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A speculative study on the conditions under which phase inver-
sion occurs in agitated liquid–liquid dispersions is conducted using
a Monte Carlo technique. The simulation is based on a stochas-
tic model, which accounts for fundamental physical processes such
as drop deformation, breakup, and coalescence, and utilizes the
minimization of interfacial energy as a criterion for phase inver-
sion. Profiles of the interfacial energy indicate that a steady-state
equilibrium is reached after a sufficiently large number of random
moves and that predictions are insensitive to initial drop conditions.
The calculated phase inversion holdup is observed to increase with
increasing density and viscosity ratio, and to decrease with increas-
ing agitation speed for a fixed viscosity ratio. It is also observed
that, for a fixed viscosity ratio, the phase inversion holdup remains
constant for large enough agitation speeds. The proposed model
is therefore capable of achieving reasonable qualitative agreement
with general experimental trends and of reproducing key features
observed experimentally. The results of this investigation indicate
that this simple stochastic method could be the basis upon which
more advanced models for predicting phase inversion behavior can
be developed. C© 2002 Elsevier Science (USA)

Key Words: liquid–liquid dispersions; phase inversion; drop coa-
lescence and breakup; Monte Carlo technique; stirred tanks; mixing.
1. INTRODUCTION

The phenomenon whereby the phases of an agitated disper-
sion of two immiscible liquids interchange such that the dis-
persed phase spontaneously inverts to become the continuous
phase and vice versa under conditions determined by the sys-
tem’s physical and physicochemical properties, phase volume
ratio, and energy input is known as phase inversion. The predic-
tion of the critical dispersed phase holdup, which is the point at
which phase inversion occurs, has been a common pursuit since
the infancy of research into phase inversion. The amount of ex-
perimentation required in order to predict the inversion point
for a particular system would substantially decrease if a theo-
retically based correlation relating the phase inversion point to
system parameters were available. Despite extensive research
efforts, there have been relatively few attempts to predict the
1 To whom correspondence should be addressed.
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phase inversion point theoretically. Instead, various empirical
correlations have been proposed but, unfortunately, there has
been a considerable amount of variation between the predic-
tions of these correlations and a satisfactory model has not been
presented to date (1).

While there have been many computational models for de-
scribing a wide range of dynamic multiphase problems involv-
ing complex interfacial phenomena developed, few attempts to
develop such models to predict the dispersed phase holdup at the
inversion point have been made. Examples of stochastic models
utilizing Monte Carlo techniques within this context include the
work of Jiang et al. (2) on the rheological behavior of foams,
as well as that of Hsia and Tavlarides (3), Ribeiro et al. (4),
and Balmelli and Steiner (5) to model the dynamic behavior of
dispersions in agitated vessels.

A stochastic model attempting to simulate phase inversion in
a dispersion of spherical drops existing in a thin annular liquid
film flowing around a tube wall via a Monte Carlo technique has
been developed by Juswandi (6). This model is limited by the fact
that it does not accurately reflect the actual mechanisms behind
the inversion process. The model does not take into account the
hydrodynamics of the coalescence process; film drainage times
and contact times have not been incorporated into the coales-
cence model. While Juswandi (6) indicates that his results are
in good agreement with the experimental results of Brooks and
Richmond (7), this has not been shown in great detail; no at-
tempts were made to match the experimental geometry and flow
conditions.

In our work, the model of Juswandi (6) is modified for liquid–
liquid dispersions occurring in agitated vessels. The dynamics
of phase inversion is modeled using a Monte Carlo-type scheme
for drop coalescence and breakup together with the criterion of
interfacial energy minimization at the inversion point. Attempts
are made to overcome the limitations found in the model by
accounting for the hydrodynamics of drop coalescence. In ad-
dition, the model also includes a framework for dealing with
the interpenetration of drops, a feature that becomes extremely
prominent at high-phase volume holdups in models wherein no
account is taken of drop deformation. Using this scheme, pre-
dictions of phase inversion are obtained for a variety of system
parameters.
0021-9797/02 $35.00
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Given the spontaneity of the inversion process, Luhning and
Sawistowski (8) have suggested that the total energy content of
the system is minimized at the point of phase inversion. How-
ever, since it has been found that there is always a reduction
in the interfacial energy at the phase inversion point and since
no measurable change in the power input was observed (9), the
minimization of the total energy which forms the criterion for
phase inversion must come from a redistribution between the
interfacial energy and the total kinetic energy of the system.
Fakhr-Din (9) noted that the interfacial energy changes were of
magnitudes comparable to the total system energy and hence
concluded that the change in kinetic energy would be small
compared to the change in the interfacial energy upon inversion.
Therefore, the modeling of phase inversion by minimizing the
interfacial energy satisfies the criterion of total system energy
minimization. This criterion for the determination of the phase
inversion point, i.e., the minimization of the interfacial energy,
also used in the work of Tidhar et al. (10), is thus used in this
model. It should be noted that this criterion does not bring to
bear any light on the mechanism by which phase inversion oc-
curs, and therefore we do not make any claims that this model
suggests such. While careful attempts have been made to sim-
ulate the inversion process as accurately as possible using the
physics of drop interactions, we do recognize that there still
remain limitations associated with this stochastic method. This
model therefore is not intended to provide further understanding
of the mechanisms for the phase inversion phenomenon. At best,
this model is a speculative tool for evaluating the ability of such
stochastic methods in predicting conditions under which com-
plex phenomena such as phase inversion occurs. It is our hope
that the results presented here will encourage this simple model
to serve as a basis for the development of more advanced models.

The remainder of this paper is organized as follows. A de-
scription of the model is provided in Sections 2 and 3, while
Section 4 is devoted to a discussion of model predictions. Fi-
nally, concluding remarks are provided in Section 5.

2. GENERAL APPROACH

The modified model retains some features of the algorithm
for the Monte Carlo technique employed by Juswandi (6). The
following assumptions are made:

• The drops are initially spherical.
• The initial dispersion drop size distribution is uniform. Each

drop has a size corresponding to the Sauter mean (i.e., the surface
area to volume weighted average) diameter, d32 (m).

• All drops are initially placed in a lattice in a face-centred
cubic configuration, the dimensions of the lattice determined by
the dispersed phase holdup and the initial drop size.

The main steps of the algorithm, shown in Fig. 1, are:

1. A randomly chosen drop is translated as described below.

2. The possibility of the moved drop coalescing with a neigh-

boring drop is considered: In the event of coalescence, the re-
T AL.

sulting coalesced drop is placed in the original position of the
neighboring drop with which the drop chosen in step 1 coa-
lesced. Should the size of the resulting coalesced drop exceed
the maximum stable drop size, dmax (m), the drop subsequently
breaks up again into a drop with size dmax and a smaller drop.

3. Another random drop is chosen and the probability that it
breaks up is checked (together with the possibility of the daugh-
ter drops recoalescing with other neighboring drops); in the event
that breakup occurs, one daughter drop is placed at the original
location of the mother drop whereas the other daughter drop is
placed randomly in the dispersion lattice.

The random translation of the drops within the dispersion
lattice, step 1, is modeled using a method somewhat similar to
the Metropolis Monte Carlo method (11):

x → x + α(2ξ1 − 1), [1]

y → y + α(2ξ2 − 1), [2]

z → z + α(2ξ3 − 1). [3]

This is illustrated in Fig. 2. In Eqs. [1] to [3], x , y, and z are the
coordinates of the drops, α is an adjustable parameter govern-
ing the magnitude of the displacement and ξi (i = 1, 2, 3) are
random numbers between 0 and 1. By varying α between 5 and
50% in the simulations, it can be concluded that the results are
largely insensitive to α, and thus a value of 10% of the maximum
lattice diameter was used.

3. MODEL DEVELOPMENT

In this section, the development of the model to predict the
phase inversion point in agitated vessels is presented. The funda-
mental hydrodynamic processes and the analytical expressions
describing the corresponding probabilities that describe these
processes are summarized in Table 1.

3.1. Breakup Probability

In (6), the possibility of drop breakup is considered by com-
paring the breakup probability to a random number that is gen-
erated. We model this breakup probability, �, by taking into
account the probability of breakup due to the effect of inertia on
the drop and the probability of breakup to account for viscosity
effects:

� = �

[
exp

(
−ηd

ηc

)]
+ (1 − �)

[
exp

(
We

Wecrit
− 1

)]
. [4]

ηc and ηd are the continuous and the dispersed phase viscosities
(Pa · s), respectively, and � is a weighting factor that will be
defined later in this section. We is the Weber number, defined
by (12)
We = ρu2d

σ
. [5]
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FIG. 1. Algorithm for the
Here, ρ denotes the density (kg/m3), σ the interfacial tension
(N/m), and d the drop diameter (m); u2 is the mean square of the
relative velocity fluctuations between two diametrically opposite
points on the surface of a drop (m2/s2) (13):
u2 ∼ (εd)
2
3 . [6]
phase inversion model.

For a fully baffled turbine mixer at high Reynolds numbers, the
turbulent energy dissipation per unit mass of fluid, ε (J/kg · s),
assumes the relationship

ε ∼ N 3 D2
I , [7]
N being the agitation speed (s−1) and DI the impeller diameter
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FIG. 2. The Metropolis Method illustrating the movement of a drop within
the confines of the maximum allowed displacement, α.

(m). Similarly, a critical Weber number, Wecrit, above which
drop breakup occurs can be defined by replacing d in Eq. [5]
with dmax (12):

Wecrit = ρu2dmax

σ
. [8]

The first term in Eq. [4] considers the effect of viscosity on
breakup. In the turbulent breakup of drops in the inertial sub-
range, it was found that for large dispersed phase viscosities, the
viscous stresses due to the internal flow within the drop dampens
drop deformation (14). Therefore, the probability of breakup is
low if the ratio of the dispersed phase viscosity to that of the con-
tinuous phase is large. The second term in Eq. [4], on the other
hand, corresponds to the probability of breakup due to the effect
of the inertial flow conditions on the drop; the larger the drop,
the greater the probability of it breaking up. Since the Weber
number used is a local one, pertaining to the selected drop for

TABLE 1
Summary of the Fundamental Drop Hydrodynamic Processes

and the Corresponding Analytical Expressions for the Probabilities
Describing Them

Hydrodynamic Corresponding expression
process for the probability Reference

1. Drop breakup � = �
[
exp

(− ηd
ηc

)]
—

+ (1 − �)
[
exp

( We
Wecrit

− 1
)]

2. Drop coalescence λ1 = exp

[
− K1ηcρc D2

I N 3

σ 2

(
v

1/3
1 v

1/3
2

v
1/3
1 +v

1/3
2

)4]
(17)

λ2 = exp

[
− K2σ

(
v

2/3
1 + v

2/3
2

)
(v1 + v2)

ρd N 2 D4/3
I v1v2

(
v

2/9
1 + v

2/9
2

) ]
(18)

λ(v1, v2) = λ1(v1, v2) + λ2(v1, v2)

− λ1(v1, v2)λ2(v1, v2) (18)
3. Drop deformation � = exp
(−Ed

Ek

)
—
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which the probability of breakup is being evaluated upon, this
probability is related to the chance that this particular drop flows
through a zone in the agitated vessel where the turbulent kinetic
energy is sufficiently high to cause breakup. Thus, by incorporat-
ing this localized Weber number into the breakup probability, the
inhomogeneity of turbulence, which is common in agitated ves-
sels, is taken into account. In the event that the localized Weber
number is equal to or exceeds its critical value, breakup is certain
to occur, and the probability of breakup due to inertial effects is
set to a value of unity.

�, the weighting factor between viscous and inertial breakup
in Eq. [4], is given by the ratio of the size of the smallest eddies
which dissipate energy due to viscous effects, as defined by
the Kolmogoroff length scale (m), η = (ν3/ε)

1
4 where ν is the

kinematic viscosity (m2/s), to the diameter of the drop for which
the probability of breakup is to be evaluated on. Thus,

� = η

d
for η < d, [9]

and

� = 1 for η ≥ d. [10]

If the drops are much larger than the Kolmogoroff length scale,
the viscous stresses acting upon the drops are negligible in
comparison with the turbulent pressure fluctuations (15, 16).
Therefore, the drop is more likely to be broken up due to in-
ertial effects rather than viscous effects. However, if the drop
size is comparable to the Kolmogoroff length scale, then vis-
cous shear plays an increasingly dominant role in the breakup
process.

3.2. Coalescence Probability

The rate of coalescence is dependent on both the probability
that two colliding drops coalesce as well as the frequency at
which these collisions occur. While the collision frequency is not
explicitly evaluated in this stochastic model, it is inherent in the
classical Monte Carlo move. The greater the phase holdup and
hence the number density of the drops, the greater the likelihood
that the selected drop will encounter and collide with another
drop in the vicinity of its random move.

In order for coalescence to take place between two colliding
drops, the intervening continuous phase film separating the two
drops must drain to the critical film rupture thickness. In order
for this to be achieved, the drops must remain in contact with
each other for a period longer than the time it takes for the film to
drain to the critical film thickness. The coalescence probability,
λ, can thus be described generally by the following expression
suggested by Coulaloglou and Tavlarides (17),

λ = exp

(
− tdrain

tcontact

)
, [11]
where tdrain is the film drainage time (s) and tcontact the time



STUDIES OF PHASE INVERS

during which colliding drops remain in contact with each other
(s). The full expression for the coalescence probability between
two deformable drops, λ1, was given in (17) as

λ1 = exp

[
− K1ηcρc D2

I N 3

σ 2

(
v

1/3
1 v

1/3
2

v
1/3
1 + v

1/3
2

)4 ]
. [12]

K1 is a dimensional constant (m−2) related to the film thickness
at coalescence, ρc the continuous phase density (kg/m3), and v1

and v2 are the volumes of the coalescing drops (m3).
Sovová (18), however, suggested that the coalescence proba-

bility of (17) given by Eq. [12] only allows for the preferential
coalescence of small drops. The following expression was there-
fore proposed as an alternative to the coalescence probability of
(17) in Eq. [12] based on an analysis of the impaction energy of
the colliding drops,

λ2 = exp

[
− K2σ

(
v

2/3
1 + v

2/3
2

)
(v1 + v2)

ρd N 2 D4/3
I v1v2

(
v

2/9
1 + v

2/9
2

)
]

, [13]

where K2 is a dimensionless constant and ρd the dispersed
phase density (kg/m3). The numerator of the argument de-
scribes the term for the drop interfacial energy, whereas the
denominator describes the energy due to the collision of the
drops. Sovová (18) suggests that this expression allows for
the preservation of small drops produced by the breakup
process.

A combination of both mechanisms is used, given by the
following expression for the overall coalescence probability,
λ, which describes the joint probability between two events
(18):

λ(v1, v2) = λ1(v1, v2) + λ2(v1, v2) − λ1(v1, v2)λ2(v1, v2).

[14]

By comparing the coalescence probability above with a ran-
dom number generated, the coalescence (or noncoalescence)
of the drop moved at random with another drop can be
determined.

While the constant K2 in Eq. [13] is obtained by directly
fitting the parameter to experimental data, the constant K1 can
be further defined as

K1 ∼ 1

h2
c

− 1

h2
, [15]

where h is the intervening film thickness at the initial contact
of the drops (m) and hc is the critical film rupture thickness
(m). K1 thus takes into account the time taken for film drainage

as the drops deform. An expression for the critical film rupture
thickness, hc, determined by equating the van der Waals forces
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to the driving force behind film drainage is given by (19)

hc ∼
(

AReq

8πσ

) 1
3

, [16]

where A is the Hamaker constant (J) and Req the equivalent
radius of the coalescing drop pair with radii r1 and r2 (m) defined
as

1

Req
= 1

2

(
1

r1
+ 1

r2

)
. [17]

3.3. Drop Size Correlations

The correlations for the maximum stable drop size, dmax, and
for the Sauter mean diameter, d32, that are readily available in
literature are pertinent to “steady-state” conditions rather than
to transient processes. However, since the criterion for the phase
inversion employed requires a comparison of the total interfacial
energies for both dispersion morphologies at steady state for a
given phase holdup where the interfacial energies reach a steady
equilibrium state, the use of these correlations to characterize
the drop sizes is justified.

In the literature, the majority of correlations for the maximum
stable drop diameter, dmax, assume the relationship

dmax

DI
= C1We−0.6

I , [18]

where C1 is a constant and WeI is the impeller Weber number,
defined by

WeI = ρc N 2 D3
I

σ
. [19]

In this work, a value for C1 of 9146.63 was used, which was
obtained by regression of the experimental data found in (20).

To evaluate the Sauter mean diameter, d32, the correlation of
Chen and Middleman (21) was employed:

d32

DI
= 0.045We−0.57

I . [20]

It will be seen in Section 4.1 that model predictions are relatively
insensitive to the choice of Sauter mean diameters used for the
initial drop sizes. Therefore, the correlation of (21) given by
Eq. [20] was used instead of more complicated forms for the
Sauter mean diameter for the purposes of simplicity and because
the empirical constant was readily available.

3.4. Interfacial Mobility and Film Drainage Time

The drainage time of the film to its critical thickness is de-
pendent on the mobility of the interfaces, which is governed by

the tangential stresses exerted on the film by the drops that arise
from the internal circulation in the drops. Interfaces are said to be
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immobile when the dispersed phase viscosity is high compared
to that of the continuous phase or when surfactants are present to
retard the drainage of the film by increasing the interfacial dila-
tional and shear viscosities, or by introducing interfacial tension
gradients which cause the Marangoni effect.

Fully mobile interfaces, which form the opposite limiting
case, arise when the continuous phase viscosity is very large
compared to that of the dispersed phase such that the tangen-
tial stresses exerted by the drops onto the film are negligible.
Partially mobile interfaces are found in pure liquid–liquid dis-
persions, whereby the viscosity ratio of the dispersed and contin-
uous phases are moderate. Abid and Chesters (22) suggest that
the range of dispersed to continuous phase viscosity ratios for
which partially mobile interfaces are valid is between 10−2 and
102, although this range becomes narrower for the coalescence
of smaller drops. The upper limit is confirmed by the results of
Bazhlekov et al. (23), who also suggest that interfaces are immo-
bile for viscosity ratios greater than 104. Fully mobile interfaces
are encountered typically in gas dispersed systems. The mobility
of interfaces is therefore a strong function of the viscosity ratio
and the presence of surfactants; either factor increasing interfa-
cial mobility will speed up the film drainage, resulting in higher
probabilities of coalescence.

For practical liquid–liquid dispersions in which surfactants
are not present, the interface is partially mobile. For these cases,
equations governing drainage times have been proposed by
Chesters (19), Tsouris and Tavlarides (24), Li and Liu (25),
and Liu and Li (26). It should be noted that the expression for
coalescence probability by Coulaloglou and Tavlarides (17) in
Eq. [12] is based on an analysis for film drainage of immobile in-
terfaces. Nevertheless, due to the absence of detailed systematic
studies on coalescence probabilities for partially mobile inter-
faces, we have opted to use the expression described by Eq. [12].
Coulaloglou and Tavlarides (17) have numerically taken into
account the interfacial mobility of the film since they have fit-
ted their dimensional constant to their experimental data for a
water/kerosene–dichlorobenzene system in which no surfactants
were present. This is confirmed by the drainage times obtained
with this constant, which were found to be on the order of 1 s.
This is comparable to drainage times for partially mobile inter-
faces as opposed to the drainage times obtained for the immobile
case, which is on the order of 1000 s as seen in the results of Li
and Liu (25).

3.5. Penalizing Translation Moves: Drop Interpenetration

At high-phase volume holdups, attempts to move drops rep-
resented as rigid spheres randomly within a fixed volume un-
der a constraint of strict no interpenetration in a Monte Carlo-
like scheme become increasingly difficult. This is perhaps not
surprising since a packing efficiency of 60% has been found
for optimized random loose packing of uniform rigid spheres
(27). In reality, however, drops tend to deform, allowing for

even greater packing fractions to be reached. Since phase in-
version holdups well in excess of 60% are common, impos-
T AL.

ing a no interpenetration constraint is unfeasible; this con-
straint will be relaxed. The penetration of one drop into an-
other will, however, be interpreted as “deformation” of the
liquid drops in response to flow conditions and interactions with
other drops within the complex flow field in an agitated ves-
sel. This allows the model to be extended to high-phase volume
holdups.

The translation of a randomly chosen drop may result in its
interpenetration with a number of drops. Multiple-drop inter-
penetration within a simulation is treated by selecting a drop
at random from a neighbor list of all drops, which have inter-
penetrated the translated drop. If the move fails, another in-
terpenetrating drop is selected at random and the process is
repeated. If the moves fail for all the interpenetrating drops,
no moves are permitted for the chosen translated drop. This
drop is then replaced and another selected at random for
translation.

The extent of deformation will be determined by a probability,
which governs the translation of a drop, step 1 in Section 2,
and penalizes large degrees of interpenetration. This probability,
denoted by �, is given by (28),

� = exp

(
− Ed

Ek

)
, [21]

where Ed is the energy required to deform a drop (J) and Ek is
the total kinetic energy of the system (J), which is available to
induce the deformation. Ed is given by

Ed = σ�Ai, [22]

where �Ai is the increase in the interfacial area as a result of
the deformation process (m2). Ek can be expressed by

Ek ∼ ρcu2d3, [23]

where u2 is the characteristic difference of the velocity squared
at different positions on the surface of the drop (m2/s) given
by Eq. [6]. Translation of the randomly chosen drop will be
accepted provided � is larger than a random number. It should
be noted that Eqs. [21] to [23] give a form for the probability
similar to that used by Lachaise et al. (29) for the probability of
breakup in a turbulent flow field.

The drops are assumed to deform into prolate spheroids, as
shown in Fig. 3, an assumption similar to that of Vaessen (30).
The origins of the spheroids are assumed to be the centers of the
originally undeformed spherical drops. The resulting film
thickness between the spheroids, h (m), is obtained by equating
the film drainage time, tdrain (s), for two deformable drops of
diameters d1 and d2 (m) (17, 19),

3ηc F
(

1 1
)(

d1d2
)2
tdrain =
16πσ 2 h2

c

−
h2 d1 + d2

, [24]
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FIG. 3. Schematic representation of the deformation of two initially spher-
ical drops of diameter d1 and d2 to prolate spheroids. The thickness of the thin
continuous fluid film between the deformed drops is denoted by h.

in which hc is given by Eq. [16], with that for rigid drops
(17):

tdrain = πηc

F

(
d1d2

d1 + d2

)2

. [25]

In Eqs. [24] and [25], F is the force compressing the two drops

FIG. 4. Parametric dependence of the probability of accepting drop

translation moves on agitation speed, as a function of the degree of drop
interpenetration.
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with diameters d1 and d2 in meters (N) (17):

F ∼ ρcu2

(
d1d2

d1 + d2

)2

. [26]

Determination of h permits the calculation of the equatorial radii,
a1 and a2 (see Appendix), while the other dimension of the
spheroid, the polar radii c1 and c2, can then be obtained by vol-
ume conservation. Both dimensions of the prolate spheroids are
restricted to the maximum stable drop size, dmax. As shown in
Fig. 4, � decreases with increasing degrees of drop interpene-
tration for a fixed agitation speed, and increases with agitation
speed for a fixed degree of interpenetration.

4. RESULTS AND DISCUSSION

We begin our discussion by assessing the sensitivity of our
results to initial conditions.

4.1. Drop Initial Conditions

Figure 5 depicts the parametric dependence on chosen ini-
tial conditions of the total interfacial energy per volume against
the number of translation moves. The sensitivity of the system
to variations in the initial mean drop sizes, the initial number
of drops, the polydispersity and the packing of the system was
investigated. Inspection of Fig. 5 reveals that the final energy
state of the system becomes largely independent of initial drop
conditions for a sufficiently large number of moves; steady-
state is reached after about approximately 200,000 moves. Since
phase inversion holdups in this model are obtained mainly from
a comparison of the interfacial energies of each dispersion mor-
phology, it can be concluded that the phase inversion holdup
itself is insensitive to the initial conditions.

Fluctuations about a mean value are observed if the initial
mean drop diameter is small. This can be explained by the fact
that for small initial mean drop sizes, the coalescence probability
is close to unity, a consequence of the coalescence probability
of (17) given in Eq. [12], which allows for the preferential coa-
lescence of small drops. As a result, the total number of drops
falls quickly and hence the total interfacial energy of the sys-
tem is very sensitive to any perturbations in the coalescence and
breakup probabilities. An inspection of Fig. 5 also reveals that
the mean drop size at steady state generated by the model is in
agreement with the correlation for the Sauter mean diameter of
Chen and Middleman (21) used for the initial drop size, given by
Eq. [20]. This demonstrates the ability of the model to predict
the Sauter mean drop sizes given the prevailing physical and
physicochemical conditions governing the dispersion.

4.2. Effect of the Viscosity Ratio on the Phase
Inversion Holdup

The effect of the water-to-oil viscosity ratio, λ, on the phase
inversion holdup from a water-in-oil dispersion to an oil-in-water

dispersion in an equal density system at various agitation speeds



450 YEO ET AL.
FIG. 5. Evolution of the total interfacial energy of the system with the numbe

initial mean drop diameter and Nd is the initial number of drops.)

is illustrated in Fig. 6. The overall trend is that of an increase in
the inversion holdup with increasing λ, as observed by Selker
and Sleicher (31). Furthermore, the model predictions exhibit
relatively good agreement with the experimental observations
and the relation of Yeh et al. (32) given by

√

φd,i = ηd

, [27] volves the simulation of concentrated dispersions in an agitated

1 − φd,i ηc vessel, the scaling relation of Arirachakaran et al. (33) for phase
FIG. 6. Effect of water-to-oil viscosity ratio on inversion holdup for an equal
rather than on a theoretical basis.)
r of random moves. (The inset shows a magnification of the curves; dmean is the

which is also plotted in Fig. 6 where φd,i is the dispersed phase
holdup at the inversion point. It should be noted, however, that
the experiments of Yeh et al. (32) were performed by shaking a
flask manually to produce the dispersion. The mixing intensity
was thus uncontrollable and the dispersion morphology had to be
determined by visual inspection. Although the present work in-
density system. (Note that the lines were added to aid clear viewing of the trends
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inversion occurring in pipe flow is also shown in Fig. 6 for com-
parative purposes.

The general trend observed in Fig. 6 can be explained by ex-
amining the effect of λ, the water-to-oil viscosity ratio, on the
relative rates of coalescence and breakup and the resultant shifts
in the water-in-oil (w/o) and oil-in-water (o/w) energy curves.
An increase in λ results in an increase and a decrease in the
coalescence probability of w/o dispersions and o/w dispersions,
respectively. This is due to the fact that the coalescence proba-
bility decreases with increasing continuous phase viscosities as
a result of the increase in the film drainage times. The increase
(decrease) in the rate of coalescence for w/o (o/w) dispersions
gives rise to an increase (decrease) in d32 resulting in a decrease
(increase) in the interfacial energy. A similar increase in λ re-
sults in a decrease (increase) in the breakup probability of w/o
(o/w) dispersions. This can be explained by the fact that the
breakup probability is proportional to [exp(−ηd/ηc)], as shown
in Eq. [4]. The resultant decrease (increase) in the breakup rate
for w/o (o/w) dispersions gives rise to an increase (decrease) in
d32, which results in a decrease (increase) in interfacial energy.
As shown in Fig. 7, which depicts the total interfacial energy per
unit volume as a function of the water holdup, the effect of in-
creasing λ therefore results in a shift of the w/o dispersion energy
curve downward and that of the o/w dispersion upward. This re-
sults in an increase in the inversion holdup, which explains the
observed trend in the model predictions and experimental data.

In the absence of viscosity differences, the system inverts at a
holdup of 0.5 for all agitation speeds. This is in agreement with
the trends predicted by McClarey and Mansoori (34), who con-
cluded that any deviation from equivolume inversion holdups
are a direct result of the viscosity difference between the two
immiscible liquids alone. At the extreme ends of the viscosity
ratios, the curves are observed to level off. This could be due
to the fact that the exponential factor in the breakup probabil-
ity reaches an asymptote at very low and very large values of
the viscosity ratio. This is an important observation because the
simulation should not be able to predict inversion holdups which

FIG. 7. Schematic illustration of the effect of increasing the water-to-oil
viscosity ratio, λ, on the interfacial energy curves (Es is the total interfacial

energy, VTot the total volume, φw the water phase holdup, and φinv the holdup at
phase inversion).
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FIG. 8. Phase inversion holdup as a function of agitation speed (constant
phase volume holdup).

exceed the close packing efficiency of 74.06% by a large amount
as advanced theories such as the effect of the existence of sec-
ondary dispersions and the actual physical deformation of drops
have not been taken into account in the present model.

The general trend indicating that the inversion holdup behaves
inversely with agitation and reaches an asymptote at high agi-
tation speeds can be seen more clearly when plotted against the
agitation speed in Fig. 8. These results show qualitative agree-
ment with the results of Quinn and Sigloh (35) and with the
intermediate inversion curves of McClarey and Mansoori (34)
where the organic phase holdup is held constant and inversion
is introduced to the system by increasing the agitation speed
from rest. An exception to these results are the observations
of Vaessen (30). They note that in their experiments involving
nonionic surfactant–water–oil systems, the opposite case is true;
the inversion holdup is constant at low agitation speeds up to ap-
proximately 1500 r.p.m. (25 s−1) but increases at high agitation
speeds. This is attributed to a decrease in the coalescence prob-
ability due to shorter contact times and larger collision forces at
high agitation speeds. While this agrees with the experimental
observations of Shinnar (20), Park and Blair (36) have observed
that coalescence increases with higher agitation speeds.

4.3. Effect of the Density Ratio on the Phase Inversion Holdup

The effect of varying liquid densities for an equal viscos-
ity system is demonstrated in Fig. 9. It can be seen that as the
water-to-oil density ratio is increased, it becomes increasingly
difficult to invert the water-in-oil dispersion and hence the inver-

sion holdup increases. While some investigators (37, 38) have
generally observed increased tendencies to invert for systems in
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FIG. 9. Effect of water-to-oil density ratio on inversion holdup for an equal
viscosity system. (Note that the lines were added to aid clear viewing of the
trends rather than on a theoretical basis.)

which large density differences are evident, Chiang and Chen
(39) have found that there is a lower tendency to invert in systems
with large density differences if water is the dispersed phase as
we have observed in our results.

The investigation into the effects of the density ratio in an
equal viscosity system is not dissimilar to the study by Selker
and Sleicher (31) of the effect of the kinematic viscosity ratio on

phase inversion. In general, they found that the agitation speed
did not have

lowering the interfacial tension (in the range 8.9 to 39 dynes/cm)
icating an
any effects on the ambivalence limits if there is widens the gap between the ambivalence curves, ind
FIG. 10. Variation of the phase inversion holdup with inte
AL.

adequate turbulence to prevent settling. Quinn and Sigloh (35)
also noted that the inversion holdup tends toward an asymptote
at high degrees of agitation. This is observed in the results shown
in Fig. 9 where the effects of agitation are not evident.

4.4. Effect of Interfacial Tension on the Phase Inversion
Holdup

Selker and Sleicher (31) postulated that interfacial tension is
not likely to affect the inversion of a liquid–liquid dispersion
because to suggest the contrary would require the implication
that interfacial tension is a function of the curvature of the inter-
face. Nevertheless, they did not substantiate their argument with
extensive experimental observations. Our simulations show that
interfacial tension does indeed affect inversion behavior as seen
in Fig. 10 for an equidensity system. For systems in which no
viscosity or density differences exist, interfacial tension does not
have any effect on the phase inversion holdup; the system there-
fore inverts at equivolume holdup. This is in agreement with
(32) who suggested that the inversion holdup is 50% in systems
in which forces other than interfacial tension are absent.

For systems in which the oil phase viscosity exceeds the aque-
ous phase viscosity, the curves at the bottom of Fig. 10 indicate
that inversion from the water-in-oil dispersion morphology to
the oil-in-water dispersion morphology with increasing interfa-
cial tension takes place at higher holdups. On the other hand, for
systems in which the aqueous phase viscosity is greater than that
of the organic phase, as seen by the curves at the top of Fig. 10,
phase inversion occurs at lower holdups for increasing interfa-
cial tension. The experiments of Clarke and Sawistowski (40),
Norato et al. (41), and Dong and Tsouris (42) have shown that
rfacial tension for different water-to-oil viscosity ratios.
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increase in the difficulty of inversion. These observations con-
firm the predictions of our model because (40–42) used liquids
in which the aqueous phase to organic phase viscosity ratios are
greater than unity. On the other hand, there is insufficient exper-
imental evidence to verify the predictions for the case where the
aqueous phase to organic phase viscosity ratios are below unity.

Norato et al. (41) explain their observations by suggesting that
the rate of breakup increases, whereas the rate of coalescence
decreases when interfacial tension is lowered, leading to higher
inversion holdups. The increase in the breakup rate due to a
decrease in the interfacial tension is clear. However, there are
two opposing effects of interfacial tension on coalescence:

• Film drainage—Increasing the interfacial tension rigidifies
the interface between the film and the drops, thereby decreasing
the film drainage times, leading to an increase in the coalescence
probability and hence a corresponding increase in the rate of
coalescence as shown by Eq. [12].

• Drop deformation energy—An increase in the interfacial
tension results in an associated increase in the energy required
to deform the drop. As a result, there is a reduction in the coa-
lescence probability and hence a suppression of the coalescence
rate for a constant energy of collision between two drops. This
is reflected by the expression for the rate of coalescence given
by Eq. [13].

For high dispersed to continuous phase viscosity ratios, the
interface between the film and the drop is rendered immobile.
The time taken for the film to drain to its critical rupture thick-
ness is therefore large. In this case, the film drainage is the
limiting factor; an increase in interfacial tension is thus likely
to affect film drainage, thereby causing an increase in coales-
cence and a consequent decrease in the phase inversion holdup.
In addition, an increase in the interfacial tension results in a de-
crease in the interfacial area, leading to larger mean drop sizes.
As a consequence, there is an enhancement in the coalescence
frequency, resulting in increased rates of coalescence and sub-
sequently lower phase inversion holdups. On the other hand,
when the dispersed phase viscosity is low compared to that of
the continuous phase, the interface is mobile to a certain degree.
The drop deformation energy is therefore the limiting factor for
the coalescence process, and therefore the coalescence rate is
retarded as a result of the higher energies required to deform the
drops as interfacial tension is increased. Higher phase inversion
holdups are therefore observed.

5. CONCLUSIONS

We have presented a method for predicting phase inversion
of concentrated liquid–liquid dispersions in agitated vessels via
a Monte Carlo technique utilizing the interfacial energy mini-
mization as the criterion for phase inversion. This work offers a
number of significant advantages over previous simulation stud-
ies (6) by incorporating into the model the fundamental depen-

dence of drop deformation, coalescence, and breakup on phys-
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ical and physicochemical system parameters. Furthermore, this
paper presents a framework in which drop interpenetration, an
inevitable consequence of simulating concentrated dispersions
of “rigid” drops, can be interpreted as drop deformation. Ex-
cessive interpenetration is penalized by introducing a penalty
function, which is related to the energy of deformation of drops
and the level of turbulence available to bring into effect this de-
formation. These features of the algorithm employed allow the
investigation of phase inversion of w/o and o/w dispersions up to
phase volume holdups in excess of 80% for a variety of system
parameters.

The current model, however, cannot predict the presence of
hysteresis effects, which often accompany phase inversion. This
is because the criterion used for phase inversion, i.e., interfacial
energy minimization, requires the comparison of the total inter-
facial energy of both dispersion morphologies to obtain a single
value for the phase inversion holdup. Initiating the simulation
with an o/w dispersion instead of a w/o dispersion therefore does
not produce a different value for the phase inversion holdup.
This limitation poses difficulties in obtaining direct validation
of model predictions against experimental results. Inspections
of the results of our simulations nevertheless reveal good qual-
itative agreement with experimental observations. For instance,
salient features, which cannot be predicted a priori such as in-
version at equivolume holdups in the absence of viscosity dif-
ferences and the insensitivity of the phase inversion holdup to
agitation speed for sufficiently large speeds, are captured by our
simulations.

It is planned to further develop the current version of the al-
gorithm to take into account complex processes such as drop
charge and wall wetting effects as well as the presence of sec-
ondary dispersions. These processes may in fact play an impor-
tant role in the development of hysteresis effects manifested by
the presence of the ambivalence region, a key feature of phase
inversion. The results of the present study, while not providing
any further elucidation of the mechanism by which phase in-
version occurs, nevertheless indicate that a Monte Carlo-type
technique may be a useful predictive tool that can be employed
to determine quantitatively the conditions under which phase
inversion occurs in concentrated liquid–liquid dispersions.

APPENDIX

Determination of the Equatorial Radii for Prolate Spheres

In Section 3.5, drop interpenetration as a consequence of
high-phase volume holdups was interpreted as drop deformation
within the framework of the present model. The drops were as-
sumed to deform into prolate spheroids whose centers are taken
to be the centers of the originally undeformed spherical drops
(Fig. 3). Since the coordinates of the centers of the drops as
well as the drop radii, r1 and r2, are known, then the separation
between the centers of the drops, L , can be found.
undeformed spherical drops and the resultant prolate spheroids
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FIG. 11. Deformation of two initially spherical drops, of radii r1 and r2 and
with separation L between their centers, to prolate spheroids with equatorial
radii a1 and a2, and polar radii c1 and c2—determination of the equatorial radii.
h is the thickness of the thin continuous fluid film between the deformed drops.

are the same, then it can be seen from Fig. 11 that

ai = ri − h

2
− li , [28]

where ai is the equatorial radius of the prolate spheroid formed
from drop i with radius ri before any deformation took place
(i = 1, 2). h is the resulting film thickness between the two pro-
late spheroids, as determined by Eqs. [24] and [25] and li is
some distance between the radial dimension of the originally
undeformed spherical drop and some point along the axis at
which the interpenetration between the originally undeformed
spherical drops is at its maximum. To simplify the model, we
assume that

l1 = l2 = l, [29]

where it follows that

l = r1 + r2 − L

2
. [30]

Therefore, from Eqs. [28] and [30], the equatorial radius for
prolate spheroid i is determined by

ai = 1

2
(±r1 ∓ r2 − h + L), [31]

where the signs on the top correspond to i = 1 and those on the

bottom correspond to i = 2 respectively.
T AL.
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