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a b s t r a c t

We compute the flow of three viscoelastic fluids (Oldroyd-B, FENE-P, and Owens blood model) in
a two-dimensional channel partly bounded by a tensioned membrane, a benchmark geometry for
fluid–structure interactions. The predicted flow patterns are compared to those of a Newtonian liq-
uid. We find that computations fail beyond a limiting Weissenberg number. Flow fields and membrane
shape differ significantly because of the different degree of shear thinning and molecular extensibility
eywords:
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iscoelastic fluid flow
luid–structure interactions
lood flow

underlying the three different microstructural models.
© 2010 Elsevier B.V. All rights reserved.
onformation tensor models
inite element method

. Introduction

Blood is a concentrated suspension of multiple components
ith a complex rheological behaviour; it interacts intricately with

lood vessel walls—both chemically and mechanically. A quan-
itative description of physiological blood circulation requires
nderstanding blood rheology as well as the effect of the
rchitectural and mechanical properties of the vascular system.
icrocirculation refers to blood flow in small vessels (arterioles,

enules, and capillaries), whereas macrocirculation encompasses
ow in larger arteries. From a fluid mechanical viewpoint, the
icrocirculation corresponds to flows at low Reynolds num-

er Re, while the macrocirculation corresponds to flows where
nertia is significant. Despite the commonalities (e.g., interaction
etween blood and vessel walls) the micro and macrocircu-

ation are sufficiently different to warrant different modelling
pproaches. In the high Re flows in medium and large arteries
macrocirculation), inertial forces dominate and tube diameters
re large; therefore, the Navier–Stokes equations provide an ade-

uate model [1]. Most studies on fluid–structure interaction in
lood flow have focused on the macrocirculation. Conversely, iner-
ia plays little role in the microcirculation; here, the non-Newtonian
ehaviour of blood (due to its particulate microstructure) must be
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captured—specifically, shear thinning at low shear rates, and its
viscoelastic and thixotropic nature [1–3]. So far, there have been
no studies of fluid–structure interaction issues associated with the
flow of viscoelastic fluids in vessels with compliant walls. This work
aims to study the flow of model viscoelastic fluids in a simple
two-dimensional collapsible channel as a preliminary study of the
behaviour that might arise when more realistic models of blood
and blood vessels are simulated under conditions in which the vis-
coelastic character of blood and the elastic nature of blood vessel
walls become important.

Laboratory experiments on flow through collapsible tubes have
shown complex and non-linear dynamics, with a multiplicity of
self-excited oscillations [4,5]. The simplest literature numerical
model that captures part of this rich behaviour is that of a fluid
flowing in a 2D rigid parallel sided channel, where part of one wall
is replaced by a tensioned membrane (Fig. 1). This geometry has
been studied extensively in the case of Newtonian fluids, with the
flexible wall treated as an elastic membrane of zero thickness, with
the stretching and the bending stiffness of the membrane along the
flow direction neglected [6–10]. More recently, this basic model has
been improved by including more realistic treatments of the elas-
tic wall and extending the geometry to handle 3D compliant tubes
[11–16]. All these studies treated the fluid as Newtonian. Here, we

use the simple 2D geometry, with a zero-thickness membrane, to
study fluid–structure interaction in viscoelastic liquids, restricted
to Re = 1.

The shear thinning of blood [1–3] is due to the sponta-
neous arrangement of red blood cells into rouleaux, aggregates

dx.doi.org/10.1016/j.jnnfm.2010.06.005
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:ravi.jagadeeshan@eng.monash.edu.au
dx.doi.org/10.1016/j.jnnfm.2010.06.005
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ig. 1. Geometry of the 2D collapsible channel; the segment BC is an elastic mem
ressure on the wall at the downstream boundary (denoted by location E), W is the
eight of the gap between the bottom wall of the channel and the deformable mem

esembling stacks of coins. These aggregates form three-
imensional structures in the absence of flow. At low shear rates,
he viscosity is high and is controlled by the size and interaction
f the rouleaux. At high shear rates, the rouleaux break, leading to
ower viscosity. Numerous models have been proposed for the rhe-
logical behaviour of blood [17–24]. Models that account for blood
iscoelasticity are commonly generalised Maxwell models, with
relaxation time and shear viscosity that depends on a dynam-

cal structural variable describing the aggregation/disaggregation
f red blood cells. The recent models by Owens and co-workers
23,24] are appealing because the evolution equation for the struc-
ural variable is derived through a microstructural framework
ased on transient polymer network theory. Predictions of these
odels compare very well with a range of experimental data on

lood rheology [23,25,26]. Owens original model [23] addresses
ows where the concentration of blood cells is uniform; it was
xtended recently [24] to include flow-induced concentration gra-
ients, which are known to develop, for example, when the length
cale of the flow approaches that of the blood cells—the Fåhraeus
27] and Fåhraeus–Lindqvist [28] effects. Here we use the original
wens models [23] (slightly modified to handle non-homogeneous
ows, and restricted to the single-mode version) to study the flow
f blood in a compliant channel, and compare the results to those
btained with two “standard” viscoelastic fluid models—Oldroyd-B
nd FENE-P.

The flow and membrane shape are computed simultane-
usly with the DEVSS-TG/SUPG (discrete elastic viscous stress
plit-traceless gradient) finite element method extended to free
oundary problems [29]. The constitutive equations of all models
re written in conformation tensor form [30].

This article is organized as follows. Section 2 presents the prob-
em formulation and viscoelastic models. Section 3 compares the
esults of viscoelastic and Newtonian fluid computations, and Sec-
ion 4 summarises our conclusions.

. Problem formulation

The geometry of the flow is that of a 2D channel, with one of
he walls containing an elastic segment. The membrane has zero
hickness. In units of channel width W, the dimensions of the chan-
el are Lu = 7W , L = 5W , and Ld = 7W (Fig. 1). As in Luo and Pedley
8], the tension in the flexible wall is constant and the shape of the
exible part is governed by the normal force acting on it. h denotes
he minimum channel width between the deformed membrane and
he bottom wall (Fig. 1).

.1. Governing equations
The equations of motion for steady, incompressible flow in the
bsence of body forces are:

· v = 0 (1)

v · ∇v = ∇ · T (2)
. Here, Q is the flow rate, pe is the external pressure on the membrane, pd is the
h of the channel, L the length of the deformable membrane, and h is the minimum
.

where � is the density of the liquid, v is the velocity, ∇ denotes the
gradient. The Cauchy stress tensor is T = −pI + � + �, where p is the
pressure, I is the identity tensor, � is the viscous stress tensor and
� is the elastic stress tensor. The viscous stress tensor is � = 2�sD,
where �s is the solvent viscosity and D = 1

2 (∇v + ∇vT ) is the rate
of strain tensor.

The elastic stress depends on the microstructural state of the
fluid, represented here by the dimensionless conformation tensor
M [30]. For the Oldroyd-B and FENE-P models, this relation is well
known; it takes the form,

� = �p,0

�0
{f (tr M) M − I} (3)

where �p,0 is the contribution of the microstructural elements to
the zero shear rate viscosity, and �0 is the constant characteristic
relaxation time of the microstructure. For the Oldroyd-B model,
f (tr M) = 1, while for the FENE-P model [30],

f (tr M) = bM − 1
bM − tr M/3

(4)

where bM is the finite extensibility parameter, defined as the ratio
of maximum length squared of the microstructural element to its
average length squared at equilibrium. The conformation tensor
obeys the following evolution equation,

∂M
∂t

+ v · ∇M − ∇vT · M − M · ∇v = − 1
�0

{f (tr M)M − I} (5)

The Owens blood model [23] was originally presented in terms
of a constitutive equation for the elastic stress and has not yet
been translated into conformation tensor form and studied in com-
plex flows. A conformation tensor version of the Owens model can
be derived straightforwardly, noting that Eqs. (3) and (5) hold for
the Owens model (with f (tr M) = 1, as in the Oldroyd-B model).
However, while Eq. (3) remains unchanged with �0 denoting the
zero shear rate relaxation time, it is replaced in Eq. (5) by a func-
tion �, which represents the relaxation time of the elastic stress
due to blood cell aggregates. � depends on the average size of the
blood cell aggregates, n, which is controlled by the competition
of spontaneous aggregation and flow-induced disaggregation. We
assume here that the dynamics of n are fast with respect to other
changes of the flow, i.e., n = nst(�̇)—its equilibrium value based on
the local shear rate �̇ = √

2 D : D. This choice preserves the vis-
coelastic and shear thinning character of blood but does not capture
its thixotropic behaviour [23]. This simplification makes it unnec-
essary to solve an additional equation for the variation of n in the
flow domain. Under this assumption, the relaxation time � is( )

� = �H

�p,∞
�p(�̇) (6)

where �H is the relaxation time of individual blood cell aggregates,
�p,∞ is the infinite shear-rate viscosity, and �p(�̇) is their contribu-
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ion to blood viscosity given by the Cross model,

p(�̇) = �p,0

(
1 + �1�̇m

1 + �2�̇m

)
(7)

here m is a power-law index, and the ratio of parameters �1 and
2 satisfies the expression, �1/�2 = �p,∞/�p,0 [23]. The values of all
odel parameters are reported in Section 2.3.
To handle free boundaries, we use a boundary fitted finite ele-

ent based elliptic mesh generation method [29,31–33] which
nvolves solving the following elliptic differential equation for the

apping x = x(�),

· D̃ · ∇� = 0 (8)

here � is a vector of positions in the computational domain and
he dyadic, D̃, is a function of �, analogous to a diffusion coefficient,
hich controls the spacing of the coordinate lines [33].

.2. Boundary conditions and discretisation

We prescribe the following boundary conditions:

. At the upstream boundary, a fully developed velocity profile is
specified in the form, vx = f (y), and vy = 0. Since, for all the Wi
considered here, the upstream velocity profiles for the Oldroyd-
B and FENE-P fluids do not differ significantly from that for a
Newtonian fluid, a Newtonian velocity profile is used. However,
for the Owens model fluid, we use a fully developed velocity
profile obtained by analytically solving the flow of a power-law
fluid in a channel. This is because of the strongly shear thinning
nature of the Owens model fluid. The power-law index used is
that exhibited by the Owens model (with the current parameter
values) in a simple shear flow.

. No slip boundary conditions (v = 0) are applied on the rigid
walls.

. At the flexible wall,
(a) On the momentum equation, we impose (i) t · v = 0, where t

is the unit tangent to the flexible wall, and, (ii) a force bal-
ance in the normal direction through the traction boundary
condition:

nn : T = −pe + � ∇II · n (9)

where n is the unit normal to the flexible wall, ∇II denotes
the surface gradient operator, pe is the external pressure and
� is the fixed tension in the flexible wall.

(b) On the mapping equation, we impose (i) n · v = 0 in the nor-
mal direction, and, (ii) a uniform node distribution in the
tangential direction.

. At the downstream boundary, the fully developed flow boundary
condition is imposed, n · ∇v = 0.

. At the upstream inflow, the conformation tensor does not change
along the streamlines because the flow is fully developed [29,34].
Thus,

v · ∇M = 0 (10)

. The pressure of the fluid at the downstream boundary, pd, is set
equal to zero on the bottom wall (at location E in Fig. 1).

Eqs. (1)–(8) are converted into a set of algebraic equations by
he DEVSS-TG finite element method [29,35], which introduces the
raceless interpolated velocity gradient L [29]
− ∇v + 1
tr I

(∇ · v) I = 0 (11)

n the transport equations the rate of strain tensor D is calculated
rom the interpolated velocity gradient L.
Fluid Mech. 165 (2010) 1204–1218

The weighted residual form of Eqs. (1), (2), (5), (8) and (11),
yields a large set of coupled non-linear algebraic equations, solved
by Newton’s method with analytical Jacobian, frontal solver, and
first order arc length continuation in parameters [29,36,37].

2.3. Dimensionless numbers and choice of parameter values

Non-dimensionalization of the governing equations and bound-
ary conditions yields the following dimensionless numbers:

Re = �WU0

�0
; ˇ = �s

�0
; Wi = �0U0

W
; Ca = �0U0

�
;

Pd = (pe − pd) W

�0U0
(12)

where U0 is the average inlet velocity, Ca is analogous to a capillary
number, ˇ is the viscosity ratio, Wi is the inlet Weissenberg number,
Pd is the dimensionless transmural pressure difference, and �0 =
�s + �p,0 is the zero shear rate solution viscosity. (For a Newtonian
fluid, �0 is just the constant Newtonian viscosity). It is convenient

to define a local Weissenberg number W̃i = �0 �̇ , which measures
the non-dimensional shear rate anywhere in the flow.

Luo and Pedley [8] used the dimensionless ratio, ˛ = Ca/Ca∗ to
represent the influence of membrane tension, where Ca∗ is a ref-
erence dimensionless tension (defined with � = 1.610245 N/m). In
order to compare our predictions for Newtonian fluids at Re = 1
to Ref [8], we also index membrane tension by ˛ (in the range
˛ =15–64), and we use the same value of the dimensionless trans-
mural pressure difference, Pd = 9.3 × 104.

For the Owens model, the best agreement with triangular step
shear-rate experimental data [38] occurs when parameters �p,0 =
0.14 Pa s, �p,∞ = 0.004 Pa s, �2 = 7.2, m = 0.6, and �H = 0.145 s
[23]. Interestingly, this choice of parameters neglects the solvent
(or plasma) viscosity, and consequently yields an upper con-
vected Maxwell” rather than an “Oldroyd-B” type model. Later
work [25,24] introduced a solvent contribution (�s = 0.001 Pa s),
and modified the remaining parameters depending on the specific
comparison of model predictions with experiments. Importantly,
in steady homogeneous flows, specification of the parameters
above also sets the expression of the relaxation time �(�̇). Here
we vary �H to control the inlet Weissenberg number (since �0 =
(�p,0/�p,∞)�H), while keeping the values of the other parameters
[23], augmented with the plasma viscosity �s = 0.001 Pa s.

To attain Re = 1, we set � = 1054 kg/m3 (as in Ref. [23]), U0 =
1.338 × 10−2 m/s, W = 10−2 m and �0 = 0.141 Pa s. This yields a
viscosity ratio ˇ = 0.0071 (which signifies that the fluid is predom-
inantly elastic). The FENE-P parameter bM is set to 100.

3. Results and discussions

3.1. Code validation

We compare of our prediction of membrane shape for a New-
tonian fluid to those of Luo and Pedley [8] (a similar comparison
was reported earlier in Ref. [12]). The difference between external
pe and outlet pd pressures is one of the parameters that determines
the velocity and stress fields in the channel [8,9]. In Newtonian flow,
our downstream boundary condition is equivalent to that used by
Luo and Pedley [8]; to allow direct comparison, we use their same
downstream channel length.

Fig. 2 shows the profile of the membrane at different values of

˛. Our results are in excellent agreement with Ref. [8]. Notably,
Luo and Pedley [8] reported that steady states could be computed
directly only at high membrane tension—i.e., low ˛ < 64 at Re = 1
[8]—whereas time dependent simulations were necessary to com-
pute steady solutions at higher ˛ (for sufficiently small Re) [9].
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ig. 2. The deformed shape of the flexible wall for the steady flow of a Newtonian
uid in the 2D collapsible channel, at various values of the dimensionless membrane
ension ratio ˛. Lines denote the result of the current FEM simulation, while the
ymbols are the reported results of Luo and Pedley [8].

ur fully coupled algorithm shows no such convergence limits at
e = 1; profiles for ˛ = 100 and 200 are displayed in Fig. 2. This
emonstrates the robustness of the present simulation technique.

.2. Mesh convergence and the limiting Weissenberg number

Viscoelastic flows are notoriously difficult to compute; there-
ore, here we study mesh convergence over a range of parameters,
articularly to establish whether the collapsible channel flow suf-
ers from the high Weissenberg number problem.

Computations are performed with three different meshes (M1,
2 and M3) (Fig. 3 and Table 1).
The invariants of the conformation dyadic, M are a good indica-

or of mesh convergence; its eigenvalues mi represent the square
tretch ratios along the principal directions of stretching mi for
n ensemble of molecules [29,30]. Previous studies have shown
hat the breakdown of viscoelastic computations coincides with
he smallest eigenvalue becoming negative in some regions of the
ow domain [29,37,39,40].

Figs. 4 and 5 show the contour plots of the largest (m3) and small-
st (m1) eigenvalues for the Oldroyd-B, FENE-P and Owens models,
t Wi = 0.1 and ˛ = 30. They indicate that the molecules experi-
nce varying extents of stretching and contraction as they flow in
he channel and below the collapsible wall. For all the models, the
argest eigenvalue is highest below the collapsible wall at the min-
mum gap location (Fig. 4). (The magnitude varies from model to

odel.) The smallest eigenvalue is positive everywhere in the flow
omain (Fig. 5, Wi = 0.1).

Raising Wi yields higher maximum m3 and lower minimum m1
cross the flow domain, as shown in Fig. 6 for the Owens model
t ˛ = 30 and ˛ = 45. Whereas the maximum m3 grows smoothly

ith Wi and results on various meshes overlap (Fig. 6(b) and (d)),

he plots of minimum m1 show clearly the breakdown of each mesh
Fig. 6(a) and (c)). Even though we have not carried out computa-
ions with a mesh finer than M3, the sudden change of slope of
he curves in Fig. 6(c) suggests that M3 mesh is yielding inaccurate

able 1
eshes considered in the current study.

Mesh Number of elements Num

M1 950 40
M2 2145 88
M3 3800 15,6
Fig. 3. Meshes M1 (a), M2 (b) and M3 (c), considered in the current study.

results at Wi � 0.5 at ˛ = 45. Unless otherwise specifically stated,
all computations reported hereafter were performed on M3.

On any mesh, computations can be performed at Wi beyond the
limit of mesh convergence, until a limiting Weissenberg number,
beyond which computations fail because the minimum value of
m1 becomes negative (which is unphysical)—this is clearly visible
in Fig. 6(a) and (c). As has been observed in previous studies [29,37],
the maximum attainable value of Wi increases with mesh refine-
ment; for example, in the Owens model at ˛ = 45, the limiting value
of the Weissenberg number is Wi = 0.75 on M2 and Wi = 0.9 on
M3. Fig. 6(a) and(c) shows that the tension ratio affects the limiting
Weissenberg number (because it affects the minimum gap); For the
Owens model, the limiting Weissenberg number (on M3) decreases
from Wi = 7.0 at ˛ = 30 to Wi = 0.9 at ˛ = 45.

The decrease of the minimum eigenvalue below zero coincides
with a steep increase in the maximum eigenvalue (Fig. 6(b) and
(d)). This value is much higher for ˛ = 45 than for ˛ = 30 because
(as in the Newtonian case, Fig. 2) the minimum gap h decreases
with increasing ˛, leading to a more dramatic “squeezing” of the
fluid, and a consequently greater stretching of the molecules in the
gap.

Computations with the Oldroyd-B and FENE-P models yield
qualitatively similar behaviour; the limiting Wi values are reported

in Table 2 for ˛ = 30 and ˛ = 45.

Fig. 7 shows the dependence of the limiting Weissenberg num-
ber on the tension ratio for the three different fluid models.
In general, the limiting Weissenberg numbers follow the trend

ber of nodes Degrees of freedom for fully coupled
macroscopic simulations (x, v, p, M, L)

11 27,342
97 60,455
21 105,972
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ig. 4. Contour plots of the largest eigenvalues (m3) of the conformation tensor at W

wens > FENE-P > Oldroyd-B until a tension ratio ˛ ≈ 50, where
here is an interesting crossover, and the limiting Weissenberg
umber for the Owens model becomes smaller than that for the
ENE-P model.

Fig. 8 shows the profile of Mxx (mean streamwise molecular
tretch) across the minimum gap at ˛ = 45 for a range of Weis-
enberg numbers and all three fluid models. Clearly, with increasing
i, Mxx grows almost symmetrically, from a relatively low value in

he middle of the gap, to a significantly larger value near the bottom
rigid) and top (flexible) walls. In the Oldroyd-B and Owens mod-
ls, Mxx is unbounded. Conversely, the FENE-P model has an upper
ound for the maximum Mxx, which for bM = 100 is 300. This upper

ound for the FENE-P model limits the Mxx cross-stream gradient
ear the walls; such saturation is not present in the Mxx profiles for
he Oldroyd-B and Owens models, which display steep gradients
ear the walls. Interestingly, of the three fluid models, the FENE-P
odel shows the highest stretch in the center of the gap.

able 2
aximum mesh converged value of Wi, and the limiting Wi for the three fluid mod-

ls, for computations carried out with the M2 and M3 meshes, at two values of
.

˛ = 30 ˛ = 45

Converged Wi Limiting Wi Converged Wi Limiting Wi

M2 M3 M2 M3 M2 M3 M2 M3

Oldroyd-B 0.2 0.43 0.42 0.44 0.02 0.04 0.06 0.07
FENE-P 0.32 0.45 0.50 0.53 0.2 0.27 0.25 0.27
Owens 4.0 5.0 6.45 6.76 0.3 0.5 0.75 0.9
.1 for: (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at a tension ratio ˛ = 30.

Before examining the effect of fluid behaviour on flow char-
acteristics, it is important to note that both the Oldroyd-B and
Owens models predict an unbounded conformation tensor and
extensional viscosity in a steady, homogeneous extensional flow,
whereas the FENE-P model has a bound on these quantities. More-
over, the Oldroyd-B model predicts constant viscosity in steady
shear flow, whereas the FENE-P and Owens models are shear
thinning.

3.3. Velocity fields and molecular shear and extension rates

Fig. 9 compares the velocity contours predicted for a Newto-
nian fluid with the contours predicted for the Oldroyd-B, FENE-P
and Owens model fluids at Wi = 0.01 and ˛ = 45. While the fields
for the Newtonian, Oldroyd-B and FENE-P fluids do not differ
to any significant degree from each other at this value of Wi
(Fig. 9(a)), the velocity profile for the Owens model displays a
slight difference from the Newtonian profile (Fig. 9(b)). Interest-
ingly, this apparently slight difference in the velocity field between
the different models becomes greatly amplified when viewed
from the perspective of molecular deformation rates, as elaborated
below.

Arguing that the invariants of the rate of strain cannot serve as
indicators of the type of flow because they do not carry any informa-

tion on whether molecules are being strained persistently along the
same axes, or are rotating with respect to the principal axes of the
rate of strain, Pasquali and Scriven [30] introduced the molecular
extension and shear rates as being more appropriate measures for
obtaining insight into the coupling between the flow and molecular
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Fig. 5. Contour plots of the smallest eigenvalues (m1) of the conformation tensor at Wi = 0.1 for: (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at a tension ratio ˛ = 30.

Fig. 6. Maximum value of the largest eigenvalue (m3) and minimum value of the smallest eigenvalue (m1) in the entire flow domain, for the Owens model, as a function of
Wi at two different values of tension ratio ˛ = 30 ((a) and (b)), and ˛ = 45 ((c) and (d)).
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Fig. 7. Limiting Weissenberg number for the Oldroyd-B, FENE-P and Owens models
at different tension ratios ˛.

Fig. 8. Profile of Mxx across the narrowest channel gap for the Oldroyd-B, FENE-P
and Owens models, for a range of Weissenberg numbers, at ˛ = 45. The distance
from the bottom channel is scaled by the narrowest gap width h of the particular
model.
Fig. 9. Contours of axial velocity (vx) in the flow domain, for (a) Newtonian (red),
Oldroyd-B (green) and FENE-P (blue) fluids, and (b) Newtonian (red) and Owens
(blue) fluids, at Wi = 0.01 and ˛ = 45. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

behaviour. These deformation rates are defined as,

	̇M ≡ m3m3 : D and �̇M = |m1m3 : D| (13)

where 	̇M is the mean ensemble molecular extension rate, �̇M is
the mean ensemble molecular shear rate, and, as mentioned ear-
lier, the eigenvectors m3 and m1 are associated with the largest
and smallest eigenvalue of M, respectively. In regions of flow where
	̇M > 0, molecular segments are being stretched along their direc-
tion of preferred stretch and orientation and the flow is working
against the molecular relaxation processes. On the other hand, a
large �̇M indicates that the rate of strain is deforming molecules
aligned along one of the principal directions of the conformation
tensor, in a direction orthogonal to their orientation.

Figs. 10 and 11 display contours of molecular extension and
shear rate for the Oldroyd-B, FENE-P and Owens fluids at ˛ = 30
and Wi = 0.1. Fig. 10 indicates that 	̇M is of the same order of mag-
nitude for the Oldroyd-B and FENE-P models, and the contour lines
appear similar to each other. However, both the contours and the
maximum value for the Owens model are significantly different,
with the maximum value being greater by roughly a factor of 3.
With regard to �̇M, on the other hand, while the contour lines are
similar in all the fluid models, the maximum values for the Oldroyd-
B and FENE-P models are roughly greater than that for the Owens
model by a factor of 6 (Fig. 11).

A comparison of the contour lines for the largest eigenvalue m3
(displayed in Fig. 4) with the contour lines for �̇M (Fig. 11), suggests
a strong correlation between the two sets of figures. Indeed, the
ordering of the magnitudes between the three models, with the
values for the Oldroyd-B and FENE-P models being greater than
that for the Owens model, is similar in both figures. A more detailed
examination of this correlation is afforded by Fig. 12, which shows
the location of the maximum values of m3, �̇M, 	̇M, and the local

Weissenberg number W̃i, for the Owens model at ˛ = 45, for a range
of Wi. For all values of the Weissenberg number, the maximum
values of m3, �̇M and W̃i coincide with each other, and are located
just below the collapsible channel, as suggested by the contour lines
in Figs. 4 and 11 for the former two variables. Note that the location
appears to move slightly upstream with increasing Wi. On the other
hand, the location of the maximum value of 	̇M starts close to the

bottom of the collapsible membrane for small values of Wi, but
moves away towards the bulk flow with increasing Wi. It seems
that it is the maximum molecular shear rate below the collapsible
membrane rather than the maximum molecular extension rate that
determines the magnitude of the largest eigenvalue.
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Fig. 10. Molecular extension rate 	̇M for (a) Oldroyd-B

It is appropriate here to revisit Fig. 6(b) and (d) to note the
hange in the shape of the m3 versus Wi curve with an increase
n ˛ from 30 to 45. While at ˛ = 30 the slope of the curve increases

ith increasing Wi, the slope decreases with increasing Wi at ˛ = 45.
he value of m3 also appears to be levelling off in the latter case.
n their examination of the slot coating flow of a viscoelastic fluid,
ajaj et al. [37] also observed that the maximum m3 versus Wi curve
hanges slope and goes through an inflection point with increas-
ng Wi. In that context, it was found that the shape change was
elated to the fact that the location of the maximum eigenvalue
hanged from being near a shear-dominated region adjacent to
he moving web supporting and transporting the fluid, to being
ear the extension-dominated region just below the free-surface.

n the present instance however, the maximum eigenvalue always
ppears to be located just below the deformable membrane for all
he values of ˛ that we have examined, and coincides with the
ocation of �̇M, as has been demonstrated in Fig. 12.

.4. Flexible membrane shape, and pressure and stress fields

In the remainder of this work, we focus our attention on exam-
ning the influence of the Weissenberg number Wi and the tension

atio ˛ on the shape of the membrane, and on stress and conforma-
ion tensor fields in the channel, for the fixed values of the viscosity
atio ˇ, the non-dimensional transmural pressure difference Pd,
nd Reynolds number Re, that have been adopted here. We start
y examining the dependence of the shape of the channel on Wi
ENE-P, and (c) Owens models, at Wi = 0.1 and ˛ = 30.

and ˛, for each of the three viscoelastic fluids, and subsequently
attempt to explain the origin of the observed dependence.

Fig. 13(a) displays the shape of the flexible wall, for the three
fluid models, at various values of ˛, for a fixed value of Wi = 0.01,
and Fig. 13(b) is a zoomed in view of the membrane shape close
to the centre of the membrane, for the three fluids, at various val-
ues of Wi, for a fixed value of ˛ = 45. It is clear from Fig. 13(a)
that on the scale of the figure, the shape of the membrane for
the Oldroyd-B and FENE-P models is indistinguishable from the
shape of the membrane for a Newtonian fluid at all three values
of ˛ (=15, 30 and 45). On the other hand, the shape of the mem-
brane for the Owens model, in the neighbourhood of the centre
of the membrane, becomes clearly distinguishable from that for
a Newtonian fluid at ˛ = 45. For each of the three fluid models,
the curve corresponding to Wi = 0.01 in Fig. 13(b) is the same as
that in Fig. 13(a) for ˛ = 45. In the case of the Owens model, since
the curves for Wi = 0.1 and Wi = 0.5 coincide with the curve for
Wi = 0.01, it is clear that the Weissenberg number has negligible
influence on the shape of the membrane. While there appears to
be a slight change in the shape of the membrane for the Oldroyd-B
fluid, the most significant change occurs for the FENE-P model, with
the shape approaching that for the Owens model with increasing

Weissenberg number. From the nature of the boundary condition
on the flexible membrane adopted here (Eq. (9)), it is clear that the
only reason the membrane can change shape as a result of chang-
ing either ˛ or Wi is due to a change in the normal stress acting on
the membrane. In the present formulation, the shear stress has no
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b) FENE-P, and (c) Owens models, at Wi = 0.1 and ˛ = 30.
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Fig. 12. Locations of the maximum eigenvalue m3, the maximum molecular shear
Fig. 11. Molecular shear rate �̇M for (a) Oldroyd-B, (

nfluence on membrane shape. It is reasonable therefore to exam-
ne the normal stress field on the flexible membrane in order to
nd the cause of the change (or lack thereof) in the shape of the
embrane for the three fluids.
Fig. 14(a)–(c) shows plots of the total non-dimensional normal

tress (Tn), and the individual contributions of the non-dimensional
ressure (P), the non-dimensional viscous normal stress (
n), and
he non-dimensional elastic normal stress (�n), for the three vis-
oelastic fluids, on the flexible membrane as a function of distance
long the membrane. The pressure and viscous normal stress for a
ewtonian fluid is also displayed on each subfigure for the purpose
f comparison. The vertical line indicates the midpoint of the col-
apsible membrane (9.5W), which is the location of the narrowest
hannel gap for most of the cases. It is immediately apparent that
he only contribution to the normal stress is the pressure, since
oth 
n and �n are identically zero for all the fluids. This result is
ntirely consistent with the analytical result derived by Patankar
t al. [41] that any incompressible fluid with a constitutive model
f the following form,

1D + a2

∇
D + a3T + a4

∇
T = 0 (14)

ill have a zero normal component of extra stress on a rigid body
urface. Here, a , a , a , and a are constants or some scalar func-
1 2 3 4

ions of the invariants of D and T, and
∇
D and

∇
T represent the

pper convected time derivatives of D and T. It can be shown that
ll the viscoelastic fluids considered here belong to the class of
uids described by Eq. (14). Since the shape of the flexible mem-
and extension rates �̇M and 	̇M , and the maximum local Weissenberg number W̃i,
for the Owens model, at ˛ = 45, for various values of the Weissenberg number Wi.
Curved lines indicate the shape of the flexible membrane at the lowest and highest
value of Wi.

brane is entirely determined by the normal force acting on it, the
consequence of zero normal components of extra stress is that
only differences in the predictions of pressure on the membrane
between one model and another are responsible for any differences

in the prediction of the shape of the membrane. Clearly, at ˛ = 45,
the pressure exerted by the Oldroyd-B and FENE-P fluids along the
membrane is nearly identical to that exerted by a Newtonian fluid,
while the pressure exerted by an Owens model fluid is significantly



D. Chakraborty et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 1204–1218 1213

F
F
p
˛

l
l
p
i

p
F
a
c
s
p
m
a
a
f
h
O
i
g
a
o

p
a
a
t
s
a
s

for different values of � .
ig. 13. The deformed shape of the flexible wall for the steady flow of Oldroyd-B,
ENE-P and Owens model fluids in a 2D collapsible channel, compared with the
rofile for a Newtonian fluid, with Re = 1.0 and ˇ = 0.0071, at (a) various values of
for Wi = 0.01, and (b) various values of Wi for ˛ = 45.

ower. This difference is responsible for the difference observed ear-
ier in the predicted membrane shape in Fig. 13(a). The origin of the
ressure difference predicted by the different models is examined

n greater detail after first discussing the results in Fig. 15.
The two sets of plots in Fig. 15 display the dependence of the

ressure profile on Wi and ˛ for all the three viscoelastic fluids.
rom Fig. 15(a)–(c) it can be seen that an increase in Wi leads to
decrease in the pressure upstream of the narrowest gap in the

hannel, while causing a modest increase in the pressure down-
tream of the narrowest gap. In each of the subfigures, data is
resented until the limiting Weissenberg number for the respective
odel. Fig. 15(d)–(f) reveals that the pressure increases uniformly

cross the entire channel with an increase in ˛. Both the Oldroyd-B
nd FENE-P fluids closely mirror the increase in pressure observed
or a Newtonian fluid (represented by the symbols). On the other
and, as seen earlier in Fig. 14(c), the pressure prediction in the
wens model is below the Newtonian value at all values of ˛. The

ncrease in pressure is not surprising since the narrowest channel
ap decreases with increasing ˛ (see Fig. 13(b)). Note that results
re reported in Fig. 15(f) for the Owens model for a maximum value
f ˛ = 45. This is discussed further subsequently.

We now examine the possible origin of the differences in the
rediction of pressure by the different models. Since the Oldroyd-B
nd the FENE-P models predictions of pressure are close to that for

Newtonian fluid at Wi = 0.01, it can be conjectured that the elas-

icity of the fluid accounted for by these two models does not play a
ignificant role in determining the pressure. Since the Owens model
t the same value of Wi predicts a significantly lower pressure, it
eems reasonable to expect that the shear thinning behaviour of the
Fig. 14. Pressure and normal components of stress on the flexible wall for the New-
tonian, Oldroyd-B, FENE-P and Owens models at ˛ = 45 and Wi = 0.01, with Re = 1.0
and ˇ = 0.0071. Tn is the normal component of total stress, P is the pressure, 
n is
the normal component of viscous stress and �n is the normal component of elastic
stress.

Owens model is the source of this difference. In order to examine
this hypothesis further, we have plotted in Fig. 16(a), the FENE-P
and Owens models predictions of the microstructure’s contribution
to viscosity (�p) as a function of the local Weissenberg number W̃i,
in a steady shear flow, at a constant value of �0. For the values of U0
and W chosen here, this value of �0 corresponds to an inlet Weis-
senberg number of 0.1. The dependence of �p on �̇ for a FENE-P
model in steady shear flow has been derived previously [42].

For the Owens model, the dependence of �p on �̇ in steady shear
flow is given by Eq. (7). Since the parameters in the Cross model
are fixed for all the computations carried out here, the functional
dependence of �p on �̇ is the same in all the cases considered here.
However, since the profile in Fig. 16(a) for the Owens model is plot-
ted as a function of the local Weissenberg number W̃i, it will vary
0
For the parameters in the Owens model adopted here (chosen

by Owens [23] to get agreement with the experimental results of
Bureau et al. [38]), it is clear from Fig. 16(a) that the onset of shear
thinning occurs at really small values of W̃i. If shear thinning is the
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ig. 15. Dependence of the pressure profile along the flexible membrane on Wi an
espectively. The symbols in (d)–(f) are for a Newtonian fluid. Note that ˛ = 45 in (a

ole cause for the reduced prediction of pressure on the membrane
n a channel flow, then a Newtonian fluid with viscosity equal to
he effective viscosity in the Owens model, would predict the same
alue of pressure as the Owens model. By scanning the flow field
n the channel, the maximum value of W̃i = �0�̇ (which occurs just
elow the collapsible membrane) for an inlet Weissenberg num-
er Wi = 0.1 and ˛ = 45, was found to be W̃i = 91.6. As indicated

n Fig. 16(a) for the Owens model, this corresponds to a reduced
iscosity of �p = 0.0043 at the location of the maximum shear
ate. In Fig. 16(b), the pressure profile along the flexible membrane
redicted by the Owens model at Wi = 0.1 and ˛ = 45, has been
ompared with pressure profiles predicted for Newtonian fluids
ith a wide range of viscosity values. Of these, the profile for a
ewtonian fluid with a viscosity �0 = �p + �s = 0.0043 + 0.001 =
.0053 Pa s is nearly identical to that for the Owens model, strongly
upporting the validity of our hypothesis. Fig. 16(a) indicates that
ven the FENE-P fluid suffers considerable shear thinning at Wi =
.1. By following a procedure similar to that for the Owens model,

e find that the maximum value of W̃i, at Wi = 0.1 and ˛ = 45, for
FENE-P fluid flowing in the channel is 44.4. This corresponds to

p = 0.0513. As can be seen in Fig. 16(b), the pressure profile on
he flexible membrane for a Newtonian fluid with �0 = 0.0523 is
r the Oldroyd-B ((a) and (d)), FENE-P ((b) and (e)) and Owens models ((c) and (f)),
and Wi = 0.01 in (d)–(f). All other parameters are as in Fig. 14.

fairly similar to that for a FENE-P fluid. In particular, the value for
the maximum pressure on the membrane is nearly identical.

The identification of shear thinning as the main factor
responsible for the predicted pressure profile is also helpful in
understanding the dependence of the pressure drop �P in the chan-
nel, on the inlet Weissenberg number, depicted in Fig. 17(a). (Note
that the curves terminate at the limiting Wi for each model). Clearly,
the lack of any change in the pressure drop with Wi for an Owens
model fluid is related to the fact that at these Weissenberg num-
bers, nearly all the shear thinning that can occur has occurred, and
there is consequently no change in the viscosity with increasing
Wi. The fairly rapid decrease in pressure drop for a FENE-P fluid is
related to the significant shear thinning that sets in at Weissenberg
numbers greater than 0.1 (which correspond to W̃i ≥ 1). Interest-
ingly, the modest decrease in �P with increasing Wi observed for
the Oldroyd-B fluid must be attributed to the fluids elasticity, since
the Oldroyd-B fluid does not shear thin. Unfortunately, the break-
down of the Oldroyd-B model at very low values of Wi prevents

a more thorough examination of the dependence of �P on Wi. It
is worth noting that the dependence of membrane shape on Wi
observed earlier in Fig. 13(b), namely, the lack of change in mem-
brane shape for the Owens model, and the significant change in
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Fig. 16. (a) The contribution of the microstructure to the total viscosity, �p, for the
Owens model and FENE-P fluids in steady shear flow as a function of local Weis-
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Fig. 17. (a) Pressure drop �P in the channel for the Oldroyd-B, FENE-P and Owens
models at different Wi, for ˛ = 45, Re = 1.0 and ˇ = 0.0071. Note that for a Newto-
nian fluid, �P = 7474.0. The curves terminate at the limiting Weissenberg number
enberg number W̃i, at a constant value of the relaxation time �0. (b) Pressure profile

long the flexible membrane for Newtonian fluids with a range of viscosities. The
rofiles for an Owens model fluid and a FENE-P fluid, with Wi = 0.1 and ˛ = 45, are
lso displayed.

hape for the FENE-P model, can also be understood in the context
f the shear thinning behaviour of these two fluids. The increase
n �P with ˛ displayed in Fig. 17(b) is clearly the result of the
arrowing of the channel gap with increasing ˛. The coincidence
f the curves for the Oldroyd-B and FENE-P fluids with that for a
ewtonian fluid is because the viscosities of these fluids are nearly

dentical at Wi = 0.01.
The dependence on ˛ of the narrowest channel gap (scaled

y the width of the channel) predicted for the three viscoelastic
odels, is compared with that for a Newtonian fluid in Fig. 18(a).

he rate at which the narrowest gap decreases with increasing ˛
ppears to slow down for ˛ ≥ 50 in the case of Newtonian, Oldroyd-
and FENE-P models. While the behaviour of the Owens model

oincides with that of the other fluids until approximately ˛ = 45,
he gap continues to decrease until it becomes extremely narrow.
ndeed, the gap becomes so small for ˛ ≥ 50 that we have been
nable to compute the shape of the membrane for any values of
> 55. On the other hand, no difficulty was encountered in com-

uting the membrane shape for the Oldroyd-B and FENE-P models
or all the values of ˛ explored here (up to ˛ = 64). The difficulty of
umerically solving the Owens model for ˛ ≥ 50 is the likely cause

or the change in the dependence of the liming Weissenberg num-
er on ˛, observed earlier at these values of ˛ in Fig. 7. In Fig. 18(b),
he dependence on Wi of the narrowest channel gap scaled by the
alue of the gap for a Newtonian fluid, h/hNewtonian, is displayed.
he differences observed between the three viscoelastic fluids can

e understood in terms of the differences in the degree of shear
hinning exhibited by these fluids, using arguments similar to those
roposed above in the context of Fig. 17(a).

Fig. 19(a)–(c) displays the dependence of the axial component
f the conformation tensor Mxx along the flexible membrane on
for each model. (b) Dependence of pressure drop on tension ratio for the three
viscoelastic fluids, at Wi = 0.01, compared to the dependence of �P on ˛ for a
Newtonian fluid.

Wi, and Fig. 19(d)–(f) displays its dependence on ˛. As expected, an
increase in Wi or in ˛ leads to an increase in the degree of stretching
experienced by the microstructural elements, with the maximum
stretching occurring near the narrowest channel gap (indicated by
the vertical lines). Since both the Oldroyd-B and Owens constitu-
tive equations are based on Hookean dumbbell models, there is no
upper bound on Mxx. Interestingly, the FENE-P model predicts that
close to the limiting Weissenberg number, the microstructural ele-
ments are nearly fully stretched for a fairly significant fraction of
the length of the flexible membrane. For large values of ˛, the shape
of the curves in Fig. 19(d) and (e) appears to reflect the asymmetry
in the shape of the membrane, which was seen to occur earlier for
Newtonian fluids in Fig. 2. Interestingly, Fig. 19(f) suggests that the
value of Mxx in the Owens model is much less sensitive to the value
of ˛ compared to the Oldroyd-B and FENE-P fluids, and remains
nearly unchanged from its equilibrium value. This can be attributed
to the extensive shear thinning experienced by the fluid, leading
to a significant reduction in the local relaxation time. The same
argument can also be used to understand the differences in the
relative magnitudes of the maximum eigenvalue m3 for the three
viscoelastic fluids, which is displayed earlier in Fig. 4.

The manner in which the presence of a flexible wall has been
treated in this work, through a zero-thickness membrane that is
coupled to the fluid only through the normal force, is a particularly
simple representation of the fluid–structure interaction problem
that underlies flow in a collapsible channel. It is reasonable to

expect that the shear force on the membrane will also play a sig-
nificant role in determining the shape of the membrane. With a
view to examining the magnitude of shear forces on the membrane,
we have computed the tangential shear stress along the length of
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Fig. 18. Dependence of the narrowest channel gap h on: (a) ˛ and (b) Wi. The nar-
rowest gap is scaled by the channel width W in (a), and by the gap for a Newtonian
fluid in (b).

Fig. 19. Dependence of the axial component of the conformation tensor Mxx on Wi, for (a
on ˛, for (d) Oldroyd-B, (e) FENE-P, and (f) Owens models, at Wi = 0.01.
Fluid Mech. 165 (2010) 1204–1218

the membrane surface. The dependence of the shear stress on both
Wi and ˛, for the three different viscoelastic fluids, is displayed in
Fig. 20(a)–(f). It is immediately apparent from Fig. 20(a)–(c) that,
while the common feature between the three fluids is the decrease
in tangential shear stress with an increase in Wi, there are strik-
ing differences in the extent of the decrease. While the Oldroyd-B
model fluid suffers a relatively modest decrease in the shear stress
near the narrowest channel gap, the FENE-P model fluid experi-
ences a significant decrease. In the case of the Owens model, there
is hardly any difference in the shear stress for the different Weis-
senberg numbers. As has been argued in a number of instances
above, it is straightforward to relate these differences in behaviour
to the different degrees of shear thinning experienced by the flu-
ids, at the Weissenberg numbers examined in Fig. 20(a)–(c). For
all the fluids, at Wi = 0.01, the tangential shear stress appears to
increase with an increase in ˛, as can be seen from Fig. 20(d)–(f).
While the values for the Oldroyd-B and FENE-P models are approxi-
mately equal to each other, the shear stress prediction by the Owens
model is significantly lower. At this value of Wi, the FENE-P model
fluid does not undergo much shear thinning, and as a result, both
the pressure (see Fig. 15(d)–(f)) and the shear stress are similar for
the Oldroyd-B and FENE-P models.

In general, even though there are significant differences in the
shear stresses predicted by the different models, this is not reflected
in the predicted shape of the membrane (see Fig. 13) because of the
boundary condition adopted here. It would be extremely interest-
ing to compare the predictions of the three fluid models with more

realistic boundary conditions, where the influence of the shear
stress is taken into account, since we can anticipate that significant
differences in the predicted shape of the membrane will emerge.

) Oldroyd-B, (b) FENE-P, and (c) Owens models, at ˛ = 45, and dependence of Mxx
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ig. 20. Dependence of the total tangential shear stress on the membrane (
t + �t )
f (
t + �t ) on ˛, for (d) Oldroyd-B, (e) FENE-P, and (f) Owens models, at Wi = 0.01.

. Conclusions

The flow of viscoelastic fluids in a two-dimensional channel,
n which part of the top wall has been replaced by a membrane
nder tension, has been studied numerically with the help of the
EVSS-TG/SUPG mixed finite element method. Since the focus
as been on modelling flows at low Reynolds number, a fixed
alue of Re = 1 has been used in all the computations. So far,
he 2D collapsible channel problem has been studied extensively
nly for Newtonian fluids. The aim here has been to examine
he differences that arise when three different viscoelastic flu-
ds interact with the deformable membrane on the channel wall.
ach of the three model viscoelastic fluids that have been cho-
en, namely, the Oldroyd-B, the FENE-P and Owens models, has
nique features that distinguish it from the others. These dif-
erences lead to differences in the predictions of the various
roperties, and in many instances, the source of the difference
an be traced back to a particular characteristic of the viscoelastic
uid.

The most significant conclusions of this work are the following:

. There is a limiting Weissenberg number Wi for each of the flu-
ids beyond which computations fail. The value of Wi at which

simulations breakdown coincides with the value at which the
smallest eigenvalue of the conformation tensor becomes nega-
tive somewhere in the flow field (see Fig. 6).

. For the Oldroyd-B and Owens models, the breakdown of numer-
ical computations is accompanied by the axial component of the
i, for (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at ˛ = 45, and dependence

conformation tensor Mxx assuming large values at the top and
bottom walls, close to the location in the channel where the gap
between the walls is the narrowest (see Fig. 8).

3. The maximum deformation of the microstructural elements
occurs at a point just below the deformable membrane at the nar-
rowest gap in the channel, and the location of this point coincides
with the location of the maximum shear rate (see Fig. 12).

4. The shape of the deformable membrane, and its dependence on
Wi and tension ratio ˛, is entirely determined by the pressure on
the membrane surface, and by the changes in pressure that occur
as a result of changes in these parameter values (see Figs. 13–15,
and 18).

5. The key determinant of the pressure in the channel is the effec-
tive viscosity of the viscoelastic fluid at the location of the
maximum shear rate. This result has been established by show-
ing that a Newtonian fluid with viscosity equal to the effective
viscosity has nearly the same pressure profile as the viscoelastic
fluid (see Fig. 16).

6. While it has been difficult to discern any noticeable influence
of the elasticity of the fluid on the various properties (except
perhaps on Mxx as seen in Fig. 19(a)–(c)), the degree of shear
thinning exhibited by the fluid has a dramatic effect on all the
properties. Thus, for instance, the observed dependence on Wi

and ˛, of the pressure drop in the channel (Fig. 17), the width
of the narrowest gap (Fig. 18), and the tangential shear stress on
the membrane surface (Fig. 20), can be understood by consider-
ing the extent of shear thinning experienced by the fluids at the
relevant values of these parameters.
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. The significant differences that arise amongst the three vis-
coelastic fluids in the predicted value of the tangential shear
stress on the membrane surface (see Fig. 20), has no influ-
ence on the shape of the deformable membrane in the present
model because of the boundary condition adopted in this work,
whereby only changes in the normal stress on the membrane
can lead to changes in the shape. A more accurate model for the
deformable membrane would account for the effect of the shear
stress on membrane shape. Work is currently underway in our
group to develop an algorithm for describing the fluid–structure
interaction between a finite deformation elastic solid and a vis-
coelastic fluid flowing in a collapsible channel.
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