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Abstract

The drainage of the intervening continuous phase film between two drops approaching each other at constant velocity under the influence
of insoluble surfactant is investigated. The mathematical model to be solved is a coupled pair of fourth-order nonlinear partial differential
equations which arise from the relationships governing the evolution of the film thickness and the surfactant interfacial concentration in the
lubrication approximation. We adopt a simplified approach which uses lubrication theory to describe the flow within the drop, marking a
departure from the conventional framework in which Stokes flow is assumed. When the model is solved numerically together with the relevant
initial and boundary conditions, the results obtained are compared with those found in the literature using the “boundary integral” method to
solve for the flow in the drop phase. The close agreement between the results inspires confidence in the predictions of the simplified approach
adopted. The analysis on the effect of insoluble surfactant indicates that its presence retards the drainage of the film: The fully immobile
interface limit is recovered even in the presence of a small amount of surfactant above a critical concentration; film rupture is either prolonged
or prevented. The retardation of the film was attributed to gradients of interfacial tension which gave rise to the Marangoni effect. A study
of the influence of various system parameters on the drainage dynamics was conducted and three regimes of drainage and possible rupture
were identified depending on the relative magnitudes of the drop approach velocity and the van der Waals interaction force: Nose rupture,
rim rupture, and film immobilization and flattening. Finally, the possibility of forming secondary droplets by encapsulating the continuous
phase film into the coalesced drop at rupture was examined and quantified in light of these regimes.
 2003 Published by Elsevier Science (USA).
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1. Introduction

Understanding the coalescence phenomenon between
two drops plays a crucial role in determining the stability of
liquid–liquid processes. The coalescence process occurs as
the drops approach each other and, as a result, trap a thin film
of the continuous phase between the drop interfaces. Under
the influence of the interaction forces that act on the drop, the
drop interfaces begin to deform slightly and the intervening
continuous phase film proceeds to drain. At a thickness of
approximately 1000 Å [1], intermolecular forces such as the
van der Waals force (and for much thinner films, electric
double-layer forces) become significant and dominate the
final stages of the film drainage process. In cases wherein
the van der Waals force overcomes the restoring electric

* Corresponding author.
E-mail address:o.matar@ic.ac.uk (O.K. Matar).

double-layer force, there is a resultant negative contribution
to the disjoining pressure, resulting in the destabilization of
the film leading to rupture.

For pure systems in which surface-active materials are
not present, studies to investigate the film drainage hydro-
dynamics were conducted for bubbles or drops approach-
ing a horizontal interface [2–4]. Subsequent work extend-
ing the analysis to include systems of colliding bubbles or
drops have been presented by Chen [1], Li [5], Klaseboer et
al. [6] and others. In reality, surfactants, whether present in
minute quantities as trace impurities or intentionally added
to the dispersion in the form of additives, are often present
in liquid–liquid systems. In such cases, the interfacial prop-
erties of the system are often altered by the surfactant, re-
sulting in interfacial tension gradients which, in turn, give
rise to additional tangential stresses at the interface, these
stresses being referred to as Marangoni stresses [7]. Inves-
tigations by Radoëv et al. [8], Traykov and Ivanov [9], Za-
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pryanov et al. [10], Sharma and Ruckenstein [11], Li [12],
Danov et al. [13], and Valkovska et al. [14], among others,
have shown that the presence of surfactants can have a sig-
nificant effect on the drainage and stability of the continuous
phase film and thus on the coalescence of bubbles and drops.
In these studies, with the exception of [8] where a constant
surfactant concentration was adopted, aquasi-steady-state
approximation was assumed. Under this approximation, all
the variables in the system are implicitly time-dependent
through the variation of the local film thickness [13,15]. The
local values for the surfactant concentration and the interfa-
cial tension were assumed to deviate only slightly from their
equilibrium values and hence were represented by the sums
of the corresponding equilibrium values prior to the com-
mencement of the flow and the perturbations to the equilib-
rium values caused by the flow, expanded to leading order.

More recently, Chesters and Bazhlekov [16] and Yeo
et al. [17] considered the dynamic evolution of the sur-
factant concentration by solving the film evolution equa-
tion coupled with the equation governing the interfacial
transport of insoluble surfactant. In the latter case, an ini-
tially localized nonuniform distribution of insoluble sur-
factant concentration was considered. The nonuniformity
in the surfactant concentration thus resulted in the gener-
ation of Marangoni stresses, which led to the deformation
of the interface and hence the drainage of the film, all of
which was taken to occur in a small region far upstream
from the dimple rim region (the dimple being formed due
to the inversion of the interface from a convex to a con-
cave shape as a result of a balance of the normal stresses).
Chesters and Bazhlekov [16], on the other hand, allowed
for the interfacial deformation as a result of the axisym-
metric approach of the drops to cause a nonuniformity in
the surfactant interfacial concentration, which was distrib-
uted in a uniform fashion initially onto the then unde-
formed interface. Thus, in this case, the interfacial con-
centration gradients arise and evolve from a uniform sur-
factant concentration distribution due to interfacial defor-
mation occurring during the film drainage process such
that the Marangoni effect is driven by the hydrodynamic
processes [17].

There are two asymptotic boundary conditions for film
drainage: Constant approach force and constant approach
velocity [18]. The work of Chesters and Bazhlekov [16]
investigates the case of constant force collisions which are
characterized by buoyancy-driven collisions. The constant
approach velocity boundary condition, on the other hand,
is more appropriate for flow-driven collisions where inertial
forces are dominant over viscous forces in the draining
film, this case being of much relevance in practical liquid–
liquid systems. In constant approach velocity collisions,
the interaction force increases as the drops approach one
another [6]. If the drops fail to coalesce, the force decreases
again as the drops separate. Constant approach velocity is
usually a good approximation until a significant proportion
of the interfacial deformation energy is converted from the

kinetic energy available from the collision [19]. At this point,
the approach velocity decreases.

This paper focuses on constant approach velocity colli-
sions and highlights the differences in dynamics that arise
in this situation from those in the constant force case [16].
We also show that adding even a slight amount of insoluble
surfactant results in the immobilization of the interface. Al-
though this has been previously reported both theoretically
and experimentally [6,20,21], we have endeavoured to sup-
plement these studies by comparing film drainage profiles
between those for a pure system and those for an interface
laden with surfactant. In addition, we show the results of
a full parametric study of the drainage process, which has
identified three different regimes of drainage. The key dis-
tinguishing factors between these regimes are the van der
Waals interaction force and the velocity of approach.

This paper also considers briefly the mechanism of for-
mation of secondary dispersions. These dispersions (also
known as dual dispersions, double dispersions, or multiple
dispersions) are dispersions in which the continuous phase is
trapped as droplets within the drops of the dispersed phase.
The existence of oil droplets enclosed within water drops
in pure water-in-oil dispersions has been well-documented
in studies such as those by Rodger et al. [22], Quinn and
Sigloh [23], and Luhning and Sawistowski [24]. Observa-
tions of oil-in-water-in-oil dispersions in systems containing
surfactants were reported by Brooks and Richmond [25]. On
the other hand, water-in-oil-in-water dispersions have been
observed by Luhning and Sawistowski [24], Groeneweg et
al. [26], Campbell et al. [27], and Hou and Papadopou-
los [28], the latter two investigators working with systems in
which surfactants were present. In recent years, it has been
postulated that the existence of secondary dispersions plays
an important role in phase inversion (the spontaneous inter-
change of phases whereby the dispersed phase inverts to be-
come the continuous phase and vice versa given a pertur-
bation made to the system properties, energy input or the
phase volume holdup) [26,29]. This paper includes a brief
section on the estimation of the size of the secondary droplet
enclosed into the resultant coalesced drop when two drops
collide and the continuous phase film trapped between them
drains to its critical rupture thickness as a function of various
system parameters.

Conventionally, the coupling between the flow in the
film and in the dispersed phase has always been treated
by assuming creeping flow or Stokes flow within the drop.
This approach has been used by workers such as Klaseboer
et al. [6], Chesters and Bazhlekov [16], Yiantsios and
Davis [30], Cristini et al. [31], and Bławzdziewicz et al. [32],
among others. These studies reported the approach and
deformation of viscous drops at constant approach force
under the influence of surfactant, with the exception of [6]
and [30], where pure systems were assumed. In this paper,
however, we consider the feasibility of a simplified approach
in which the flow within the drop is described by lubrication
theory, a concept first introduced by Li and Liu [33] to
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solve a problem related to the one under consideration in
this work. A comparison of the results in the present model
with that of [6] is encouraging: The close agreement between
the predictions indicate that this simplified approach can
reproduce the results of the more complex method involving
the solution of Stokes flow within the drop phase.

The rest of this paper is organized into the following
sections: Section 2 describes the mathematical model to be
solved by providing a derivation of the equations together
with a list of assumptions made; the relevant scalings and
the initial and boundary conditions used are also included.
We then discuss the numerical method used to solve the
equations derived and briefly validate our model with the
results of previous work. A comparison of the model
predictions with those obtained assuming Stokes flow within
the drop is also included. Section 3 is devoted to an analysis
of the results which examines the various effects of the
parameters governing the system, such as the viscosity ratio,
the surface Péclet number, the drop approach velocity, and
the van der Waals interaction force, on the drainage process,
as well as the possibility of secondary droplet formation.
Finally, the conclusions are provided in Section 4.

2. Mathematical formulation and solution methodology

We consider a system of two initially undeformed spher-
ical drops, each with radiusR∗

i (i = 1,2), approaching each
other at a constant approach velocityV ∗ along the line of
their centers in thez-direction, the asterisk denoting dimen-
sional quantities. A schematic representation of the drops as
they approach each other and deform is shown in Fig. 1. In a
cylindrical coordinate system, the interfaces between the dis-
persed phases and the draining film are axisymmetric, i.e.,

(1)z∗ = h∗
i (r

∗, t∗),

whereh∗
i = h∗

2 is the film thickness bounded between the
planez∗ = 0 and the interface of dropi, as shown in Fig. 1,
andt∗ is the time. It thus follows from axisymmetry that we
need only consider the quadrantr∗ � 0.

Fig. 1. Schematic representation of the drainage region between two drops.

In addition, the following assumptions, similar to those
made in [17], have been adopted in this study to simplify the
mathematical model:

1. The film in the region of consideration is sufficiently
thin, such that we can impose the following condition:

(2)ε ≡ h∗
0

R∗
0

� 1,

where ε is a small parameter describing the ratio of
the axial to radial length scales, andh∗

0 and R∗
0 are

the initial film thickness atr∗ = 0 and the initial rim
radius, respectively. It is then possible to apply the
lubrication approximation [34]. Gravitational forces are
also neglected.

2. The dispersed and the continuous phases are incom-
pressible and Newtonian.

3. In the drop, the lubrication approximation also applies
such that the velocity and the velocity gradient vanish at
a length from the interface,L∗

i , which is the character-
istic circulation length of viscous penetration in dropi

given by [17,33]

(3)L∗
i = h∗

0R
∗
i

R∗
0

.

If L∗
i is assumed to be small compared to the drop

radius,R∗
i , then the axial component of the pressure

distribution in the drop is negligible compared to its
radial component.

4. Since the film is thin in comparison with the region in
which the hydrodynamic interaction of the drops occurs,
which in turn is small compared to the drop radius (i.e.,
h∗

0 � R∗
0 � R∗

i ), the consequence of the variation in
drop radii on the curvature of the film is negligible.
Thus, we can assume symmetry relative to the plane
z∗ = 0 and also write an equivalent radius,R∗, for which
the drainage of the film between two drops of equal
sizes,R∗, is equal to that between drops of differing
sizes,R∗

1 andR∗
2 [6,35]:

(4)
1

R∗ = 1

2

(
1

R∗
1

+ 1

R∗
2

)
.

5. Since symmetry at the planez∗ = 0 is assumed above, it
is also possible to assume that the interfacial properties
are the same at both interfaces [13,36]:γ ∗

1 = γ ∗
2 = γ ∗,

whereinγ ∗
i is the interfacial tension at the interface of

drop i, which is a function of the interfacial concentra-
tion of insoluble surfactant,Γ ∗.

6. A dilute monolayer of surfactant with uniform concen-
tration Γ ∗

0 is placed at the interface initially. The sur-
factant is assumed to be insoluble in both the dispersed
and the continuous phases. The insolubility of the sur-
factant in the dispersed and the continuous phases is a
good approximation for dilute surfactant concentrations
where the partition coefficient favors adsorption of the
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surfactant at the interface [37]. This is also a good ap-
proximation when diffusion of surfactant between the
bulk and the interface occurs much faster than the time
taken for the film to drain [16]. It is also assumed that
steric hindrances and changes in the dilational and shear
interfacial viscosities due to the presence of surfactant
at the interface do not come into play.

7. We incorporate disjoining pressure effects into the
model only by taking into account van der Waals
forces. Electric double-layer effects are assumed to be
negligible.

2.1. Governing equations

For axisymmetric, incompressible flow, the radial com-
ponent of the Navier–Stokes equations of motion in the film
and in the adjacent dispersed phases can be written as

∂v∗
r

∂t∗
+ v∗

r

∂v∗
r

∂r∗ + v∗
z

∂v∗
r

∂z∗

(5)= − 1

ρ∗
∂p∗

∂r∗ + µ∗

ρ∗

{
∂

∂r∗

[
1

r∗
∂

∂r∗
(
r∗v∗

r

)] + ∂2v∗
r

∂z∗2

}
,

and

∂v∗
ri

∂t∗
+ v∗

ri

∂v∗
ri

∂r∗ + v∗
zi

∂v∗
ri

∂z∗

(6)= − 1

ρ∗
d

∂p∗
i

∂r∗ + µ∗
d

ρ∗
d

{
∂

∂r∗

[
1

r∗
∂

∂r∗
(
r∗v∗

ri

)] + ∂2v∗
ri

∂z∗2

}
,

respectively.v∗
r and v∗

z are the radial and axial velocities,
respectively, andp∗ is the pressure; subscripti denotes
dispersed phase quantities. In the equations above,µ∗ and
ρ∗ represent the viscosity and the density in the continuous
phase, whereasµ∗

d andρ∗
d denote that in the dispersed phase.

The following set of scalings are adopted to formulate the
problem in terms of dimensionless variables:

r ≡ r∗

R∗
0
; z ≡ z∗

h∗
0
; h ≡ h∗

h∗
0
; p ≡ h∗

0

S∗ p
∗;

t ≡ εS∗

µ∗R∗
0
t∗; vr ≡ µ∗

εS∗ v
∗
r ; λ ≡ µ∗

d

µ∗ ;

(7)Ri ≡ R∗
i

R∗
0
; Γ ≡ Γ ∗

Γ ∗
m

; γ ≡ (γ ∗ − γ ∗
m)

S∗ .

Here,h is the film thickness andγ ∗
0 andγ ∗

m are the interfa-
cial tensions corresponding to a region of relatively unconta-
minated interface and that of the interfacial region saturated
with surfactant at concentrationΓ ∗

m, respectively. We thus
define a spreading pressure,S∗, whereS∗ = γ ∗

0 − γ ∗
m.

On substituting the dimensionless variables in Eq. (7) into
the governing equations of motion described in Eqs. (5) and
(6), we arrive at

Re

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)

(8)= −1

ε

∂p

∂r
+ ε

∂

∂r

[
1

r

∂

∂r
(rvr )

]
+ 1

ε

∂2vr

∂z2

and

Red

(
∂vri

∂t
+ vri

∂vri

∂r
+ vzi

∂vri

∂z

)

(9)= −1

ε

∂pi

∂r
+ ελ

∂

∂r

[
1

r

∂

∂r
(rvri )

]
+ λ

ε

∂2vri

∂z2
,

whereReandRed are the Reynolds numbers for the film and
the dispersed phase defined by

(10)Re= ρ∗εS∗h∗
0

µ∗2 ; Red = ρ∗
d εS

∗h∗
0

µ∗2 ,

respectively. From assumption 1, we note thatε � 1. In
this limit, Eqs. (8) and (9) reduce to the usual lubrication
equations:

(11)
∂p

∂r
= ∂2vr

∂z2 ,

for the film and

(12)
∂pi

∂r
= λ

∂2vri

∂z2 ,

for the drops.
It should be noted that a different choice of scaling for the

film pressure,

(13)p ≡ h∗
0

ε2S∗ p
∗,

would have reduced the governing equations to

(14)
∂2vr

∂z2 = 0,

which would have rendered the radial velocity independent
of z to leading order for weak Marangoni stresses. Exten-
sional stresses balance the pressure gradient to next order:

(15)
∂p

∂r
= ∂2vr

∂r2 .

However, this case is limited to systems in which the
surfactant is present in trace quantities. When Marangoni
stresses are considerable at the interfaces to leading order,
S∗ ∼ O(1), and hence the pressure scales as in Eq. (7), re-
sulting in the lubrication approximation in the film described
by Eq. (11).

Equation (12) can be integrated with the boundary condi-
tions that specify the velocity and the velocity gradient in the
drop, both of which approach zero at a characteristic length
Li = L∗

i /h
∗
0 (see assumption 3), to give an expression for the

dispersed phase radial velocity as follows:

(16)vri = [z− (hi ± R)]2
2λ

∂pi

∂r
.

In Eq. (16), the addition and subtraction signs correspond to
i = 1 andi = 2, respectively.

At the interfaces, we take into account the additional
Marangoni stress component that arise due to the interfacial
tension gradient. The tangential shear stress balance thus
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reads

(17)
∂vr

∂z

∣∣∣∣
z=h1

− λ
∂vr1

∂z

∣∣∣∣
z=h1

= ∂γ

∂r
,

(18)λ
∂vr2

∂z

∣∣∣∣
z=h2

− ∂vr

∂z

∣∣∣∣
z=h2

= ∂γ

∂r
.

It should be noted that the term describing the interfacial
viscosity,µ∗

s , in the tangential shear stress balance,

µ∗
s

[
1

r

∂

∂r
(rvrint)

]
,

wherevrint is the radial component of the interfacial velocity,
has been omitted from Eqs. (17) and (18) above. This is
justifiable since it can be shown that when the scaling laws
in Eq. (7) are applied, this term is multiplied by the small
parameterε (from assumption 1, we note thatε � 1).

Substituting Eqs. (17) and (18) into Eq. (16), we can write
the drop velocitiesvr1 andvr2 in terms of the film pressure
gradient,∂p/∂r. At the interfaces, i.e.,z = hi ,

(19)vrint = R

2λ

∂γ

∂r
− hR

4λ

∂p

∂r
.

By taking into account symmetry at the planez = 0, and
applying continuity of velocity at both drop interfaces, i.e.,

(20)vr |z=hi = vrint (i = 1,2),

we derive the radial film velocity by integration of Eq. (11):

(21)vr = z2

2

∂p

∂r
− h

4λ

(
λh

2
+ R

)
∂p

∂r
+ R

2λ

∂γ

∂r
.

The kinematic boundary condition is expressed by

(22)
∂h

∂t
= −1

r

∂

∂r
(rhvr ),

wherevr is the mean radial film velocity, defined by

(23)vr = 1

h

h∫
0

vr dz.

From Eqs. (19), (21), and (22), the film evolution equation
can then be derived as follows:

(24)
∂h

∂t
= 1

12r

∂

∂r

(
rh3∂p

∂r

)
− 1

r

∂

∂r
(rhvrint).

The dimensional normal stress balance across the inter-
face can be written as

p∗ = 2γ ∗

R∗ − γ ∗

2

[
1

r∗
∂

∂r∗

(
r∗ ∂h∗

∂r∗

)]

(25)+
(
Φ∗∞ + B∗

h∗m

)
,

whereΦ∗∞ is the van der Waals interaction potential per unit
volume of a semi-infinite liquid film in the limit of approach-
ing the liquid–liquid interface,B∗ is the Hamaker con-
stant, andm is a parameter. Typically,B∗ ∼ 10−19 erg cm

Table 1
Typical values for the physical constants used

Physical constant Typical values

m 3a,b

B∗ 10−21 Ja,b

γ ∗
m 40 dyn/cm

S∗ 40 dyn/cm

a Applicable for film thicknesses less than 120 Å.
b Chen [1]; Chen and Slattery [38].

Table 2
Typical values for the dimensionless groups used

Dimensionless group Typical values

ε 10−2

R 4a

h00 1b

λ 0.1–100
Pes 1–10,000
Γ0 0.001–0.1
B 10−6–10−3

V 0.1–1.5

a Li and Liu [33].
b Unless stated otherwise.

andm = 4 for film thicknesses over 400 Å whereasB∗ ∼
10−14 erg andm = 3 for film thicknesses below 120 Å
[1,38]. We define the following dimensionless quantities:

(26)Φ∞ ≡ h∗
0

S∗ Φ
∗∞; B ≡ B∗

S∗h∗m−1

0

.

The order of magnitude estimates for all physical constants
as well as the typical values for the dimensionless groups
used are summarized in Tables 1 and 2, respectively.

Inserting the scalings defined in Eq. (7) into Eq. (25),
and utilizing the assumption thatε � 1 (assumption 1), the
dimensionless pressure in the film becomes

p = 2

R

εγ ∗
m

S∗ − 1

2

ε2γ ∗
m

S∗

[
1

r

∂

∂r

(
r
∂h

∂r

)]

(27)+
(
Φ∞ + B

hm

)
.

The surfactant transport equation,

(28)
∂Γ ∗

∂t∗
+ 1

r∗
∂

∂r∗
(
r∗v∗

rint
Γ ∗) = D∗

s

[
1

r∗
∂

∂r∗

(
r∗ ∂Γ ∗

∂r∗

)]
,

in whichD∗
s is the surface diffusivity, governs the evolution

of the surfactant interfacial concentration. In terms of
dimensionless variables,

(29)
∂Γ

∂t
+ 1

r

∂

∂r
(rvrintΓ ) = 1

Pes

[
1

r

∂

∂r

(
r
∂Γ

∂r

)]
.

In Eq. (29), the surface Péclet number,Pes , is defined as

(30)Pes = S∗h∗
0

µ∗D∗
s

.
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This dimensionless group describes the ratio of surfactant
spreading due to Marangoni stresses to that by surface
diffusion. Typically, values forPes between 1 and 10,000
have been used, as listed in Table 2. In the limits of
extremely high Péclet numbers, surface diffusion effects
become negligible and hence the term on the right-hand side
of Eq. (29) vanishes. Nevertheless, we retain this term in
these limits as it includes the highest order derivative in
the surfactant concentration evolution equation; omission
of this term leads to a singular perturbation, giving rise
to boundary-layer-like regions in which the concentration
will vary rapidly. Inclusion of this term, although as small
as some of the other terms neglected in the model (such
as the term accounting for the variation of the surfactant
concentration due to local changes in the interfacial area,
which scales likeε2 under the scaling laws considered), aids
the numerics and leads to smoother concentration profiles.

To close the above set of equations, we choose a linear
surfactant equation of state, which can be justified for dilute
surfactant concentrations:

(31)γ ∗ = γ ∗
0 +

(
∂γ ∗

∂Γ ∗

)
Γ ∗.

SinceΓ ∗ = Γ ∗
m whenγ ∗ = γ ∗

m, the dimensionless equation
of state reads

(32)γ = 1− Γ.

2.2. Initial and boundary conditions

Initially, the drops are undeformed and thus the film
thickness can be approximated by the following parabolic
profile

(33)h∗(r∗,0) = h∗
00 + r∗2

R∗ ,

whereh∗
00 is the initial film thickness atr∗ = 0. In terms of

dimensionless variables, the initial film profile is

(34)h(r,0) = h00 + r2

εR
,

whereh00 = h∗
00/h

∗
0. Surfactant is uniformly distributed on

the undeformed interfaces with concentrationΓ0. Thus,

(35)Γ (r,0) = Γ0.

The boundary conditions for the model are as follows. In
the film, symmetry atr = 0 requires

(36)
∂h

∂r

∣∣∣∣
r=0

= 0.

Due to symmetry atr = 0, we also require∂p/∂r = 0 [21].
From Eq. (27), we arrive at

(37)
∂3h

∂r3

∣∣∣∣
r=0

= 0.

Far from the drainage region, for sufficiently larger, r∞,
the thinning rate of the film is approximated by the approach

velocity of the drops:

(38)
∂h

∂t

∣∣∣∣
r=r∞

= −V ;

where, in the light of the scaling,

(39)V = V ∗µ∗

ε2S∗ .

Far from the drainage region, the excess pressure also tends
to zero:

(40)p|r=r∞ = 0.

For the surfactant concentration, the boundary conditions are

(41)
∂Γ

∂r

∣∣∣∣
r=0

= 0,

and

(42)
∂Γ

∂r

∣∣∣∣
r=r∞

= 0.

2.3. Method of solution

We solve the two coupled fourth-order nonlinear par-
abolic partial differential equations that describe the dy-
namic evolution of the film thickness and the surfactant
interfacial concentration, as given by Eqs. (24) and (29),
subject to the initial and boundary conditions (34)–(42),
numerically using the Method of Lines [39]. The spatial
derivatives were discretized using fourth-order centered dif-
ferences whereas Gear’s method was used for the time deriv-
atives [40].

We obtain numerical solutions for the film thickness and
the surfactant concentration using the parameter values for
Pes , λ, B, andV given in Table 2. The simulations were
carried out using a uniform grid of 1000 points on a com-
putational spatial domain of up to a maximum length of 14
dimensionless units for times of the order 1000 dimension-
less units; convergence was achieved by refining the mesh
size of the grid. In addition, we have checked that the solu-
tion satisfying the no-flux boundary condition atr∞ given by
Eq. (42) are identical to those obtained withΓ |r=r∞ = Γ0,
provided that the spatial domain is sufficiently large. In the
case of film rupture, the computations were halted when the
minimum film thickness was approximately 0.1 due to the
difficulty in resolving accurately the increasingly singular
spatial derivatives in the rupture region. The rupture times
quoted therefore correspond to the time at which the compu-
tations were halted.

We validate the numerical scheme against the results
of Klaseboer et al. [6] who modeled the surfactant-free
film drainage between colliding drops at constant approach
velocity for two asymptotic limits: Fully mobile interfaces
and fully immobile interfaces. For the fully immobile case,
the solution methodologies are the same and hence we used
our numerical scheme to solve the dimensionless form of
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Fig. 2. Comparisons of (a) the evolution of the film thickness at the center,h0, and at the rim,hmin, and (b) the radial rim positionrrim for various viscosity
ratios with the results of Klaseboer et al. [6] for the fully immobile case generated from the numerical scheme used in this paper and from Fig. 4 found in[6].
The simulation was carried out with the following parameter values:B = 0 andV = 0.5. In this case,h00 = 17.89.

Fig. 3. Comparisons of (a) the evolution of the film thickness at the center,h0, and at the rim,hmin, and (b) the radial rim position,rrim, generated from the
numerical scheme used in this paper for various viscosity ratios with the results for the fully mobile case found in Fig. 10 of Klaseboer et al. [6]. The simulation
was carried out with the following parameter values:B = 0 andV = 0.5. In this case,h00 = 2.632.

the governing equations given in [6]. Direct comparisons
between the numerical results generated here and those
reported in [6] are shown in Figs. 2a and 2b. It can be
seen that, within the limit of uncertainties arising from
the difficulty in obtaining accurately the numerical results
from Fig. 4 given in [6], the agreement is good. Figures 2a
and 2b also show that, at large viscosity ratios, the numerical
solution for the fully immobile interface limit is recovered.

To test our simplified approach of using lubrication
theory to describe the flow within the drops, the predictions
of the current model are compared to the results for the
fully mobile interface limit of [6], in which the boundary
integral method is utilised to solve for Stokes flow in the
drops. The results, illustrated in Figs. 3a and 3b, show
that as the viscosity ratio is decreased, the fully mobile
interface limit is reached. In addition, the film thickness
evolution profiles obtained in the present work are also
very similar to those found in Fig. 10 of [6]. The close

agreement between these results thus inspires confidence in
the predictions of our approach and indicates that although
it may be possible that interfacial motion drives a Stokes
flow within the drop, the effect of this flow appears to be
confined to the contact region between the film and the
drop, namely, the characteristic circulation length of viscous
penetration.

3. Discussion of results

We begin the discussion of our results in Section 3.1
by describing the effect of adding insoluble surfactant to
a surfactant-free system. In the sections following 3.1, a
brief parametric study is undertaken where various dimen-
sionless groups and parameters are examined in sequence:
Section 3.2 is devoted to investigating the effects of the sur-
face Péclet number,Pes , and the viscosity ratio,λ, on film
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Fig. 4. Film thickness profiles for (a) surfactant-free system without van der Waals interactions up tot = 75 in equal time steps; (b) surfactant-free system with
van der Waals interactions up tot = 31.25 in equal time steps (B = 10−5); (c) surfactant-laden system with van der Waals interactions up tot = 600 in equal
time steps (Pes = 10,000,Γ0 = 0.1, andB = 10−5). The rest of the parameter values areλ = 1 andV = 0.5. Here,h00 = 2.632 to match the conditions given
in [6].

drainage. The influence of the approach velocity and the van
der Waals interaction forces on drainage and rupture are con-
sidered in Section 3.3. Finally, in Section 3.4, we briefly dis-
cuss the possibility of forming secondary droplets.

3.1. Interface immobilization

Figure 4a illustrates a typical film evolution profile for a
surfactant-free system in the absence of van der Waals forces
for λ = 1 andV = 0.5. It can be seen that the film initially
thins and deforms. This is due to an insufficient pressure in
the drop to overcome the normal viscous stress associated
with the pressure in the film [14]. If the drop pressure is still
insufficient to overcome the pressure in the flattened film,
the interface inverts from a convex to a concave shape such
that the interfacial curvature goes from zero to negative to
balance the normal stresses and thus a “dimple” is formed.

The profile for the same system under the influence of
van der Waals attractive forces is shown in Fig. 4b. It can be
seen that the film quickly ruptures even under the influence

of a weak interaction force. When surfactant is added to this
system, the film thins much more slowly, thus prolonging
rupture to later times, or preventing it altogether. In the case
chosen, the film, which had ruptured att = 31.25 in the
absence of surfactant, has still not undergone rupture when
surfactant was added to the system even att = 600, as seen
in Fig. 4c.

A typical spatio-temporal evolution profile of initially
uniform surfactant interfacial concentration is illustrated in
Fig. 5a forλ = 1, Pes = 10,000,Γ0 = 0.1, B = 10−5, and
V = 0.1. As the film drains due to the approach of the drops,
the deformation of the film near the center of the drops
results in a depletion in the surfactant concentration. This
depletion continues until concentration gradients are large
enough to cause Marangoni stresses to refill the surfactant-
depleted region, with the exception of the rim region of the
dimple, shown in Fig. 5b. As the rim of the dimple spreads
out, the well in the concentration profile also shifts outward.
At very low film thicknesses where the van der Waals
forces become significant and the film tends to rupture, both



L.Y. Yeo et al. / Journal of Colloid and Interface Science 257 (2003) 93–107 101

Fig. 5. Typical surfactant concentration (a) and film thickness (b) evolution profile for 13 equal time steps up tot = 1473. Parameter values areλ = 1,
Pes = 10,000,Γ0 = 0.1, B = 10−5, andV = 0.1.

continuous phase liquid and surfactant are expelled from this
rim region, resulting in a sharp depletion in the surfactant
concentration. This, in turn, causes large interfacial tension
gradients which attempt to replenish the rim region with
surfactant, dragging along with it the continuous phase
liquid. These competing effects give rise to a low amplitude
wavelike structure at the rim region in bothh and Γ , as
seen in Fig. 5b. The amplitude of this wave is accentuated
as the magnitude of the van der Waals interaction force is
increased, the wave being absent whenB was set to zero.
The structure of the wave remained unchanged upon mesh
refinement, suggesting that its origins are physical rather
than numerical.

The wavelike profile observed here is probably related
to the non-uniformities observed in the photographs of
the film during its thinning in the work of Manev et
al. [41]. These periodic interfacial inhomogeneities were
observed at very small film thicknesses, close to the critical
rupture thickness. Later work by Radoev et al. [42] and
Sharma and Ruckenstein [43] also confirmed that these
inhomogeneities are significant near the unstable region, the
growth of these finite amplitude hydrodynamic interfacial
waves occuring within about 50 Å of the critical rupture
thickness. The appearance of our interfacial waves in the
later stages of film thickness close to the point of film
rupture seems to be consistent with these observations. In
addition, the amplitude and the wavelength of the interfacial
wave observed in Fig. 5b also seem to be of the same
order of magnitude with that observed by Radoev et al. [42]
where amplitudes of the order 100 Å and wavelengths of
the order 10−3 cm were observed. Sharma and Ruckenstein
[43] have suggested that it is the “pumping” action on
the fluid in the film generated by these hydrodynamic
interfacial waves moving outward toward the film periphery
that enhances the rate of film drainage in the region of the
critical film thickness. Consequently, the instant at which the
film ruptures and the critical thickness at which this occurs
depends on these periodic waves.

Fig. 6. Comparison of the minimum film thickness with time for the case
of the surfactant-free system, for surfactant-free system with immobile
interfaces, and for surfactant-laden systems withΓ0 = 0.0025, 0.01, and 1.
The remaining parameter values areλ = 1, B = 0, andV = 0.05. Where
applicable,Pes = 10,000. For the fully immobile case,h00 = 17.89 to
match conditions given in [6].

Figure 6 shows the rate of thinning for various systems:
Surfactant-free system, surfactant-free immobile interfaces,
and systems containing surfactant at different initial con-
centrations. The parameters used areλ = 1, B = 0, and
V = 0.05. For the surfactant-free immobile interface case,
relevant for systems in which the dispersed to continuous
phase viscosity ratio is high, there is no interfacial motion
(i.e.,vrint = 0) and hence the plug flow contribution is zero.
For this limiting case, the film evolution equation given in
Eq. (24) reduces to a parabolic velocity profile (Poiseuille
flow) wherein the flow is only driven by the radial pressure
gradient of the film:

(43)
∂h

∂t
= 1

12r

∂

∂r

(
rh3∂p

∂r

)
.

It can be seen that the rate of film drainage decreases rapidly
with the addition of surfactant such that, at some saturation
value,Γ0 = 0.01, the interface is rendered fully immobile.
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Fig. 7. Profiles of the interfacial velocity,vrint , for times t = 30.0, 72.0,

108.0, 180.0, and 300.0 forλ = 1, Pes = 1000,Γ0 = 0.1, B = 10−4, and
V = 0.25.

This result confirms the observations of several investigators
[6,20,21] who have reported that only a small amount
of surfactant concentration is sufficient to immobilize the
interface since the interfacial tension gradients that arise due
to the presence of surfactant are oriented in such a way that
they oppose any mobility at the interface.

The drainage dynamics exhibited in this case of constant
approach velocity are significantly different from those for
collisions under constant approach force studied by Chesters
and Bazhlekov [16]. In their case, the film thins and flattens,
and subsequently forms a dimple. However, because of the
convection of surfactant away from the dimple region, the
Marangoni effect refills the region at the film periphery with
surfactant, dragging along with it the interface, resulting in
the disappearance of the dimple. The dimple then regrows
spontaneously soon after due to the hydrodynamic pressure
in the film overcoming the negative interfacial velocity
caused by the motion of surfactant back into the dimple
region. While the mechanism for the transport of surfactant
back into the dimple region by the Marangoni stresses is
the same in both the constant approach velocity and the
constant approach force cases, it should be noted that the
concentration gradients that arise in the latter case are much
larger than that found in our results. Careful examination
of the surfactant concentration profiles in [16] shows that
the surfactant is almost completely depleted whereas Fig. 5a
shows that, in the constant approach velocity case, the
relative proportion of surfactant depleted is only minute.
As a result, there are insufficient Marangoni stresses to
overcome the positive velocity gradient outward due to the
hydrodynamic pressure in the film. Since the interfacial
velocity is never negative at any point in time during the
early stages of film drainage as shown in Fig. 7, the dimple
does not refill, even though there is a refilling of surfactant
into the dimple region. The Marangoni stresses only succeed
in retarding the film drainage but never in causing film
thickening. In fact, only negative interfacial velocities are
observed in the rupture region (see Fig. 7), which explains

why the film is replenished in this region to form the wavy
film reported earlier in Fig. 5b.

A plausible explanation for the difference in the decrease
in surfactant concentration during the initial stages of film
drainage for the asymptotic cases of constant approach ve-
locity and constant approach force are the magnitudes of the
interaction forces under which the initial drainage occurs.
In the constant approach force case, the initially high ap-
proach velocity decreases continually to zero to maintain a
constant force of approach between the drops. Since the ap-
proach velocity is initially very high and the approach force
is at its constant value in the initial stages of film drainage,
there is a large force to cause significant deformation to the
film and hence to deplete the surfactant almost completely
at the dimple region. Subsequently, the approach velocity
decreases and the drainage slows down. The large surfac-
tant concentration gradients produced initially are now in
place to cause a negative interfacial velocity, resulting in
the refilling of the dimple region. On the other hand, for
the constant approach velocity case, the approach force is
small to begin with but increases as the drops approach [6].
As a result, the deformation is not substantial enough to de-
plete the surfactant concentration in the dimple region by
very significant amounts. However, as the approach force in-
creases very rapidly shortly after, the drainage takes place
very quickly while the surfactant concentration gradients,
which have arisen in the initial stages of drainage, are in-
sufficient to cause a negative interface velocity to refill the
dimple.

3.2. Effect of surface Péclet number and viscosity ratio

Surface Péclet numbers,Pes , in the range between 1
and 10,000 were studied. At lowPes , the dominant mech-
anism of surfactant transport is surface diffusion whereas
Marangoni convection dominates the transport of surfactant
in the limit of highPes , i.e.,Pes � O(1). To examine the full
spectrum of diffusive to convective spreading, we consider
Pes in the range between 1 and 10,000. The plots of min-
imum film thickness against time for variousPes in Fig. 8
show that film drainage occurs rapidly for low values ofPes .
As Pes is increased, the thinning of the film is slowed down
and the dimpling of the film also begins to occur for the case
of Pes = 1000, evidenced by the slight flattening of the min-
imum film thickness profile as seen in Fig. 8. In Section 3.1
it was shown that the Marangoni effect, which occurs when
the concentration gradient becomes sufficiently large, acts to
refill the surfactant-depleted zone where the thinning of the
film occurs. The interfacial velocity is therefore retarded by
the Marangoni stresses, slowing down film thinning. Never-
theless, as was also mentioned in Section 3.1, the concen-
tration gradients are insufficient to cause negative interfacial
velocities such that the liquid film is returned to the dimple
region. On the other hand, at lowPes , surfactant transport is
dominated by diffusion rather than Marangoni stresses, with
negligible retardation effects on film drainage.
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Fig. 8. Variation of the minimum film thickness with time as a function of
the surface Péclet number,Pes . The other parameters areλ = 1, Γ0 = 0.1,
B = 10−4, andV = 0.1.

Fig. 9. Minimum film thickness as a function of time for various viscosity
ratios. The remaining parameters are held constant atPes = 10,000,
Γ0 = 0.1,B = 10−4, andV = 0.1.

The effect of the viscosity ratios was also examined,
the results of which are shown in Fig. 9. To isolate the
effects ofλ, the study was carried out by keeping all other
parameters constant (Pes = 10,000, Γ0 = 0.1, B = 10−4,
and V = 0.1). For systems in which the surface Péclet
number is sufficiently large such that Marangoni convection
is the dominant mechanism for surfactant transport, the plots
indicate that the viscosity ratio plays a negligible role in
the drainage of the film, an observation which is consistent
with the experimental results of Klaseboer et al. [6]. This is
as expected because the interfaces are immobilized by the
presence of surfactant for largePes systems [6,16]. In other
words, for largePes , the effect of the flow in the adjacent
drop phase is negligible and therefore the film drainage is
independent of the dispersed phase viscosity and hence the
viscosity ratio.

3.3. Effect of approach velocity and van der Waals
interaction on film rupture

The evolution profiles of the film thickness and the sur-
factant concentration for three approach velocities,V = 0.1,

0.5, and 1.5 are shown in Figs. 10–12. The remainder of the
system parameters areλ = 1, Pes = 10,000,Γ0 = 0.1, and
B = 10−3. When the drops collide at low approach veloci-
ties, film thinning occurs rapidly and rupture occurs in the
nose region. Dimpling does not occur because, at low ap-
proach velocities, the hydrodynamic force is insufficient to
deform the film. As the drops collide with greater approach
velocities, it can be seen that dimpling begins to occur, there-
fore retarding the thinning of the film. The film dimples in
the case of greater approach velocities because the pressure
in the flattened film exceeds that in the drop. For the nor-
mal stresses to balance, there is therefore an inversion of the
interface curvature. Rupture then occurs at the rim, the ra-
dial position of the rim at the rupture point increasing with
approach velocity, in agreement with [6].

The effect of varying the magnitude of van der Waals
interactions on the drainage dynamics was also studied;
electric double-layer effects are not considered. Fig. 13,
which depicts the minimum film thickness for various values
of the dimensionless Hamaker constantB using λ = 1,
Pes = 10,000,Γ0 = 0.1, andV = 0.1, shows that the time
taken for the film to rupture decreases with increasingB.
For B = 10−6, the van der Waals force is extremely weak
and hence the film does not rupture. Rather, the dimple
becomes wider as the dimple rim extends outward with
the flow in the film. In this case, little thinning occurs.
With large values ofB, the critical rupture thickness is
large because strong van der Waals forces are able to cause
the film to rupture even for films with relatively large
thicknesses. Under these circumstances, the van der Waals
attraction prevails over the hydrodynamic resistance of the
film pressure. The film thus thins more rapidly in the center
at the axis of symmetry than in the downstream regions. This
leads to a protrusion at the center, resulting in film rupture
in that region before any significant deformation or dimpling
can occur. In other words, a so-called “pimple” [14] forms,
leading to a mode of rupture known asnose rupture[30].
An example of this is shown in Fig. 10a wherein the low
approach velocity does not provide sufficient hydrodynamic
resistance to overcome the negative disjoining pressure
arising from the van der Waals force. On the other hand,
small values of the Hamaker constant require the film
to drain to smaller length scales at which the weak van
der Waals forces becomes significant. For extremely small
values of the Hamaker constant, the film is immobilized at
thicknesses larger than the length scale at which the van
der Waals force becomes significant. As a result, the film
does not rupture but becomes progressively flat. Between
these limits of Hamaker constants, the film thins due to the
hydrodynamic forces, leading to the formation of the dimple,
and subsequently ruptures along the curvature at the rim of
the dimple. This rupture mode is referred to in the literature
asrim rupture[30].

In summary, three different regimes of film drainage are
identified: Pimple formation leading to nose rupture, dimple
formation leading to rim rupture, and interface immobiliza-
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Fig. 10. Film thickness (a) and surfactant concentration (b) profiles for 15 equal time steps up tot = 29.9 for λ = 1, Pes = 10,000,Γ0 = 0.1, B = 10−3, and
V = 0.1.

Fig. 11. Film thickness (a) and surfactant concentration (b) profiles for 15 equal time steps up tot = 62.2 for λ = 1, Pes = 10,000,Γ0 = 0.1, B = 10−3, and
V = 0.5.

Fig. 12. Film thickness (a) and surfactant concentration (b) profiles for 10 equal time steps up tot = 267.3 for λ = 1, Pes = 10,000,Γ0 = 0.1,B = 10−3, and
V = 1.5.
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Fig. 13. Evolution of the minimum film thickness with time for vari-
ous dimensionless Hamaker constants,B. Other parameters areλ = 1,
Pes = 10,000,Γ0 = 0.1, andV = 0.1.

tion prior to the action of negative disjoining pressure forces,
resulting in a nearly flat film. The resulting type of regime
depends largely on the relative magnitudes of the approach
velocity and the negative contribution to the disjoining pres-
sure provided by the van der Waals interactions. Low ap-
proach velocities and strong van der Waals interactions lead
to the formation of a pimple and rupture in the nose region,
whereas high approach velocities and weak van der Waals
interactions lead to dimple formation, which either ruptures
or flattens out to form an almost parallel film.

3.4. The formation of secondary droplets

When rim rupture occurs, a small amount of the contin-
uous phase is encapsulated into the coalesced drop to form
a secondary droplet or a droplet within a drop [26,30]. The
condition for secondary droplet formation arising from bi-
nary collisions is therefore for rupture to occur at the rim.
This is in agreement with the work of Groeneweg et al. [26],
who suggested that the entrapment of a secondary droplet
occurs when the inertial collision between two drops, is
sufficiently intense that the intervening continuous phase
film becomes adequately flattened. It thus follows from our
discussion in the section above that the collision intensity
would depend on the velocity of approach of the drops; the
greater the approach velocity, the more intense the collision.
In addition, we suggest from our results above that the mag-
nitude of the interaction forces also affects the probability of
secondary droplet formation. Weak van der Waals interac-
tions lead to a flattened film, which does not proceed toward
rupture during the contact time of the drops. Strong van der
Waals interactions, on the other hand, lead to nose rupture
and hence no secondary drop formation.

Figures 14 and 15 show the rupture time, the radial
position of the rupture point and the diameter of the
secondary droplet encapsulated as a function of the drop
approach velocity and the dimensionless Hamaker constant,
respectively. The dimensionless volume of the secondary

Fig. 14. Rupture time, radial rupture position, and the size of the secondary
droplet enclosed as a function of the approach velocity,V . The other
parameter values areλ = 1, Pes = 10,000,Γ0 = 0.1, andB = 10−3.

Fig. 15. Rupture time, radial rupture position, and the size of the secondary
droplet enclosed as a function of the dimensionless Hamaker constant,B.
The remaining parameter values areλ = 1, Pes = 1000, Γ0 = 0.1, and
V = 0.25.

droplet,Vsd, is calculated from the following integral:

(44)Vsd= 2π

rm∫
0

rhdr,

where rm is the dimensionless rim radius at which point
rupture occurs. The diameter of the secondary droplet can
then be calculated from this volume, assuming it to be
spherical in shape. The sizes of the secondary droplet
calculated are based on an initial film thickness of 1 µm and
an initial drop radius of 100 µm. It is worthy of mention
that the size of the calculated secondary droplets are of
the order of those estimated in [26]: For drops of the size
300–400 µm, Groeneweg et al. [26] estimated the enclosed
droplets to be 8 µm. The figures also indicate that the size
of the secondary droplet encapsulated into the coalesced
drop increases as the magnitude of the approach velocity
increases but is inversely proportional to the magnitude of
the van der Waals interaction. More generally, the diameter
of the secondary droplet formed would depend on the system
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parameters governing the selection of the rupture modes, as
discussed in the previous section.

The trend of increasing droplet sizes with increasing
magnitude of the approach velocity in Fig. 14, however,
will not continue since there will be rupture times which
will exceed the drop contact time. Levich [44] assumes
the average contact time,t∗c , to be proportional to the
characteristic period of velocity fluctuation for an eddy of
size (d∗

1 + d∗
2), whered∗

1 and d∗
2 are the diameters of the

colliding drops and thus

(45)t∗c ∼ (d∗
1 + d∗

2)
2/3

ε
∗1/3
d

,

ε∗
d being the energy dissipation per unit mass (ε∗

d ∼
N∗3D∗2

I ), whereN∗ is the agitation speed andD∗
I is the

impeller diameter. Based on experimental conditions given
in [45], we estimate from Eq. (45) that contact times are of
the order 0.1 s. Therefore, from Fig. 14 it can be seen that
there will be a cut-off point for the rupture time and thus for
the approach velocity beyond which no secondary droplet
will be formed.

4. Conclusions

In this paper, we have presented an investigation of
the drainage dynamics of the intervening continuous phase
film trapped between two drops coated with an initially
uniform concentration of insoluble surfactant approaching
one another at constant velocity. The objective of this work
is generally threefold: (1) To briefly consider the feasibility
of using a simplified approach of applying the lubrication
approximation within the drops; (2) to demonstrate that
interfacial immobilization can occur in the presence of even
a small concentration of surfactant; (3) to highlight the
differences in dynamics between this constant approach
velocity case and that of the constant force case [16].

These objectives are met numerically by solving the fully
coupled system of partial differential equations governing
interfacial deformation and surfactant transport, closed with
appropriate initial and boundary conditions and a linear sur-
factant equation of state. The close agreement between the
results of our study with those of Klaseboer et al. [6], who
adopted the assumption of Stokes flow within the dispersed
phase, inspires confidence in our simplified approach of as-
suming lubrication theory to describe the flow within the
drops. It also indicates that the effect of the flow arising
within the drop is restricted to the contact region between
the film and the drop, which we have termed as the charac-
teristic circulation length of viscous penetration.

Our results indicate that hydrodynamic forces resulting
from drop collisions give rise to surfactant-depleted regions
locally near the flow origin. This, in turn, leads to the forma-
tion of surfactant concentration gradients which act to retard
the drainage of the film, resulting in immobilization. In the

presence of negative disjoining pressures, there is a possi-
bility that film rupture may be prolonged and possibly pre-
vented by adding surfactant to the interface; in certain cases,
low amplitude interfacial waves, not unlike those previously
reported in the literature [11,41–43], were also observed at
the rim. We note that, above a critical value for the initial
surfactant concentration, the drainage profile tends to follow
that of a system with fully immobile interfaces, this con-
centration being of order 0.01 of the saturation value. While
these are observations which have been reported in the liter-
ature [6,20,21], we have developed a dynamically evolving
model which describes well these phenomena and allows for
the comparison of the film evolution profiles for surfactant-
free, fully immobile, and surfactant-laden systems.

We have also shown that the degree of surfactant deple-
tion, and hence the magnitude of Marangoni stresses, in the
constant velocity case are substantially smaller than those
in the constant force [16] case. Consequently, the dimple-
refilling and subsequent redimpling phenomena observed in
the latter case are not present in the former case studied here.

Our parametric study revealed that the effect of the
viscosity ratio on film drainage is largely insignificant when
the film is immobilized since the effect of the flow in the
drop phase is negligible. Our results also show that the
effects of surfactant are rendered essentially insignificant
for low surface Péclet numbers, leading to rapid drainage
and rupture. This is as expected since diffusive surfactant
transport is overwhelmed by hydrodynamic and van der
Waals forces.

The role of approach velocities and van der Waals inter-
actions on film drainage and rupture were also examined;
three regimes of film drainage and rupture were identified.
At low drop approach velocities and when the negative dis-
joining pressure is strong, the film protrudes at the drop cen-
ter, forming a pimple, leading to nose rupture. In contrast, a
dimple forms which flattens out into an almost parallel film
when the approach velocity is high and when negative dis-
joining pressure effects are weak. In this case, film rupture is
averted. Between these two limiting cases for moderate ap-
proach velocities and van der Waals interactions, a dimple
forms and rim rupture occurs.

These regimes have a bearing on the possibility of the
continuous phase film being encapsulated into the coalesced
drop as a secondary droplet. The conditions for secondary
droplet inclusion are therefore moderate approach velocities
and van der Waals attraction such that a dimple forms and
rupture occurs at the rim; the size of the secondary droplet
increases with increasing film flattening, that is, at larger
approach velocities and weaker van der Waals interactions.

References

[1] J.D. Chen, J. Colloid Interface Sci. 107 (1985) 209.
[2] G.E. Charles, S.G. Mason, J. Colloid Sci. 15 (1960) 236.
[3] A.F. Jones, S.D.R. Wilson, J. Fluid Mech. 87 (1978) 263.
[4] P.D. Howell, J. Eng. Math. 35 (1999) 271.



L.Y. Yeo et al. / Journal of Colloid and Interface Science 257 (2003) 93–107 107

[5] D. Li, J. Colloid Interface Sci. 163 (1994) 108.
[6] E. Klaseboer, J.Ph. Chevaillier, C. Gourdon, O. Masbernat, J. Colloid

Interface Sci. 229 (2000) 274.
[7] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Proc-

esses and Rheology, Butterworth–Heinemann, London, 1991.
[8] B.P. Radoëv, D.S. Dimitrov, I.B. Ivanov, Colloid Polym. Sci. 252

(1974) 50.
[9] T.T. Traykov, I.B. Ivanov, Int. J. Multiphase Flow 3 (1977) 471.

[10] Z. Zapryanov, A.K. Malhotra, N. Aderangi, D.T. Wasan, Int. J. Multi-
phase Flow 9 (1983) 105.

[11] A. Sharma, E. Ruckenstein, Colloid Polym. Sci. 266 (1988) 60.
[12] D. Li, J. Colloid Interface Sci. 181 (1996) 34.
[13] K.D. Danov, D.S. Valkovska, I.B. Ivanov, J. Colloid Interface Sci. 211

(1999) 291.
[14] D.S. Valkovska, K.D. Danov, I.B. Ivanov, Colloid Surf. A 175 (2000)

179.
[15] I.B. Ivanov, D.S. Dimitrov, P. Somasundaran, R.K. Jain, Chem. Eng.

Sci. 40 (1985) 137.
[16] A.K. Chesters, I.B. Bazhlekov, J. Colloid Interface Sci. 230 (2000)

229.
[17] L.Y. Yeo, O.K. Matar, E.S. Perez de Ortiz, G.F. Hewitt, J. Colloid

Interface Sci. 241 (2001) 233.
[18] A.K. Chesters, Chem. Eng. Res. Des., Trans. IChemE A 69 (1991)

259.
[19] S. Abid, A.K. Chesters, Int. J. Multiphase Flow 20 (1994) 613.
[20] R.S. Allan, G.E. Charles, S.G. Mason, J. Colloid Sci. 16 (1961) 150.
[21] C.Y. Lin, J.C. Slattery, AIChE J. 28 (1982) 147.
[22] W.A. Rodger, V.G. Trice Jr., J.H. Rushton, Chem. Eng. Prog. 52 (1956)

515.
[23] J.A. Quinn, D.B. Sigloh, Can. J. Chem. Eng. 41 (1963) 15.
[24] R.W. Luhning, H. Sawistowski, in: J.G. Gregory, B. Evans, P.C. We-

ston (Eds.), Proceedings of the International Solvent Extraction Con-
ference, Vol. 2, Society of Chemical Industry, London, 1971, p. 873.

[25] B.W. Brooks, H.N. Richmond, Colloid Surf. 58 (1991) 131.
[26] F. Groeneweg, W.G.M. Agterof, P. Jaeger, J.J.M. Janssen, J.A.

Wieringa, J.K. Klahn, Chem. Eng. Res. Des. A 76 (1998) 55.
[27] I. Campbell, I. Norton, W. Morley, Neth. Milk Dairy J. 50 (1996)

167.
[28] W. Hou, K.D. Papadopoulos, Chem. Eng. Sci. 51 (1996) 5043.
[29] L.Y. Yeo, O.K. Matar, E.S. Perez de Ortiz, G.F. Hewitt, Multiphase

Sci. Tech. 12 (2000) 51.
[30] S.G. Yiantsios, R.H. Davis, J. Colloid Interface Sci. 144 (1991)

412.
[31] V. Cristini, J. Bławzdziewicz, M. Loewenberg, J. Fluid Mech. 366

(1998) 259.
[32] J. Bławzdziewicz, E. Wajnryb, M. Loewenberg, J. Fluid Mech. 395

(1999) 29.
[33] D. Li, S. Liu, Langmuir 12 (1996) 5216.
[34] R.H. Davis, J.A. Schonberg, J.M. Rallison, Phys. Fluids A 1 (1989)

77.
[35] S.A.K. Jeelani, S. Hartland, J. Colloid Interface Sci. 206 (1998) 83.
[36] C.Y. Lin, J.C. Slattery, AIChE J. 28 (1982) 786.
[37] W.J. Milliken, H.A. Stone, L.G. Leal, Phys. Fluids A 5 (1993) 69.
[38] J.D. Chen, J.C. Slattery, AIChE J. 28 (1982) 955.
[39] W.E. Schiesser, The Numerical Method of Lines, Academic Press, San

Diego, 1991.
[40] O.K. Matar, S.M. Troian, Phys. Fluids A 11 (1999) 3232.
[41] E. Manev, A. Scheludko, D. Exerowa, Colloid Polym. Sci. 252 (1974)

586.
[42] B.P. Radoev, A.D. Scheludko, E.D. Manev, J. Colloid Interface Sci. 95

(1983) 254.
[43] A. Sharma, E. Ruckenstein, J. Colloid Interface Sci. 119 (1987) 14.
[44] V.G. Levich, Physicochemical Hydrodynamics, Prentice–Hall, Engle-

wood Cliffs, NJ, 1962.
[45] C.A. Coulaloglou, Chem. Eng. Sci. 32 (1977) 1289.


	Film drainage between two surfactant-coated drops colliding  at constant approach velocity
	Introduction
	Mathematical formulation and solution methodology
	Governing equations
	Initial and boundary conditions
	Method of solution

	Discussion of results
	Interface immobilization
	Effect of surface Péclet number and viscosity ratio
	Effect of approach velocity and van der Waals interaction on film rupture
	The formation of secondary droplets

	Conclusions
	References


