aerial
imagery alone seriously lacks in automation partially due to shad-
ows, occlusions and poor contrast. The introduction of LIDAR has of-
fered a favourable option for improving the level of automation in
3D reconstruction when compared to image-based reconstruction
alone. However, the quality of the reconstructed building roofs from
LIDAR data is restricted by the ground resolution of the LIDARwhich
is still generally lower than that of the aerial imagery. That is why
the integration of aerial imagery and LIDAR data has been consid-
ered complementary in automatic 3D reconstruction of building
roofs. The issue of how to optimally integrate data from the two
sources with dissimilar characteristics is still to be resolved and
relatively few approaches have thus far been published.

Different approaches for building roof reconstruction have been
reported in the literature. In themodel driven approach, also known
as the parametric approach, a predefined catalogue of roof forms
(e.g., flat, saddle, etc.) is prescribed and the model that best fits
the data is chosen. An advantage of this approach is that the final
roof shape is always topologically correct. The disadvantage, how-
ever, is that complex roof shapes cannot be reconstructed if they
are not in the input catalogue. In addition, the level of detail in
the reconstructed building is compromised as the input models
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usually consist of rectangular footprints. In the data driven ap-
proach, also known as the generic approach (Lafarge et al., 2010)
or polyhedral approach (Satari et al., 2012), the roof is recon-
structed from planar patches derived from segmentation algo-
rithms. The challenge here is to identify neighbouring planar
segments and their relationship, for example, coplanar patches,
intersection lines or step edges between neighbouring planes.
The main advantage of this approach is that polyhedral buildings
of arbitrary shape may be reconstructed (Rottensteiner, 2003).
The main drawback of data driven methods is their susceptibility
to the incompleteness and inaccuracy of the input data; for exam-
ple, low contrast and shadow in images and low point density in
LIDAR data. Therefore, some roof features such as small dormer
windows and chimneys cannot be represented if the resolution
of the input data is low. Moreover, if a roof is assumed to be a com-
bination of a set of 2D planar faces, a building with a curved roof
structure cannot be reconstructed. Nonetheless, in the presence
of high density LIDAR and image data, curved surfaces can be well
approximated (Dorninger and Pfeifer, 2008). The structural ap-
proach, also known as the global strategy (Lafarge et al., 2010) or
Hybrid approach (Satari et al., 2012), exhibits both model and data
driven characteristics. For example, Satari et al. (2012) applied the
data driven approach to reconstruct cardinal planes and the mod-
el-driven approach to reconstruct dormers.

The reported research in this paper concentrates on 3D extrac-
tion of roof planes. A new data driven approach is proposed for
automatic 3D roof extraction through an effective integration of LI-
DAR data and multispectral imagery. The LIDAR data is divided into
two groups: ground and non-ground points. The ground points are
used to generate a ‘ground mask’. The non-ground points are iter-
atively segmented to extract the roof planes. The structural image
lines are classified into several classes (‘ground’, ‘tree’, ‘roof edge’
and ‘roof ridge’) using the ground mask, colour orthoimagery and
image texture information. In an iterative procedure, the non-
ground LIDAR points near to a long roof edge or ridge line (known
as the baseline) are used to obtain a roof plane. Finally, a newly
proposed rule-based procedure is applied to remove planes con-
structed on trees. Promising experimental results for 3D extraction
of building roofs have been obtained for two test data sets.

Note that the initial version of this method was introduced in
Awrangjeb et al. (2012a), where the preliminary idea was briefly
presented without any objective evaluation of the extracted roof
planes. This paper not only presents full details of the approach
and the objective evaluation results, but also proposes a new
rule-based procedure in order to remove trees.

The rest of the paper is organised as follows: Section 2 presents
a review of the prominent data driven methods for 3D building
roof extraction. Section 3 details the proposed extraction algo-
rithm. Section 4 presents the results for two test data sets, dis-
cusses the sensitivity of two algorithmic parameters and
compares the results of the proposed technique with those of
existing data driven techniques. Concluding remarks are then pro-
vided in Section 5.

2. Literature review

The 3D reconstruction of building roofs comprises two impor-
tant steps (Rottensteiner et al., 2004). The detection step is a classi-
fication task and delivers regions of interest in the form of 2D lines
or positions of the building boundary. The reconstruction step con-
structs the 3D models within the regions of interest using the
available information from the sensor data. The detection step sig-
nificantly reduces the search space for the reconstruction step. In
this section, a review of some of the prominent data driven meth-
ods for 3D roof reconstruction is presented.

Methods using ground plans (Vosselman and Dijkman, 2001)
simplify the problem by partitioning the given plan and finding
the most appropriate planar segment for each partition. How-
ever, in the absence of a ground plan or if it is not up to date,
such methods revert to semi-automatic (Dorninger and Pfeifer,
2008). Rottensteiner (2003) automatically generated 3D building
models from point clouds alone. However, due to the use of
LIDAR data alone, the level of detail of the reconstructed models
and their positional accuracy were poor. An improvement involv-
ing the fusion of high resolution aerial imagery with a LIDAR
DSM (Digital Surface Model) was latter proposed (Rottensteiner
et al., 2004).

Khoshelham et al. (2005) applied a split-and-merge technique
on a DSM guided image segmentation technique for automatic
extraction of roof planes. In evaluation, the accuracy of recon-
structed planes was shown for four simple gable roofs only. Chen
et al. (2006) reconstructed buildings with straight (flat and gable
roofs only) and curvilinear (flat roof only) boundaries from LIDAR
and image data. Though the evaluation results were promising,
the method could not detect buildings smaller than 30 m2 in area
and for the detected buildings both planimetric and height errors
were high.

Park et al. (2006) reconstructed large complex buildings using
LIDAR data and digital maps. Unlike other methods, this method
was able to reconstruct buildings as small as 4 m2. However, in
the absence of a ground plan, or if the plan is not up to date, the
method becomes semi-automatic. In addition, objective evaluation
results were missing in the published paper. Dorninger and Pfeifer
(2008) proposed a method using LIDAR point clouds. Since the suc-
cess of the proposed automated procedure was low, the authors
advised manual pre-processing and post-processing steps. In the
pre-processing step, a coarse selection of building regions was
accomplished by digitizing each building interactively. In the
post-processing step, the erroneous building models were indi-
cated and rectified by means of commercial CAD software. More-
over, some of the algorithmic parameters were set interactively.
Sampath and Shan (2010) presented a solution framework for seg-
mentation (detection) and reconstruction of polyhedral building
roofs from high density LIDAR data. They provided good evaluation
results for both segmentation and reconstruction. However, due to
removal of LIDAR points near the plane boundaries, the method
exhibited high reconstruction errors on small planes. Furthermore,
the fuzzy k-means clustering algorithm was computationally
expensive (Khoshelham et al., 2005).

Habib et al. (2010) reported on semi-automatic polyhedral
building model generation through integration of LIDAR data and
stereo imagery. Planar roof patches were first generated from the
LIDAR data and then 3D image lines were matched along the LIDAR
boundaries. Finally, a manual monoplotting procedure was used to
both delete incorrect boundaries and add necessary boundary seg-
ments. Some true boundaries were missed and erroneous bound-
aries were detected due to relief displacement, shadows and low
image contrast. Cheng et al. (2011) integrated multi-view aerial
imagery with LIDAR data for 3D building model reconstruction.
This was a semi-automatic method since in many cases 20–30%
of roof lines needed to be manually edited. In addition, this method
was computationally expensive and failed to reconstruct complex
roof structures. Jochem et al. (2012) proposed a roof plane segmen-
tation technique from raster LIDAR data using a seed point based
region growing technique. Vegetation was removed using the
slope-adaptive LIDAR echo ratio and the approach showed good
object-based evaluation results on a large data set using a thresh-
old-free evaluation system. However, because of the use of gridded
height data, there was an associated loss of accuracy in the
extracted planes.
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3. Proposed extraction procedure

Fig. 1 shows an overview of the proposed building roof extrac-
tion procedure. The input data consists of raw LIDAR data and mul-
tispectral or colour orthoimagery. In the detection step (top dashed
rectangle in Fig. 1), the LIDAR points on the buildings and trees are
separated as non-ground points. The primary building mask
known as the ‘ground mask’ (Awrangjeb et al., 2010b) is generated
using the LIDAR points on the ground. The NDVI (Normalised Dif-
ference Vegetation Index) is calculated for each image pixel loca-
tion using the multispectral orthoimage. If multispectral
orthoimagery is not available, then the pseudo-NDVI is calculated
from a colour orthoimage. From this point forward, the term NDVI
is used for both indices.

Texture information like entropy is estimated at each image
pixel location using a grey-scale version of the image (Gonzalez
et al., 2003). The same grey level image is used to find lines in
the image that are at least 1 m in length (Awrangjeb and Lu,
2008). These lines are classified into several classes, namely,
‘ground’, ‘tree’, ‘roof edge’ (roof boundary) and ‘roof ridge’ (inter-
section of two roof planes) using the groundmask, NDVI and entro-
py information (Awrangjeb et al., 2012b). In the extraction step
(bottom dashed rectangle in Fig. 1), lines classified as roof edges
and ridges are processed along with the non-ground LIDAR points.
During LIDAR plane extraction, LIDAR points near to a roof edge or
ridge, which is considered as the baseline for the plane, are used to
start the newly proposed region growing algorithm. LIDAR points
that are compatible with the plane are then iteratively included
as part of the plane. Other planes on the same building are ex-
tracted following the same procedure by using the non-ground
LIDAR points near to local image lines. Finally, the false positive
planes, mainly constructed on trees, are removed using informa-
tion such as size, and spikes within the extracted plane boundaries.
The remaining planes form the final output.

In order to obtain a planar roof segment from the LIDAR data, it
is usual to initially choose a seed surface or seed region (Vosselman
et al., 2004). Then the points around the seed are considered to
iteratively grow the planar segment. Jiang and Bunke (1994) de-
fined a seed region on three adjacent scan lines (or rows of a range
image). This method cannot be used with raw LIDAR points. Others
used a brute-force method for seed selection where they fit many
planes and analyzed their residuals. This method is expensive and

does not work well in the presence of outliers (Vosselman et al.,
2004).

When a building is considered as a polyhedral model, each of
the planar segments on its roof corresponds to a part in the LIDAR
data where all points within some distance belong to the same sur-
face. If this part can be identified as a seed region, the brute-force
method can be avoided. This paper proposes a method to define
such a seed region for each roof plane with the help of image lines,
and then to extend the seed region iteratively to complete the pla-
nar segment.

In the following sections, a sample of a data set used for exper-
imentation is first presented, and then the detection and extraction
steps of the proposed 3D roof extraction method are detailed.

3.1. Sample Test Data

Fig. 2a presents a sample scene from the test data set. It will be
used to illustrate the different steps of the proposed extraction
method. This scene is from Aitkenvale, Queensland, Australia.
Available data comprised first-pulse LIDAR returns with a point
spacing of 0.17 m (35 points/m2, Fig. 2b) and an RGB colour ortho-
image with a resolution of 0.05 m.

Although the image and LIDAR data were registered using a mu-
tual information based technique (Parmehr et al., 2012), there
were still significant misalignments between the two data sets, be-
cause the orthoimage had been created using a bare-earth DEM
(Digital Elevation Model). The roofs and tree-tops were thus dis-
placed considerably with respect to the LIDAR data and the align-
ment was not perfect. Apart from this registration problem, there
were also problems with shadows in the orthoimage, so the NDVI
image, shown in Fig. 2c, did not provide as much information as ex-
pected. Therefore, texture information in the form of entropy
(Gonzalez et al., 2003) (see Fig. 2d) was also employed based on
the observation that trees are rich in texture as compared to build-
ing roofs. While a high entropy value at an image pixel indicates a
texture (tree) pixel, a low entropy value indicates a ‘flat’ (building
roof) pixel. The entropy and NDVI information together will be
used to identify the roof and tree edges while classifying image
lines. However, as with the building detection algorithm reported
by Awrangjeb et al. (2012b), the proposed extraction algorithm
does not remove all trees at the initial stage. It employs a new
rule-based procedure to remove false positive planes on trees
(see Section 3.3.2). Note that the image entropy rather than the
texture information from the LIDAR data (such as entropy and
the difference between the first and last echo) has been used due
to the high image resolution and unavailability of LIDAR data with
two or multiple returns.

3.2. Roof line detection

In this section, the LIDAR classification, ground mask generation
and image line extraction and classification procedures of the
detection step shown in Fig. 1 are presented.

3.2.1. LIDAR classification and Mask generation
For each LIDAR point, the corresponding DEM height is used as

the ground height Hg. A height threshold Th = Hg + 2.5 m (Rotten-
steiner et al., 2004) is then applied to the raw LIDAR height. Conse-
quently, the LIDAR data are divided into two groups: ground points
such as ground, road furniture, cars and bushes which are below
the threshold, and non-ground points which represent elevated ob-
jects such as buildings and trees.

Two masks – primary (from ground points) and secondary
(from non-ground points) as shown in Fig. 3a and b – are generated
following the procedure in Awrangjeb et al. (2010b, 2012b). The
primary or ground mask Mg indicates the void areas where thereFig. 1. Proposed method for automatic 3D extraction of building roofs.
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are no laser returns below Th, ie, ground areas covered by buildings
and trees. In contrast, the secondary or non-ground mask, which is
equivalent to the normalized DSM (nDSM), indicates the filled
areas, from where the laser reflects, above the same threshold, ie,
roofs and tree tops. Awrangjeb et al. (2012b) has shown that build-
ings and trees are found to be thinner in Mg than in nDSM. This is
also evident from Fig. 3a and b. While both the tree and bush near
to the building are detected in nDSM, one of them is completely
missed in Mg and the other is almost separated from the building.
Moreover, in nDSM the outdoor clothes hoist is clearly detected,
but it is missed in Mg. Consequently, Mg is used to classify image
lines as discussed below.

3.2.2. Line extraction and classification
In order to extract lines from a grey-scale orthoimage, edges are

first detected using the Canny edge detector. Corners are then de-
tected on the extracted curves via a fast corner detector (Awrang-
jeb et al., 2009). On each edge, all the pixels between two corners,
or between a corner and an endpoint or two endpoints when en-
ough corners are not available, are considered to form a separate
line segment. If a line segment is smaller than the minimum image
line length lm = 1 m, it is removed. Thus, trees having small hori-
zontal areas are removed. Finally, a least-squares straight-line fit-
ting technique is applied to properly align each of the remaining
line segments. A more detailed description of the image line
extraction procedure can be found in Awrangjeb and Lu (2008).
Fig. 4a shows the extracted lines from the test scene.

Three types of information are required to classify the extracted
image lines into ‘ground’, ‘trees’, ‘roof ridge’ and ‘roof edge’: the
ground mask (Fig. 3a), NDVI (Fig. 2c) and the entropy mask. In

order to derive the entropy mask, the entropy image shown in
Fig. 2d is first estimated. The mask is then created by applying
an entropy threshold (see Gonzalez et al. (2003) and Awrangjeb
et al. (2012b) for more details). The entropy mask for the test sam-
ple is shown in Fig. 4b.

For classification of the extracted image lines, a rectangular area
of width wd ¼ Wm

2 on each side of a line is considered, where
Wm = 3 m is assumed to be the minimum building width. The rect-
angular neighborhood setup procedure is further described in
Awrangjeb et al. (2010b). In each rectangle, the percentage U of
black pixels from Mg (from Fig. 3a), the average NDVI value ! after
conversion into grey-scale (from Fig. 2c) and the percentage W of
white pixels in the entropy mask (from Fig. 4b) are estimated. A
binary flag Fb for each rectangle is also estimated, where Fb = 1
indicates that there are continuous black pixels in Mg along the
line.

For a given line, if U < 10% on both of its sides, then the line is
classified as ‘ground’. Otherwise, ! and W are considered for each
side where UP 10%. If ! > 10 for an RGBI image or ! > 48 for an
RGB image, and W > 30% (Awrangjeb et al., 2010a) on either of the
sides, then the line is classified as ‘tree’. If ! 6 10, or if ! > 10 but
W 6 30%, then the line is classified as ‘roof ridge’ if Fb = 1 on both
sides. However, if Fb = 1 on one side only then it is classified as ‘roof
edge’. Otherwise, the line is classified as ‘ground’ (Fb = 0 on both
sides), for example, for road sides with trees on the nature strip.
The setup of all the parameter values has been empirically tested
in Awrangjeb et al. (2010b, 2012b).

Fig. 4c and d show different classes of the extracted image lines
overlaid on the orthoimage and the ground mask, respectively. For
each extracted line, its two end points and slope information are

Fig. 2. Sample data: (a) RGB orthoimage, (b) LIDAR data shown as a grey-scale grid, (c) NDVI image from (a), and (d) entropy image from (a).
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recorded for use in the extraction step described below. For each
line, a point Pi is also recorded which indicates the side of the line
where the U value is higher than for the other side (Awrangjeb
et al., 2010b). As shown in Fig. 4c, Pi is defined with respect to
the mid-point Pm of an image line when jPi.Pmj = wd. For a roof edge
Pi is on the corresponding roof plane and thus identifies the build-
ing side. For a roof ridge, Pi also helps in finding the other side of
the line, ie the other roof plane.

3.3. Roof extraction

In this section, the roof plane extraction and false plane removal
components of the extraction step in Fig. 1 are presented. In order
to extract roof planes from non-ground LIDAR points, an innovative
region-growing algorithm is proposed. Unlike the traditional
region growing techniques which mostly require selection of
appropriate seed points and are thereby sensitive to the seed
points, the proposed technique depends on the extracted image
lines to define robust seed regions. A seed region is defined for each
roof plane with respect to a classified image line which may reside
along the boundary of the plane. Logically, only the lines in classes
‘roof edge’ and ‘roof ridge’ should be considered for extraction of
roof planes. Since there may be some inaccuracy in classification,
lines classified as ‘roof edge’ or ‘roof ridge’ form the starting edges
(baselines) for extracting roof planes, but lines in other classes may
be considered if they are within the vicinity of already extracted
planes and are parallel or perpendicular to a baseline.

The area, perimeter and neighbourhood of each extracted LIDAR
plane, as well as the out-of-plane LIDAR spikes within its bound-

ary, are used to decide whether it is a valid planar segment. A
LIDAR plane fitted on a tree is usually small in size and there
may be LIDAR spikes within its boundary. This intuitive idea is em-
ployed to remove false positive planes in the proposed procedure.

The following parameters will frequently be used throughout
the extraction procedure. First, the LIDAR point spacing df, which
is the maximum distance between two neighbouring LIDAR points,
indicates the approximate LIDAR point density. Second, the flat
height threshold Tf is related to the random error in the height of
a LIDAR point. Ideally, two points on a truly flat plane should have
the same heights, but there may be some error in their estimated
LIDAR-determined heights. The parameter Tf indicates this error
and it is set at 0.1 m in this study. Third, the normal distance
threshold Tp to a extracted plane: if the normal distance from a
LIDAR point to a plane is below Tp = 0.15 m this point may be
included into the plane.

3.3.1. Extraction of LIDAR planes
The image lines in the ‘roof edge’ and ‘roof ridge’ classes are

sorted by length. Starting from the longest line Ll in the sorted list
as a baseline, the following iterative procedure is executed to ex-
tract its corresponding LIDAR plane >l, which can be located with
respect to Ll’s inside point Pi. When the extraction of >l is complete,
the next plane is extracted using the next longest line, and so on. If
Ll is a ridge line, then the procedure is repeated to extract the plane
on the other side which can be located by the mirror point of Pi
with respect to Ll.

For each baseline Ll, the extraction of >l mainly consists of fol-
lowing two steps: (1) estimation of plane slope and (2) iterative

Fig. 3. For the sample scene in Fig. 2: (a) ground mask, (b) non-ground mask, (c) ground LIDAR points and (d) non-ground LIDAR points.
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plane extraction. The slope direction hl of >l with respect to Ll is
first determined. Then >l is iteratively estimated using the compat-
ible LIDAR points near to the baseline.

(1) Estimation of plane slope: Fig. 5 shows some examples of dif-
ferent slope directions hl with respect to the baseline Ll. In
order to estimate hl, all the compatible LIDAR points near
to the mid-point Pm of Ll are first determined. Then the com-
patible points are examined to decide hl.
As shown in Fig. 6b, a square P1P2P3P4 of width wd is consid-
ered where Pi and Pm are the mid-points of two opposite
sides. The width of the square is set to wd on the assumption
that the registration error between the image and LIDAR
data is at most 1 m, so that some LIDAR points inside the
square may still be obtained. Let the mid-points of the other
two opposite sides be PL and PR. Further, let Ss be the set of all

LIDAR points within the square. A point X 2 Ss is considered
compatible with >l if it is not on any of the previously
extracted planes and it has low height difference (at most
Tf) with the majority of points in Ss.
Each of the four corners and four mid-points of P1P2P3P4 is
assigned a height value which is the height of its nearest
compatible LIDAR point. If PL and PR have similar heights
(their height difference is at most Tf), but Pi and Pm do not,
then there may be one of the following two cases. The slope
direction hl is upward if the height of Pi is larger than that of
Pm (Fig. 5a); otherwise, hl is downward (Fig. 5b). In both
cases, hl is perpendicular to Ll. If the mean height of all the
compatible points is similar to the heights of all four corners
and mid-points, then hl is flat. As shown in Fig. 5c, there is no
upward or downward slope direction on a flat plane. If Pi and
Pm have similar heights, but PL and PR do not, then hl is

Fig. 4. Image line classification: (a) all extracted lines, (b) entropy mask generated from Fig. 2d, (c) classified lines on orthoimage and (d) on ground mask. (Classes: green:
‘tree’, red: ‘ground’, cyan: ‘roof edge’ and blue: ‘roof ridge’.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Examples of different planes with respect to the baseline, where black thick line indicates the baseline and arrow indicates the slope direction with respect to the
ground: (a) upward, (b) downward, (c) flat, (d) parallel and (e) undefined.
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parallel to Ll (Fig. 5d). In this case, Ll is not used to estimate a
LIDAR plane, but the line PiPm is inserted into a list ‘ which
may be used latter after all the image (edge and ridge) lines
in the sorted list are used up but the corresponding plane >l

for Ll still remains unestimated. In all other cases, hl is unde-
fined (see an example in Fig. 5e). In such a case, hl is neither
perpendicular nor parallel to Ll and >l is not a flat plane.
For the first three cases (hl is upward, downward or flat), the
estimation of >l is continued as described below. For the
other two cases, Ll is marked as an incompatible line and
the whole procedure is restarted for the next candidate line.

(2) Iterative plane extraction: Fig. 7 shows the image guided iter-
ative procedure for extraction of LIDAR roof planes. Let Sp be
the set of non-ground LIDAR points that have already been
decided to be on >l, Ep be the set of points that are decided
not to be on the current plane and Up be the set of points
which remain undecided. All three sets are initially empty.

While extending the plane in four directions (shown in pur-
ple coloured arrows in Fig. 7 – Direction 1: from Pm to Pi,
Direction 2: from Pi to Pm, Direction 3: towards left of PiPm
and Direction 4: towards right of PiPm) Sp, Up and Ep are
updated in each iteration. Points from Up may go any of
the two other sets.

A plane is fit to the points in Sp as follows:

Axþ Byþ Czþ D ¼ 0: ð1Þ
In order to obtain the four or more points used to determine the
plane, a rectangle (width df on each side of Ll, magenta coloured
solid rectangle in Fig. 7a) around the baseline is considered. If the
required number of points are not found within this rectangle then
the rectangle is extended iteratively, by df

2 each time, towards Direc-
tion 1. The points which have already been decided for any of the
previously estimated planes are removed. Moreover, the points

Fig. 6. Finding the slope of a plane: (a) showing baseline in cyan colour and (b) magnified version showing a square region on the plane. Raw LIDAR points within the square
are examined to decide the slope of the plane.

Fig. 7. Iterative extraction of a plane (coloured dots are LIDAR points, cyan coloured line is baseline, purple coloured arrows indicate directions for plane extensions): (a)
initial plane around the baseline, (b) choosing the stable seed region (LIDAR points) inside plane, (c) extension of initial stable plane towards baseline, (d) extension of plane
towards left, (e) extension of plane towards right and (f) plane after first iteration. In (a–f), red coloured dots inside black coloured rectangles are new candidates. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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which have high height difference (more than df) from the majority
of points are discarded. They may constitute reflections from nearby
trees or walls. Once the required number of points on the plane is
obtained (yellow coloured dots in Fig. 7a), the initial plane nl using
Eq. (1) is constructed. These points are added to Sp. In order to check
whether the new points, found during the plane extension, are com-
patible with hl, the nearest and the farthest points Xn and Xf (in Sp)
from Ll are determined. For a flat plane, Xn and Xf should have sim-
ilar heights. Otherwise, for a plane having an upward (downward)
slope with respect to Ll, the height of Xf is larger (smaller) than that
of Xn.

The plane is then iteratively extended towards Direction 1 by
considering a rectangle of width df outside the previous rectangle.
All the LIDAR points (see red coloured points inside the black col-
oured rectangle in Fig. 7a) within the currently extended rectangle
are the candidate points and sorted according to their distance
from Ll. Starting from the nearest point Xw in the sorted list, the fol-
lowing conditions are executed sequentially for one point at a
time.

� Unused: Xw should not be used for estimating any of the previ-
ously extracted planes.

� Plane compatible: The plane compatibility condition can be
tested in one of following three ways. First, the mean height
of all the neighbouring points in Sp is similar to the height of
Xw. A circular neighbourhood of radius 3df is considered. Sec-
ond, the estimated height of Xw using Eq. (1) is similar to its
LIDAR height. Third, its normal distance to the plane is at most
Tp.

� Slope compatible: For a flat plane, Xw has a height similar to both
Xn and Xf. Otherwise, for a plane having an upward (downward)
slope with respect to Ll, the height of Xw is larger (smaller) than
that of Xf.

Candidate points which were decided to be on any previous
planes are first removed from the candidate point set. From the
rest of the points, points which do not satisfy the plane compatibil-
ity condition are included into Ep, points which do not satisfy the
slope compatibility condition are included into Up and points
which satisfy all three conditions are included into Sp.

After deciding all the points in the extended rectangle (black
rectangle in 7a), the nearest and furthest points Xn and Xf are up-
dated and the plane extension is continued towards Direction 1.
In the first iteration, when the width we of the extended plane ex-
ceeds wi + 2df, where wi = 1 m, the extension in Direction 1 is
stopped and only points having distances more than wi, but less
than wi + 2df, from Ll are kept in Sp (also Xn and Xf are updated)
and others are discarded. A stable seed region is thus obtained
for >l. For example, the cyan and magenta coloured points inside
the black coloured rectangle in Fig. 7b form the initial plane. The
plane width at this moment is we = 2.16 m. So, only the cyan col-
oured points are kept in Sp and magenta coloured points are dis-
carded. For planes having small we in the first iteration this
check does not succeed, so they are continued with all the points
in Sp found so far.

Then the plane is grown towards Direction 2 (Fig. 7c). The red
coloured points inside the black rectangle (width df) of Fig. 7c are
new candidates. The cyan coloured dots within the yellow rectan-
gle in Fig. 7d are decided to be on the plane at the end of the exten-
sion towards Direction 2. The yellow coloured point within the
black coloured circle is now found to be compatible with the plane,
but as shown in Fig. 7a, this point was initially selected to be on the
plane.

Points in Up are now decided. These points are sorted according
to their distance from Ll. Starting from the nearest point, if a point
Xu 2 Up satisfies all three conditions above, it is included into Sp. If

Xu fails the plane compatibility test, it is decided to be on another
plane and therefore included in Ep. Otherwise, Xu still remains
undecided.

Thereafter the plane is extended towards Direction 3 (see
Fig. 7d). The red coloured points inside the black rectangle (width
df) in Fig. 7d are the new candidates, which are now sorted accord-
ing to their distances from PiPm. Starting from the nearest point Xw

(shown in Fig. 7d) in the sorted list, all three conditions are exe-
cuted for one point at a time. The slope compatibility test is mod-
ified as follows. A rectangular neighbourhood is considered at the
right side of Xw where there are points which have already been
decided to be on the plane. As shown in Fig. 7d, a point Po inside
the already extracted plane rectangle (yellow coloured rectangle)
is obtained, where XwPo is parallel to Ll and jXwPoj = 2df. Two rect-
angles R1 and R2 are formed below and above XwPo. Let S1 and S2
be the sets of LIDAR points from Sp which reside inside R1 and R2

respectively. For a flat plane, the height of Xw should be similar
to the mean height of S1 [ S2. For a plane having an upward (down-
ward) slope, the height of Xw should be higher (smaller) than the
mean height of S1 but smaller (higher) than the mean height of
S2. Fig. 7e shows the extended plane (cyan coloured dots inside
the yellow coloured rectangle) when extension towards Direction
3 ends.

The plane is then extended towards Direction 4 using the same
conditions discussed above. The red dots within the black rectangle
in Fig. 7e are the new candidates. Fig. 7f shows the extended plane
(cyan coloured dots inside the yellow coloured rectangle) when
extension towards Direction 4 ends. Points in Up are again checked
to decide (following the same conditions discussed before) and the
plane equation nl is updated.

After extending the plane in all four directions, all the LIDAR
points, which are neither in Sp nor in Ep, within the plane rectangle
(yellow coloured rectangle in Fig. 7f) are re-examined to ascertain
whether they can still be added to the current plane. In order to
find these candidates, a rectangular window of width df (red col-
oured rectangle) is scanned from one end of the current plane rect-
angle (yellow coloured rectangle) to the other end (see Fig. 7f). For
these candidates, the plane compatibility condition is modified as
follows. First, candidates whose normal distances to nl are at most
Tp are chosen. Second, a recursive procedure is employed where a
candidate point is decided to lie in the plane if its closest neighbour
has already been decided to lie in the plane. A maximum radius of
2df is allowed for a circular neighbourhood. Finally, points in the
undecided set Up are again tested to decide. Fig. 8 shows an exam-
ple for a plane in the sample data set where the red dots within the
highlighted rectangle in Fig. 8a (45 red points) were re-examined
in the first iteration of the extraction procedure. All of these points
were found compatible and thus included in the plane, as shown in
Fig. 8b.

At this point, one iteration of the iterative plane extraction pro-
cedure is over and the next iteration starts with the new candi-
dates shown as the red dots within the black coloured rectangle
in Fig. 7f. Subsequently, the plane is extended again to all four
directions. If no side is extended in an iteration, the iterative pro-
cedure stops. For example, the extraction of the current plane of
the sample data set is completed in the second iteration, as shown
in Fig. 9a.

An extracted plane must have a minimum number of LIDAR
points and a minimum width in order to be considered as a roof
plane. This test removes some of the false positive planes on trees.
The required minimum number of points is nm ¼ Wh

d f

� �2
, where

Wh = 1.5 m (half of minimum building width Wm) and the mini-
mum plane width is lm = 1 m.

All the image lines which reside within an extended plane rect-
angle (black coloured rectangle in Fig. 9a, whose width and height
of the plane rectangle are increased by 1 m on each side) and are
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either parallel or perpendicular to Ll are kept in a queue Q for pri-
ority processing. Fig. 9a shows 21 such lines in yellow. Lines in Q
are processed starting first with the longest line. Consequently,
the extraction of a neighbouring plane is started with a new base-
line shown as a thick yellow line in Fig. 9a. If Q is empty then the
next longest roof edge or ridge line is used as a baseline to extract a
new plane. Finally, when all the roof edge and ridges lines are
decided, new lines in ‘are processed if there is any true planes left
unconstructed. Fig. 9b shows all the extracted planes for the sam-
ple data of Fig. 2.

3.3.2. Removal of false planes
In order to remove false positive planes, mostly constructed on

trees, a new rule-based procedure is proposed. For an extracted LI-
DAR plane, its area, perimeter and neighbourhood information, as
well as any LIDAR spikes within its boundary are used to decide
whether it is a false alarm. A LIDAR plane fitted on a tree is usually
small in size and there may be some LIDAR spikes within its
boundary.

In order to estimate the above properties, it is important to ob-
tain the boundary of each of the extracted planes. For a given set of
LIDAR points Sp of an extracted plane >l, a binary mask Mb is
formed. The boundary of the plane is the Canny edge around the
black shape in Mb. Fig. 10a shows the generated mask and the
boundary Dl for the first plane of the sample data set, and
Fig. 10b shows all the boundaries for the sample data set.

The area and perimeter of >l, determined via boundary Dl, can
thus be estimated. The perimeter is simply the sum of consecutive
point-to-point distances in Dl, and to obtain its area, a Delaunay
triangulation is formed among the points in Dl and the triangles
that reside outside the boundary are removed (red colour triangles
in Fig. 10c). Therefore, the area of the plane is the sum of areas of
the remaining triangles (blue coloured in Fig. 10c).

Thereafter, it is necessary to find the neighbouring planes for a
given plane and to group these neighbouring planes. A group of
neighbouring planes represent a complete building or a part of a
building. If the planimetric boundary D1 of >1 passes within a dis-
tance of 2df from Dl, then >l and >1 are initially considered neigh-
bouring planes. Three 3D lines are then estimated for the two
neighbours: ll for neigbouring LIDAR points in Dl, l1 for neigbouring
LIDAR points in D1, and the intersection li of the two planes (using
equations of planes nl and n1 according to Eq. (1)). These two planes
are real neighbours if li is parallel to both ll and l1 and the perpen-
dicular distances between the parallel lines should not exceed 1 m.
For example, Planes A and B in Fig. 11 are two neighbours and three
lines lA, lB1 and lAB are estimated, where lA is estimated using the
neighbouring LIDAR points from Plane A, lB1 from Plane B, and lAB
is the intersection line found by solving two plane equations. It
can be seen that lAB is parallel to both lA and lB1 and it is close to
them. Consequently, Planes A and B are found to be real neigh-
bours. Another example, Planes B and C are initially found to be
neighbours and their intersection line lBC is parallel to both lB2
and lC. However, since lBC is far from both lB2 and lC, Planes B and
C are decided not to be real neighbours.

By using the above analysis all of the extracted planes for the
sample data set are formed into two groups, as shown in

Fig. 8. Scanning unused LIDAR points within a plane rectangle (coloured dots are
LIDAR points and cyan coloured line is baseline): (a) Plane at the end of iteration 1
(cyan coloured dots inside yellow coloured plane rectangle form current plane, red
coloured dots indicate unused candidates) and (b) all the unused candidates are
now assigned to the plane after they are checked for compatibility.

Fig. 9. Results of iterative plane extraction: (a) first plane and (b) all planes.
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Fig. 10d, one being shown in blue colour and the other in magenta
colour.

In order to remove the false positive planes, the following tests
are executed sequentially for each extracted plane >l.

� Point and height tests: A 3D cuboid is considered around>l using
its minimum and maximum easting, northing and height val-
ues. Let the minimum and maximum heights of the cuboid be
zm and zM. Then a number (10, in this study) of random 2D

Fig. 10. Plane boundaries: (a) extraction of boundary around a plane’s binary mask, (b) all plane boundaries for planes in Fig. 10b, (c) Delaunay triangulations of plane’s
boundary points to estimate plane area and (d) Groups of neighbouring planes, all blue boundaries are in one group and all magenta in other group. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Finding the real neighbouring planes of a given plane.
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points are generated within the cube and their height values are
estimated using the plane equation nl. If at least one estimated
height ze is too low (zm � ze > Tz) or too high (ze � zM > Tz), then
>l is decided as a false plane.

� With no neighbours test: If >l does not have any neighbouring
planes, it must be at the size of the required minimum building
width Wm. If its area is less than 9 m2 or its perimeter is less
than 12 m, then it is marked as a false plane.

� With neighbours test: After the above test all the true positive
planes smaller than 9 m2 have at least one neighbouring plane.
It is assumed that an individual >l, when it has neighbouring
planes on the same roof, should have at least 1 m2 area in order
to be extracted properly. Therefore, if >l is less than 1 m2, it is
removed as a false plane.

� Group test – area: If at least one plane in a neighbourhood group
has an area of at least 9 m2, all planes in the group are accepted
as true planes.

� Group test – lines: Through consideration of a rectangular neigh-
bourhood around a group of planes, image lines within the
neighbourhood are identified. If there is at least a line of more
than 1.5Wm or if there are at least a pair of lines (with length
of at least Wm) which are parallel or perpendicular to each
other, then all planes in the group are considered to be true
planes.

� Group test – no-ground points: If a plane >l contains no-ground
points continued from a neighbouring plane that has already
been decided as a true plane, then >l is designated a true plane
as well. Continuous non-ground points are indicated by the con-
tinuous black pixels in the ground mask. In a recursive proce-
dure, a small plane of a group can be designated a true plane
if its neighbouring plane in the group is also found to be as a
true plane. Consequently, this test allows small roof planes,
for example, pergola which are physically connected to the
main building but may not have real plane intersections with
the main building, to be treated as parts of a complete building
roof.
Each group of planes needs to satisfy any of the above group
tests. All other groups at this point are decided to be non-com-
plaint and the planes in those groups are considered to be false.

� Height test: Finally, all surviving planes which are smaller than
3 m2 in area are subject to a further test to remove nearby
planes on trees. For such a plane, if the difference between max-
imum and minimum boundary heights is more than 1 m then
this plane is removed as a false plane. This test removes ran-
domly oriented planes on nearby trees. Because these tree
planes are in the group containing true roof planes, they may
survive after all of the above group tests.

During the application of the above removal procedure, the first
group of planes (shown in blue colour in Fig. 10d) satisfied the area
test since it had at least 1 plane whose area was more than 9 m2.
However, the second group of planes (shown in magenta colour
in Fig. 10d) did not satisfy the area test as the total area of its
planes was less than 9 m2. Nevertheless, since the second group
had continuous non-ground points with the first group (see
Fig. 4d), the second group was also designated part of the complete
building roof.

4. Performance study

In the performance study conducted to assess the proposed
approach, two data sets from two different areas were employed.
The objective evaluation followed a previously proposed auto-
matic and threshold-free evaluation system (Awrangjeb et al.,
2010b,c).

4.1. Data sets

The test data sets cover two urban areas in Queensland, Austra-
lia: Aitkenvale (AV) and Hervey Bay (HB). The AV data set com-
prises two scenes. The first scene (AV1) covers an area of
108 m � 80 m and contains 58 buildings comprising 204 roof
planes. The second (AV2) covers an area of 66 m � 52 m and con-
tains five buildings comprising 25 roof planes. The HB data set
has one scene and covers 108 m � 104 m and contains 25 buildings
consisting of 152 roof planes. All three data sets contain mostly
residential buildings and they can be characterized as urban with
medium housing density and moderate tree coverage that partially
covers buildings. In terms of topography, AV is flat while HB is
moderately hilly.

LIDAR coverage of AV comprises first-pulse returns with a point
density of 35 points/m2, a spacing of 0.17 m in both in- and cross-
flight directions. For HB, the first-pulse LIDAR points have a point
spacing of 0.17 m in-flight and 0.47 m in cross-flight directions
(13 points/m2). The AV and HB image data comprise RGB colour
orthoimagery with resolutions of 0.05 m and 0.2 m, respectively.
Bare-earth DEMs of 1 m horizontal resolution cover both areas.
For the data sets having only RGB color orthoimagery the pseu-
do-NDVI image instead of the NDVI image was employed, follow-
ing the process in Rottensteiner et al. (2005).

In order to empirically test the sensitivity of the algorithmic
parameters, the AV2 scene has been employed. While the original
LIDAR point density of this data set is 35 points/m2, it has been
resampled to different densities for tests conducted: 16, 11, 8, 6
and 4 points/m2.

Two dimensional reference data sets were created by mono-
scopic image measurement using the Barista software (Barista,
2011). All visible roof planes were digitized as polygons irrespec-
tive of their size. The reference data included garden sheds, gar-
ages, etc. These were sometimes as small as 1 m2 in area.

As no reference height information was available for the build-
ing roof planes, only the planimetric accuracy has been evaluated
in this study. Since each of the extracted plane boundaries consists
of raw LIDAR points, it can be safely assumed that the accuracy in
height depends completely on the input LIDAR data.

Table 1
Parameters used by the proposed roof extraction method.

Parameters Values Sources

Ground height Hg DEM height input LIDAR
Height threshold Th Hg + 2.5 m Rottensteiner et al.

(2004)
Min. building width Wm 3 m Awrangjeb et al.

(2010b)
Rect. neighbourhood width

wd

Wm
2

Awrangjeb et al.
(2010b)

Min. image line length lm Wm
3

related to Wm

Line classification
thresholds

(see Section 3.2.2) Awrangjeb et al.
(2012b)

LIDAR point spacing df (from input LIDAR
data)

input LIDAR data

Flat height threshold Tf 0.10 m this paper
Normal distance threshold

Tp

0.15 m this paper

Width of extending
rectangle

df related to df

All LIDAR neighbourhood
sizes

proportional to df related to df

Min. points on a plane Wm
2df

� �2 related to Wm, df

Min. building area 9 m2 related to Wm

Min. building perimeter 12 m related to Wm

Min. plane area 1 m2 related to lm
Spike height threshold Tz 1.5 m this paper
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4.2. Evaluation metrics

The planimetric accuracy has been measured in both object and
image space. In object-based evaluation the number of planes has
been considered – whether a given plane in the reference set is
present in the detection set. Five indices are used for object-based

evaluation. Completeness Cm, also known as detection rate (Song and
Haithcoat, 2005) or producer’s accuracy (Foody, 2002), correctness
Cr, also known as user’s accuracy Foody (2002) and quality Ql have
been adopted from Rutzinger et al. (2009). Detection cross-lap rate
is defined as the percentage of detected planes which overlap more
than one reference planes. Reference cross-lap rate is defined as the

Fig. 12. Roof plane extraction results for the AV2 data set under different LIDAR point density: (a) original density, 35 points/m2 (LIDAR point spacing df = 0.17 m), (b)
16 points/m2 (df = 0.25 m), (c) 11 points/m2 (df = 0.30 m), (d) 8 points/m2 (df = 0.35 m), (e) 6 points/m2 (df = 0.40 m) and (f) 4 points/m2 (df = 0.50 m). Green: extracted roof
planes, other colours: false planes mostly extracted on trees and therefore removed.

Table 2
Object-based evaluation results for the AV2 data set in percentages under different
LIDAR point density in points/m2 (Cm = completeness, Cr = correctness, Ql = quality,
Crd = detection cross-lap rate and Crr = reference cross-lap rate).

LIDAR density Cm Cr Ql Crd Crr

35 100 96.2 96.2 0.0 8
16 100 100 100 3.8 8
11 100 100 100 7.7 12
8 100 100 100 11.1 12
6 100 100 100 8.8 28
4 95.2 100 95.2 12 20

Average 99.2 99.4 98.6 7.2 14.7

Table 3
Pixel-based evaluation results for the AV2 data set in percentages under different
LIDAR point density in points/m2 (Cmp = completeness, Crp = correctness, Qlp = quality,
Bf = branching factor and Mf = miss factor).

LIDAR density Cmp Crp Qlp Bf Mf

35 96.6 96.9 93.7 3.2 3.6
16 95.6 97.7 93.5 2.3 4.6
11 95.9 97.5 93.6 2.5 4.4
8 96.2 96.9 93.4 3.2 3.9
6 94.9 97.2 92.4 2.9 5.4
4 88.4 97.7 86.5 2.4 13.2

Average 94.6 97.3 92.2 2.8 5.9
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percentage of reference planes which are overlapped by more than
one detected plane (see Awrangjeb et al. (2010c) for formal
definitions).

In pixel-based image space evaluation the number of pixels has
been considered – whether a pixel in a reference plane is present in
any of the detection planes. A total of 5 pixel-based evaluation
indices are used, these being: completeness Cmp, also known as
matched overlay (Song and Haithcoat, 2005) and detection rate
(Lee et al., 2003), correctness Crp and quality Qlp from Rutzinger
et al. (2009); and branching factor Bf and miss factor Mf from Lee
et al. (2003).

4.3. Parameter sensitivity

Table 1 shows all the parameters used by the proposed roof
extraction method. Many of the parameters have been directly
adopted from the existing literature. Some of them, e.g. LIDAR
point spacing, are related to the input data. Many of the param-
eters are dependent on other parameters, e.g. minimum building
area 9 m2 is related to the minimum building width Wm = 3 m.
The spike height threshold Tz is a new parameter and is used
during the point test in Section 3.3.2 to remove randomly ori-
ented planes on trees. It is an independent parameter. The other
two parameters, the flat height threshold Tf and the plane nor-
mal distance threshold Tp, are used while extracting the planar
roof segments. Both Tf and Tp are related to the input LIDAR
data where there is always some accuracy limitation as to
why two LIDAR points on a flat plane may have different height
values.

While Tf is somewhat new and directly applied to the heights of
the neighbouring LIDAR points to a given LIDAR point, Tp has been
used in the literature frequently and is applied to the perpendicu-
lar distances from the LIDAR points to the estimated planes. Sam-
path and Shan (2010) showed that the perpendicular distances
from the segmented LIDAR points to the plane was in the range
of 0.09–0.60 m, Chen et al. (2006) found this error to be in the
range of 0.06 m to 0.33 m and Habib et al. (2010) set a buffer of
0.4 m (twice the LIDAR accuracy bound) on both sides of the plane
to obtain the coplanar points.

Three sets of different values (in metres) were tested while set-
ting the values for the three parameters Tf, Tp and Tz. For both Tf and
Tp the test values were 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 m. For Tz the
test values were 0.2, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 m. While
for Tf and Tp the object- and pixel-based qualities were considered,
for Tz the number of planes was employed since the quality values
were close at different test values. It was observed that for both Tf
and Tp the object-based qualities were similar but the pixel-based
qualities changed slightly at different test values. The maximum
pixel-based qualities were observed at Tf = 0.1 m and Tp = 0.15 m.
At low test values for Tz a large number of trees (small to large
in area) were removed. In addition, a small number of roof planes
were also removed. However, at high test values only the trees
(large in area) were removed but no tree planes were removed.
At Tz = 1.5 m the number of removed trees (medium to large in
area) was moderate and no roof planes were removed. The trees
which are small in area were removed using other rules discussed
in Section 3.3.2. As a result, the chosen values are Tf = 0.1 m,
Tp = 0.15 m and Tz = 1.5 m.

In order to test how the algorithm performs when the parame-
ters (eg, neighbourhood sizes and the minimum number of points
on a roof plane, as shown in Table 1) related to the input LIDAR
point spacing df change, the LIDAR density was progressively de-
creased in the AV2 scene to as low as 4 points/m2.

Fig. 12 shows the extraction results under different LIDAR den-
sities in the AV2 scene. Tables 2 and 3 show the objective evalua-
tion results in object- and pixel-based metrics respectively. The

object-based completeness, correctness and quality were more
than 95% in all LIDAR point densities, however there were cross-
laps as shown in Table 2.

Fig. 13. Results for the AV1 data set. Green: extracted roof planes, other colours:
false planes mostly extracted on trees and therefore removed. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 14. Results for the HB data set. Green: extracted roof planes, other colours:
false planes mostly extracted on trees and therefore removed.
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Overall, it has been observed that when the density of the LIDAR
data decreases, many of the planes are extracted. However, some of
the larger planes have been extracted into more than one small
component (over-segmentation) and some of the small planes
have not been extracted as separate planes (under-segmentation),
which in turn causes reference and detection cross-laps. Fig. 12
shows that each of the planes inside the dashed purple coloured
circles has been extracted as more than one detection planes. This
has moderately increased the reference cross-lap rates, specially
when the LIDAR density is low (see Table 2). Moreover, some of
the small planes, shown in cyan coloured dashed rectangles in
Fig. 12, have been merged with neighbouring large planes, which
in turn gradually increased the detection cross-lap rates for low LI-
DAR density cases (see Table 2).

Thus from the results in Tables 2 and 3, it can be concluded that
the proposed extraction algorithm works well when the LIDAR
point density decreases gradually, but in low LIDAR density cases
its performance deteriorates moderately. Consequently, the
parameters used in this paper were found to be somewhat sensi-
tive in the experimentation conducted.

4.4. Results and discussion

Figs. 13 and 14 show the extracted planes for the AV and HB
data sets and Figs. 15 and 16 show the corresponding extracted
3D building models.

It can be observed that almost all the roof planes are correctly
extracted and the false planes on trees are correctly removed.
However, due to nearby trees or small dormers on the roof, there
are cases where over-segmentation causes some of the true planes
to be extracted in two or more small components. Figs. 17 and 18
illustrate some of these cases: small complex structures on roof
tops have been correctly extracted (Fig. 17a); occluded and shaded
small to medium sized roofs are extracted correctly (Fig. 17b);
small planes extracted on trees have been successfully removed
(Fig. 17b); roofs smaller than 9 m2 have been removed (Fig. 17c
and d); low height roofs are missed (Fig. 17c); complex building
neighbourhood structure has been correctly extracted; planes as
small as 1 m2 that reside among big planes are correctly extracted
(Fig. 18a and b); close but parallel neighbouring planes have been
separated and correctly extracted (Fig. 18b); and finally, the

Fig. 15. Three-dimensional building models from the AV1 data set.

Fig. 16. Three-dimensional building models from the HB data set.
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proposed algorithm performs well in spite of there being registra-
tion errors of 1–2 m as shown in Fig. 18b between the LIDAR data
and orthoimage.

Tables 4 and 5 show the objective evaluation results using ob-
ject- and pixel-based metrics, respectively. The proposed algorithm
offers slightly better performance on the AV data set than on the HB
data set in terms of both object- and pixel-based completeness, cor-
rectness and quality. It shows higher detection cross-lap rate in the
HB data set, but higher reference cross-lap rate in the AV data set.
These phenomena can be explained as follows. In the AV data set,
there are a few cases where neighbouring trees partially occluded
some of the planes. As a result, more than one plane has been ex-
tracted on each of these occluded planes and the reference cross-
lap rate has been increased. In the HB data set, there aremany small
planes on complex roof structures and some of them have been
merged with the neighbouring larger planes. Thus the detection
cross-lap rate has been increased for the HB data set.

In the HB data set, the branching and miss factors are high. The
large registration error between the LIDAR and orthoimage in-
creased both of these error rates. In addition, some small planes
were missed, which has increased the miss factor as well.

Note that in both data sets (Figs. 13 and 14) there were many
overgrown and undergrown regions. Nevertheless, the object-
based completeness and correctness were more than 98%, as
shown in Tables 4 and 5. This is attributable to the threshold-free
evaluation system (Awrangjeb et al., 2010b,c), which determines a
true detection based on the largest overlap between a detection
and a reference entity. Then the over- and under-segmentation
cases are explicitly expressed by indices such as reference and
detection cross-lap rates in the object-based evaluation (Table 4),
and branching and miss factors in the pixel-based evaluation
(Table 5). Consequently, although the proposed roof extraction
technique showed high correctness and completeness, the high
reference cross-lap rate in the AV data set indicated that there

Fig. 17. Some special cases of roof extraction in the AV1 data set. Green: extracted roof planes, other colours: false planes mostly extracted on trees and therefore removed.
Purple coloured dotted circles: more than one detection planes for a given reference plane, cyan coloured dotted rectangle: plane has not been extracted separately. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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were many over-segmented regions. Moreover, the high detection
cross-lap rate and miss factor value in the HB data set indicated
that there were many under-segmented regions.

4.5. Comparison with other methods

Since different roof extraction methods use different data sets
and different evaluation systems and metrics, it is not straightfor-
ward to compare the results of the different methods reported in
the literature. However, in order to show the current progress of
research in the field of 3D building roof extraction, the evaluation
results presented by prominent data-driven methods are summa-
rised here. The methods, which employ similar evaluation systems

and metrics (completeness, correctness and quality), are then cho-
sen to show the progress made by the proposed method.

While many reported data-driven methods (Vosselman and
Dijkman, 2001; Rottensteiner, 2003; Rottensteiner et al., 2004
and Park et al., 2006) lack accompanying objective evaluation re-
sults for roof plane reconstruction, others are without results based
on the number and area (pixels) of reconstructed planes. For exam-
ple, Dorninger and Pfeifer (2008) presented results based on the
number of buildings whose roof planes were correctly recon-
structed, but did not show howmany planes per building were cor-
rectly reconstructed. Sampath and Shan (2010) showed error
statistics based on perpendicular distances from the segmented LI-
DAR points to the extracted planes. Cheng et al. (2011) and Chen
et al. (2006) presented results based on the number of building
models, not on the number of planes.

Among the rest of the promising data-driven methods, Khoshel-
ham et al. (2005) evaluated results on 4 simple gable roofs having a
total of 10 planes and showed object-based completeness Cm and
correctness Cr of 100% and 91%, respectively. The semi-automatic
method by Habib et al. (2010) offered Cm = 75% and Cr = 94% in
an experiment using 23 buildings comprising 180 planes. Never-
theless, it could not extract planes which are less than 9 m2 in area.
Jochem et al. (2012) evaluated their LIDAR-based roof plane seg-
mentation method on a large data set of 1003 roof planes and
achieved Cm = 94.4% and Cr = 88.4%. However, as the authors men-
tioned, their method had shortcomings. Firstly, it could not extract
planes of less than 6 m2 in area. Secondly, it could not remove very
dense vegetation where the slope-adaptive LIDAR echo ratio is
high. Moreover, it lost accuracy in the extraction of planes as it
used gridded LIDAR data. It is not clear from the reported experi-
mental results whether the methods of Khoshelham et al. (2005)
and Habib et al. (2010) function in vegetation areas having trees
of similar height to surrounding buildings, or whether the ap-
proach of Khoshelham et al. (2005) can extract small roof planes.

While the proposed algorithm is compared with the aforemen-
tioned three existing methods, like those of Khoshelham et al.
(2005) and Jochem et al. (2012) the proposed method is fully auto-
matic, while the method by Habib et al. (2010) is semi-automatic
as it requires a manual monoplotting procedure to delete incorrect

Fig. 18. Some special cases of roof extraction in the HB data set. Green: extracted roof planes, other colours: false planes mostly extracted on trees and therefore removed.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Object-based evaluation results in percentages for two test data sets: AV1 – first
Aitkenvale scene, AV2 – second Aitkenvale scene and HB – Hervey Bay scene
(Cm = completeness, Cr = correctness, Ql = quality, Crd = detection cross-lap rate and
Crr = reference cross-lap rate).

Data set Cm Cr Ql Crd Crr

AV1 98.3 99.4 97.7 1.7 27.3
AV2 100 96.2 96.2 0.0 8.0
HB 98.4 98.4 96.9 9.9 7.6

Average 98.9 98 96.9 3.9 14.3

Table 5
Pixel-based evaluation results in percentages for two test data sets: AV1 – first
Aitkenvale scene, AV2 – second Aitkenvale scene and HB – Hervey Bay scene
(Cmp = completeness, Crp = correctness, Qlp = quality, Bf = branching factor and Mf = -
miss factor).

Data set Cmp Crp Qlp Bf Mf

AV1 89.9 94.2 85.2 6.1 11.3
AV2 96.6 96.9 93.7 3.2 3.6
HB 87.6 93.8 82.8 6.6 14.2

Average 91.4 95 87.2 5.3 9.7
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boundaries and add necessary boundary segments. The methods of
Khoshelham et al. (2005) and Habib et al. (2010) might offer better
planimetric accuracy than the proposed method and that of
Jochem et al. (2012), since both use image lines to describe the
plane boundaries. However, the proposed method can offer better
vertical accuracy than the existing three methods as it uses the raw
LIDAR data to describe the planes.

The evaluation results presented in this paper cover 88 build-
ings consisting of 381 roof planes. The proposed method can ex-
tract individual planes as small as 1 m2, and it applies a new
rule-based procedure to remove all kinds of vegetation. Unlike
the existing methods, object-based evaluation for the proposed
method uses quality, detection and reference cross-lap rates. The
latter two metrics indicate the under- and over-segmentation of
the input data. In terms of object-based completeness and correct-
ness, the proposed method offered higher performance (Cm = 99%
and Cr = 98%) than the three existing methods. Moreover, none of
the existing methods showed results using the pixel-based evalu-
ation metrics. In contrast, the proposed method has demonstrated
high performance in pixel-based evaluation as well.

5. Conclusion and future work

This paper has presented a new method for automatic 3D roof
extraction through an effective integration of LIDAR data and aerial
orthoimagery. Like any existing methods, the proposed roof extrac-
tion method uses a number of algorithmic parameters, the major-
ity of which are either adopted from the existing literature or
directly related to the input data. An empirical study has been con-
ducted in order to examine the sensitivity of the rest of the param-
eters. It is shown that in terms of object- and pixel-based
completeness, correctness and quality, the algorithm performs
well when the LIDAR point density decreases, and it successfully
removes all vegetation (indicated by similar branching factor in
Table 3) even when the LIDAR density is low. However, the over-
segmentation (reference cross-lap), and under-segmentation
(detection cross-lap) rates increase moderately when the LIDAR
density is low.

As compared to three existing methods (Khoshelham et al.,
2005; Habib et al., 2010; Jochem et al., 2012), the proposed method
can extract planes as small as 1 m2 and can work in the presence of
dense vegetation. The proposed method is fully automatic and
experimental results show that it not only offers high reconstruc-
tion rates but also can work in the presence of moderate registra-
tion error between the LIDAR data and orthoimagery. However, as
the registration error grows, so does the likelihood that algorithm
will fail to properly extract the roof planes, especially the small
planes. The authors plan to test the algorithm on further data sets
with large registration errors between the orthoimagery and LIDAR
data.

Future work includes rectification of the over- and under-seg-
mentation issue and testing the algorithm on more complex data
sets. In order to obtain better planimetric accuracy the research
of representing the 3D plane boundaries using the image lines is
under investigation. In addition, it will be interesting to test the
algorithm on real data with low LIDAR point density.
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