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The Dynamics of Marangoni-Driven Local Film
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A study of Marangoni-driven local continuous film drainage be-
tween two drops induced by an initially nonuniform interfacial dis-
tribution of insoluble surfactant is reported. Using the lubrication
approximation, a coupled system of fourth-order nonlinear partial
differential equations was derived to describe the spatio-temporal
evolution of the continuous film thickness and surfactant interfacial
concentration. Numerical solutions of these governing equations
were obtained using the Numerical Method of Lines with appropri-
ate initial and boundary conditions. A full parametric study was un-
dertaken to explore the effect of the viscosity ratio, background sur-
factant concentration, the surface Péclet number, and van der Waals
interaction forces on the dynamics of the draining film for the case
where surfactant is present in trace amounts. Marangoni stresses
were found to cause large deformations in the liquid film: Thicken-
ing of the film at the surfactant leading edge was accompanied by
rapid and severe thinning far upstream. Under certain conditions,
this severe thinning leads directly to film rupture due to the influ-
ence of van der Waals forces. Time scales for rupture, promoted by
Marangoni-driven local film drainage were compared with those as-
sociated with the dimpling effect, which accompanies the approach
of two drops, and implications of the results of this study on drop
coalescence are discussed. C© 2001 Academic Press

Key Words: drop coalescence; insoluble surfactant; film drainage;
film rupture; Marangoni effect; thin film; emulsions; stability.
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1. INTRODUCTION

In order for two drops approaching each other in a liqu
liquid dispersion to coalesce, the intervening continuous p
film trapped between the drops must drain to some critical th
ness beyond which film rupture occurs. Studying the detai
thin liquid film drainage is therefore crucial to the understa
ing of the coalescence process and the stability of liquid–liq
dispersions, which are of significant practical and indus
interest.

Thin liquid films have been studied extensively, reviews
which are given by Kitchener (1), Sheludko (2), Clunieet al.(3),
Ivanov and Jain (4), Jainet al.(5), and Wasan and Malhotra (6
In pure systems, that is, in the absence of surface active ag
1 To whom correspondence should be addressed. be
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the hydrodynamics of film drainage between colliding bubble
drops have been investigated by Chen (7), Li (8), and Klase
et al. (9), among others. However, for liquid–liquid dispersio
of practical interest, surfactants, either in the form of trace
purities or additives, are very often present. The drainage o
intervening continuous phase film and hence the rate of
lescence are largely influenced by the adsorption of surfac
onto the liquid–liquid interface, which modifies the interfac
properties of the system. The presence of even small variatio
the concentration of surfactant can give rise to interfacial ten
gradients, which, in turn, lead to so-called Marangoni stres
that can have a significant effect on the drainage dynamics

The effect of surfactants on the stability of films and on
coalescence of bubbles and drops has been studied by Raev
et al. (10), Traykov and Ivanov (11), Sharma and Ruckens
(12), Li (13), Danovet al.(14), and Valkovskaet al.(15), among
others. With the exception of the work reported in (10), wher
the surfactant concentration was assumed steady, all of the
ies listed above adopt an asymptotic approach whereby the
value for the surfactant concentration is represented by the
of the corresponding equilibrium value at steady state an
small perturbation caused by the flow. In these studies, th
fore, aquasi-steady-stateapproximation is used in which all th
variables in the system depend implicitly on time through
local film thickness (14, 16). Recently, however, Chesters
Bazhlekov (17) considered a dynamically evolving surfact
concentration by coupling the film evolution equation to
equation governing the transport of insoluble surfactant. In
study, a uniform concentration of surfactant was distribu
onto an initially undeformed interface; interfacial deformatio
brought about by axisymmetric drop approach under a s
constant interaction force, caused a nonuniformity in the sur
tant interfacial concentration. This, in turn, resulted in inter
cial tension gradients, generating additional interfacial tang
tial stresses or Marangoni stresses.

In liquid–liquid systems of practical relevance, surface-ac
contaminants often tend to accumulate in a localized regio
the interface on top of an already present background surfa
concentration (18). It is therefore important that the effec
an initially localizednonuniformdistribution of insoluble sur-
factant concentration on film drainage between two drops
3 0021-9797/01 $35.00
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examined in addition to the case of an initially uniform conce
tration of surfactant. Shen and Hartland (18) first studied t
effect on local film drainage solely for the case of a bubble o
drop approaching a solid plane, but without attempting to inv
tigate the effects of the viscosity of the fluid phase. This pa
thus extends the work of Shen and Hartland (18) to account
drop–drop interactions over a wider range of viscosity ratios a
to explore the possibility that Marangoni-driven local draina
may lead to film rupture by including disjoining pressure effec
into the model, effects which have not been considered in (1

The interfacial concentration gradients considered in the w
of Chesters and Bazhlekov (17) arise and evolve from a unifo
distribution due to interfacial deformation occurring during th
film drainage process such that the Marangoni effect is a sl
to the hydrodynamic processes. Here we have chosen inste
study the effect of the presence of an already present nonunif
concentration distribution imposed on a uniform backgrou
concentration on the film drainage, which we consider to o
cur in a region of small lateral extent, far upstream from t
region in which a dimple rim may occur. The time scales f
rupture, obtained from the present work, will be compared w
both theoretically and experimentally determined time sca
for dimpling obtained from the literature. It will be seen th
the time scales for rupture due to Marangoni-driven local fi
drainage occur at a comparable time scale, or even in cer
cases, at a faster time scale than that for the dimpling proc
Therefore, we conclude that there is a possibility of film ru
ture due to local film drainage under the action of Marango
stresses. In addition, we also report that the viscosity ratio pl
an important role on the drainage process: A low dispersed
continuous phase viscosity ratio allows the surfactant to exh
a stronger influence on the film drainage.

The rest of this paper is organized as follows. Section 2
devoted to the formulation of the problem, which includes t
derivation of the governing equations, the scalings most re
vant to this problem, and details of the numerical proced
employed in the solution of the model equations. A discuss
of the results is provided in Section 3 in which the effects
system parameters on the dynamics of the drainage proces
examined. These parameters include the surface P´eclet number,
which characterizes Marangoni stresses and surface diffus
a Hamaker constant, which characterizes van der Waals for
the background surfactant concentration, and the viscosity ra
Finally, concluding remarks are provided in Section 4.

2. MATHEMATICAL FORMULATION
AND SOLUTION METHODOLOGY

We begin the problem formulation by listing all the assum
tions which have been adopted to simplify the mathemati
model to be solved:
1. The interfaces between the dispersed phases and the d
ing film are axisymmetric.
T AL.
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FIG. 1. Schematic representation of the local drainage region between
drops.

2. Since a very small and localized region of the film is to
examined, an initially plane-parallel film is assumed as sho
in Fig. 1, i.e., the film is of initially uniform thickness,h∗o; the
asterisk signifies a dimensional quantity. As a consequenc
the extremely small values of the film thicknesses involved,
associated Reynolds and Bond numbers are small, and h
inertial as well as gravitational forces are negligible. Lubricati
theory (the balance of viscous forces with the pressure grad
in flows where inertial forces are negligible) therefore applie

3. The effects of the drainage within the local region co
sidered are so localized that these effects are not affected
the drainage in the entire film. Outside this region, therefore,
surfactant concentration and the film thickness remain unalte
during the period in which local drainage occurs (18).

4. The dispersed and the continuous phases are both ass
to be incompressible and Newtonian. The drops are assume
be initially spherical, whereR∗i is the radius of dropi .

5. In the drop, the velocity and the velocity gradient approa
zero at some distance from the interface,L∗i , which is the charac-
teristic circulation length of viscous penetration in dropi given
by (19)

L∗i =
h∗oR∗i

R∗o
. [1]

In [1], R∗o is the initial rim radius of the film outside the loca
drainage region at which point the dimple rim would occur if th
entire intervening continuous-phase film between the drop
been considered. Assuming thatL∗i is small compared to the drop
radius,R∗i , then thez-component of the pressure distribution
the drop is negligible compared to the radial component.

6. Since the film is thin with respect to the region in whic
the hydrodynamic interaction of the drops occurs, which in tu
is small compared to the drop radius (i.e.,h∗o¿ R∗o < R∗i ), the

rain-effect of the difference in drop radii on the curvature of the film
is negligible. It is possible then to assume symmetry relative
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to the planez∗ = 0; the drainage of the film between drops
different sizesR∗1 and R∗2 is equal to that between equal-size
drops with an equivalent radiusR∗ (9, 20), where

1

R∗
= 1

2

(
1

R∗1
+ 1

R∗2

)
. [2]

7. Because of the above assumption of symmetry at the p
z∗ = 0, it is also possible to assume that the interfacial prop
ties of the two surfaces are the same (14). Thusγ ∗1 = γ ∗2 = γ ∗,
whereγ ∗i is the interfacial tension at the interface of dropi and
γ ∗ is the interfacial tension which is a function of the interfac
concentration of insoluble surfactant,0∗.

8. A surfactant monolayer of prescribed initial concentrat
profile is imposed axisymmetrically at the interface between
dispersed and continuous phases about the center of the
contamination region; the surfactant is assumed to be pre
in dilute concentrations. The surfactant is also assumed t
insoluble in both the dispersed and the continuous phases
insolubility of the surfactant in the dispersed and the continu
phases is approximated at low concentration of surfactants w
the partition coefficient favors adsorption of the surfactant at
interface (21). This is also a good approximation when diffus
of surfactant between the bulk and the interface occurs on a
scale much larger than the time scales at which film drain
occurs (17). Steric hindrances and changes in the dilational
shear interfacial viscosities due to the presence of surfacta
the interface are neglected.

9. Disjoining pressure effects are incorporated into the mo
by taking into account van der Waals forces only; electric dou
layer forces are neglected.

2.1. Governing Equations

The problem is formulated in dimensionless variables wh
relations to the dimensional variables are given as

r ≡ r ∗

R∗o
, z≡ z∗

h∗o
, h ≡ h∗

h∗o
, p ≡ h∗o

S∗
p∗,

t ≡ εS∗

µ∗R∗o
t∗, vr ≡ µ∗

εS∗
v∗r , λ ≡ µ∗d

µ∗
, [3]

Ri ≡ R∗i
R∗o
, 0 ≡ 0∗

0∗m
, γ ≡ (γ ∗ − γ ∗m)

S∗
,

whereh is the film thickness,t is the time,p is the pressure
in the film, andpi is the pressure of dropi ; µ∗ andµ∗d are the
viscosities of the continuous and dispersed phases, respect
vr andvri are the radial velocities in the film and in the dispers
phasei , respectively.ε is a small parameter describing the ra
of the axial to radial length scales, i.e.,ε ≡ h∗o/R∗o. A spread-
ing parameter,S∗ = γ ∗o − γ ∗m, is defined such thatγ ∗o andγ ∗m
represent the interfacial tension corresponding to the least

taminated part of the interface and that of the interfacial reg
saturated with surfactant at concentration,0∗m, respectively.
CAL FILM DRAINAGE 235
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Given assumptions 1–9 listed above, the Navier–Stokes e
tions reduce to the lubrication equations. These are given b

∂p

∂r
= ∂2vr

∂z2
[4]

for the film and

∂pi

∂r
= λ∂

2vri

∂z2
[5]

for the drops.
Integration of Eq. [5] and application of the condition that t

velocity and the velocity gradient in the drop approach zero
a characteristic length,Li , yields an expression for the radia
velocity in the dispersed phase given by

vri =
[z− (hi ± R)]2

2λ

∂pi

∂r
, [6]

wherehi = h/2 is that part of the film thickness between dropi
and the planez= 0 (see Fig. 1). The addition sign correspon
to i = 1 and the subtraction sign corresponds toi = 2.

The tangential shear stress balance at the interfaces expr
by

∂vr

∂z

∣∣∣∣
z=h1

− λ∂vr1

∂z

∣∣∣∣
z=h1

= ∂γ

∂r
, [7]

λ
∂vr2

∂z

∣∣∣∣
z=h2

− ∂vr

∂z

∣∣∣∣
z=h2

= ∂γ

∂r
[8]

can be used to recast the drop velocitiesvr1 andvr2 in terms of
∂p/∂r . At the interfaces (z= hi ), therefore,

vr int =
R

2λ

∂γ

∂r
− hR

4λ

∂p

∂r
, [9]

wherevr int is the radial component of the interfacial velocity.
Integration of Eq. [4], taking into account symmetry at t

planez= 0, and demanding continuity of the velocity at bo
drop interfaces

vr |z=hi = vr int (i = 1, 2), [10]

yields an expression for the radial film velocity:

vr = z2

2

∂p

∂r
− h

4λ

(
λh

2
+ R

)
∂p

∂r
+ R

2λ

∂γ

∂r
. [11]

The kinematic boundary condition is given by

∂h

∂t
= −1

r

∂

∂r
(rhv̄r ), [12]
ionwherev̄r is the mean radial velocity in the film. Combination of
Eqs. [9], [11], and [12] results in an evolution equation for the
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film expressed by

∂h

∂t
= 1

12r

∂

∂r

(
rh3∂p

∂r

)
− 1

r

∂

∂r
(rhvr int ). [13]

The normal stress balance giving the excess pressure i
film relative to the bulk pressure consists of the pressure dif
ence in the drop (the Laplace pressure), the pressure asso
with the local interfacial curvature, and the disjoining press
taking into account the van der Waals interaction (22). We t
write

p∗ = 2γ ∗

R∗
− γ

∗

2

[
1

r ∗
∂

∂r ∗

(
r ∗
∂h∗

∂r ∗

)]
+
(
8∗∞ +

B∗

h∗m

)
, [14]

where8∗∞ is the van der Waals interaction potential per u
volume of a semi-infinite liquid film in the limit of approachin
the liquid–liquid interface,B∗ is the Hamaker constant, andm
is a parameter.

By definition,

8∞ ≡ h∗o
S∗
8∗∞; B ≡ B∗

S∗h∗m−1

o

. [15]

Insertion of the scalings defined by [3] into Eq. [14], and a
suming thatε ¿ 1, yields an expression for the dimensionle
pressure in the film:

p = 2

R

εγ ∗m
S∗
− 1

2

ε2γ ∗m
S∗

[
1

r

∂

∂r

(
r
∂h

∂r

)]
+
(
8∞ + B

hm

)
. [16]

Below we consider two cases:S∗ = ε2γ ∗m, that is, a spreading
coefficient of small magnitude, appropriate for trace amount
surfactant, andS∗ ∼ O(1); we shall focus, however, on the fir
case for practical reasons.

The interfacial concentration of the insoluble surfactant is
lowed to evolve dynamically and is governed by the convecti
diffusion equation

∂0∗

∂t∗
+ 1

r ∗
∂

∂r ∗
(r ∗v∗r int

0∗) = D∗s

[
1

r ∗
∂

∂r ∗

(
r ∗
∂0∗

∂r ∗

)]
, [17]

whereD∗s is the surface diffusivity. In dimensionless terms, t
surfactant transport equation becomes

∂0

∂t
+ 1

r

∂

∂r
(r vr int0) = 1

Pes

[
1

r

∂

∂r

(
r
∂0

∂r

)]
, [18]

in which the surface P´eclet number, Pes, is defined as

Pes = S∗h∗o
µ∗D∗s

, [19]

which represents the ratio of transport by Marangoni stres

to that by surface diffusion. Assuming dilute concentrations
T AL.
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insoluble surfactant, a linear surface equation of state for the
terfacial tension was adopted as a relationship between the i
facial tension and the local surfactant interfacial concentrat

γ ∗ = γ ∗o −
(
∂γ ∗

∂0∗

)
0∗. [20]

Inserting the scalings into Eq. [20] and noting that0∗ = 0∗m
whenγ ∗ = γ ∗m yields the dimensionless equation of state

γ = 1− 0. [21]

2.2. Initial and Boundary Conditions

In order to solve the film and surfactant evolution equatio
we impose the initial conditions

h(r, 0)= 1, [22]

0|t=0 = (1− 0b)
1− tanh

( r−ξo

ξ1

)
1− tanh

(− ξo

ξ1

) + 0b, [23]

where0b is the background concentration of surfactant,ξo de-
notes the value ofr for which0 = 0b, andξ1 controls the steep
ness of the initial concentration distribution. In addition, t
necessary boundary conditions are

∂h

∂r

∣∣∣∣
r=0

= 0, [24]

∂3h

∂r 3

∣∣∣∣
r=0

= 0, [25]

h|r=r∞ = 1, [26]

∂h

∂r

∣∣∣∣
r=r∞
= 0, [27]

∂0

∂r

∣∣∣∣
r=0

= 0, [28]

0|r=r∞ = 0b, [29]

wherer∞ is a radial distance far from the region where local fi
drainage takes place. The boundary condition given by Eq.
is a consequence of the requirement that∂p/∂r = 0 at r = 0
(23).

2.3. Numerical Scheme

Equation [18] and the combination of Eqs. [13] and [1
which govern the spatio-temporal evolution of the continuo
film thickness and surfactant interfacial concentration are a c
pled pair of fourth-order nonlinear parabolic partial different
equations. These evolution equations were solved numeric
subject to the initial and boundary conditions [22]–[29] usi
oftered differences for the discretization of spatial derivatives and
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Gear’s method in time (25). Values ofR= 4 (19),ξo = 3, and
ξ1 = 0.6 were used for all the simulations reported in the pres
work. Other choices of initial surfactant distribution yielded on
quantitatively different results. The parametermassociated with
the van der Waals interaction force was set equal to 3 w
the Hamaker constant (7, 22),B∗, equaled 10−21 J. Numerical
solutions were obtained for 0.1≤ Pes ≤ 100, 0.1≤ λ ≤ 10,
0≤ 0b ≤ 0.3, and 1≤ B ≤ 1× 10−3, over spatial domains o
maximum length 25 dimensionless units for times of order 1
dimensionless seconds using up to 1000 grid points; con
gence was achieved upon mesh refinement. In the case of
rupture, the computations were halted when the minimum fi
thickness was approximately 0.1 because of the difficulty in
solving accurately the increasingly singular spatial derivativ
in the rupture region. The rupture times quoted therefore co
spond to the time at which the computations were halted.

3. RESULTS AND DISCUSSION

For practical reasons, this paper will largely focus on t
effects of a trace amount of nonuniform surfactant imposed
the drop interface. However, a similarity analysis is conduc
for the general case where the surfactant concentration is
limited to a small amount. Section 3.1 is devoted to this stu
In Section 3.2, a parametric study is then carried out to elucid
the influence of various parameters on the interfacial spread
of the insoluble surfactant and on the local film drainage proc
in the limit where only trace amounts of surfactant are pres
The parameters which are studied are the viscosity ratio,λ, the
surface P´eclet number, Pes, and the background surfactant co
centration,0b. In addition, the effect of van der Waals forces o
film rupture is investigated. The development of film and co
centration profiles for typical parameter values are reporte
Section 3.2.1. Section 3.2.2 focuses on the effect ofλ on local
film drainage. In Section 3.2.3, the effect of0b on the spread-
ing of surfactant at the interface is studied; this is followed
Section 3.2.4 wherein the effect of Pes, representing the ratio o
surfactant transport by Marangoni stresses to that by surface
fusion, is discussed. Finally, film rupture under the influence
van der Waals interaction forces is considered in Section 3.

3.1. Marangoni-Dominated Spreading: S∗ ∼ O(1)

In this section, we present the case where the spreading c
ficient is large, i.e.,S∗ ∼ O(1). Although this is not the practi-
cally relevant case, we have included this section for compl
ness and also to validate the predictions of the numerical sch
through a comparison with similarity solutions. Only a brief ou
line of the derivation of the similarity analysis will be present
here; the full derivation is described in the Appendix.

If only Marangoni forces were present such that 1/Pes→ 0
andε2γ ∗m/S

∗ → 0, then Eqs. [13] and [18] can be simplified t

∂h 1 ∂
[ (

R ∂0
)]
∂t
=

r ∂r
rh

2λ ∂r
, [30]
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∂0

∂t
= 1

r

∂

∂r

[
r0

(
R

2λ

∂0

∂r

)]
. [31]

Global conservation of the mass of surfactant,M , also requires

M = 2π
∫ ∞

0
r0 dr. [32]

Following Jensen and Grotberg (26), we then introduce
Eqs. [30]–[32] the set of similarity scalings

h(r, t) = H (ξ, τ ), ξ = r

ξsta
,

0(r, t) = ξ2
s G(ξ, τ )

tb
, t = τ, [33]

where the position of the surfactant leading edge is loc
at ξ = 1 via rescaling by the parameterξs (see Appendix). In
these transformed coordinates, Eqs. [30]–[32] are rendered
independent when 2a+ b− 1= 0 and 2a− b = 0 for a finite
mass of surfactant,M . Thusa = 1

4 andb = 1
2, implying that the

surfactant leading edge advances ast
1
4 .

It can then be shown that the similarity solution for the e
lution of the film thickness is

H = δ(1− ξ )

2
−2(1− ξ )+ 1, [34]

whereδ(1− ξ ) is the Dirac delta function and2(1− ξ ) is the
Heaviside function. Behind the surfactant leading edge (ξ < 1),
therefore, the film thins such that the film profile is nea
horizontal, tending toH = 0. At the surfactant leading edg
(ξ = 1), H = ∞, indicating a sharp discontinuity or a fron
shocklike structure of infinite height in the film profile. In fro
of the shock (ξ > 1), the profile tends to its undisturbed positio
H = 1. Equation [34] is used as a limiting case to validate
predictions of the numerical scheme.

Figures 2a and 2b show the film evolution in the original
ordinate system and in the transformed coordinates respec
These profiles were obtained via numerical solutions of Eqs.
and [18] withε2γ ∗m/S

∗ = 10−4 and Pes = 1000. Upstream of th
shock, the film becomes increasingly flat, tending towardH = 0,
whereas downstream, the film remains undisturbed, in ag
ment with the similarity solution presented above. The grow
shocklike front is also captured by the Dirac delta function
the similarity analysis. The position of the shock in Fig. 2b te
toward the theoretical shock positionξ = 1 with time. The simi-
larity solution therefore provides a reasonable approximatio
the numerical solution over the majority of the spatial dom
We now detail results of the study for a more relevant case

is, the case where trace quantities of surfactant are present at the
interface.
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FIG. 2. Profiles for the evolution of the film thickness in (a) the original untransformed coordinates and in (b) similarity variables for 15 equal time s

to t = 8 with λ = 1, Pes = 1000,0b = 0, B = 1× 10−3, andε2γ ∗m/S∗ = 10−4. (The dashed line is the similarity solution, indicating the theoretical position of
the frontal shock that the profiles should tend toward over a large period of
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3.2. Trace Amounts of Surfactant: S∗ ∼ O(ε2)

In the limit of very small quantities of surfactant, the spreadi
pressure,S∗, is small. By approximatingS∗ = ε2γ ∗m, the scaling
for the pressure can now be rewritten as

p ≡ h∗o
ε2γ ∗m

p∗, [35]

and therefore the dimensionless pressure gradient in the
now reads

[ ( )] ( )

∂p

∂r
= −1

2

∂

∂r

1

r

∂

∂r
r
∂h

∂r
− mB

hm+1

∂h

∂r
. [36] conservation, the film thickens at the surfactant leading edge.

An outspreading fluid mechanical wave, similar to the structure
FIG. 3. Film thickness (a) and surfactant concentration (b) profiles for 15
time; the arrow indicates the direction of increasing time.)

g

lm

The rest of this paper reports an investigation of various sys
parameters in this limit.

3.2.1. Development of film and concentration profile
Figures 3a and 3b show typical spatio-temporal developm
of the film and the surfactant interfacial concentration,
spectively, for the following parameter values:λ = 1, Pes =
10, 0b = 0, and B = 10−2, from t = 0 to 8.62 in 15 equal
time steps. Large gradients in surfactant concentration a
ing from the initially nonuniform concentration distribution im
posed on the film give rise to surface tension gradients and h
Marangoni shear stresses, which are pronounced near the
origin. The film thickness thins in that region in order for vi
cous drag to balance interfacial stresses and, to satisfy m
equal time steps up tot = 8.62 withλ = 1, Pes = 10,0b = 0, andB = 1× 10−2.
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FIG. 4. Film thickness (a) and surfactant concentration (b) profiles for 15 equal time steps up tot = 0.88 forλ = 0.1; the other parameter values are Pes = 1,
−2
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0b = 0, andB = 1× 10 .

previously calculated by Shen and Hartland (18) and Jensen
Grotberg (26), is therefore generated. The surfactant conce
tion profiles gradually become flatter as the surfactant con
tration decreases to its background value, which, in this cas
zero.

The thinning is so rapid and severe that van der Waals
teractions become significant and the film can be seen ten
toward rupture at the last time step shown in Fig. 3. van
Waals forces expel both liquid and surfactant from the regio
film rupture, giving rise to a sharp depletion in surfactant in t
region. As a result, a local interfacial tension gradient aris
which causes the transport of surfactant and liquid back into
rupture region, thereby acting to replenish the film and to red

film thinning in opposition to van der Waals forces. In this exam-
ple, however, it is evident that the Marangoni backflow into the

along the interface is much slower when the viscosity ratio is
large because the increased resistance by the dispersed phase
FIG. 5. Film thickness (a) and surfactant concentration (b) profiles for 1
0b = 0, andB = 1× 10−2.
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film rupture region is insufficient to counteract the van der Wa
attraction and thus the film ruptures.

3.2.2. Effect of the viscosity ratio.The local film drainage
was studied for three viscosity ratios,λ = 0.1, 1.0, and 10.0,
with the rest of the parameter values kept constant at Pes = 1,
B = 1× 10−2, and0b = 0. The evolution of the film thicknes
and surfactant concentration profiles for each of these visco
ratios can be seen in Figs. 4–6. The influence of the surfac
on film thinning and rupture is seen to diminish as the visco
ratio increases, as evidenced by the longer times that ar
quired for the film to drain to a specified film thickness (see a
Fig. 7). This is to be expected since the spreading of surfac
5 equal time steps up tot = 8.924 forλ = 1; the other parameter values are Pes = 1,
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FIG. 6. Film thickness (a) and surfactant concentration (b) profiles at timest = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, and 30.0
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for λ = 10; the other parameter values are Pes = 1,0b = 0, andB = 1× 10−2.

reduces the interfacial mobility. This is illustrated in Fig.
which shows the surfactant spreading rate along the interf
defined by the rate of advancement of the radial position at wh
the surfactant concentration decreases to zero, or the backgr
surfactant concentration. It can be seen that the effect of vi
sity ratios on the spreading rate becomes increasingly evi
as Marangoni forces become dominant, as demonstrated b
surface P´eclet number, Pes.

The retardation of the interfacial velocity due to Marango
stresses by the viscous dispersed phase also explains wh
point of rupture is closer to the center for increasing viscos
ratios. Film rupture occurs approximately at a radial posit
r = 3.36 for λ = 0.1, whereas forλ = 1 rupture occurs at the
center as shown in Figs. 4a and 5a respectively. For the

FIG. 7. Variation of minimum film thickness with time as a function o

the viscosity ratio,λ, and the surface P´eclet number, Pes. The other parameter
values are0b = 0 andB = 1.
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of λ = 10 (Fig. 6a), the film does not thin sufficiently for va
der Waals forces to act before rethickening of the film occurs
hydrodynamic effects attempt to recover the drop curvature,
hence rupture does not occur. In addition, less flattening of
film is observed with increasing viscosity ratios, indicating an
creased resistance to film deformation, which may have ari
due to Marangoni stresses. The decreasing magnitude in
height of the outspreading wave is also a consequence of the
creasing deformability of the interface with high viscosity ratio

A comparison of Figs. 4b and 5b reveals that the high surf
tant spreading rates associated with low viscosity ratios re
in a slight flattening of the concentration profile near the th
ning region upstream of the thickened front. This occurs due
rapid transport of surfactant and liquid away from the vicini

FIG. 8. The effect of varying the viscosity ratio,λ, on the surfactant spread

ing rate for Pes = 1 and Pes = 10. The other parameter values are0b = 0 and
B = 0.
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of the flow origin, which gives rise to rapid thinning and sha
depressions in the film profiles. As a consequence, a small in
tation in the surfactant profile is observed to form a short dista
downstream of the thinning region forλ = 0.1 in Fig. 4b. This
is absent for larger viscosity ratios for which the spreading
is lower. In the region of the indentation, there arises a sm
positive concentration gradient that creates a small retarda
effect to the flow of surfactant outward. The indentation eff
becomes more evident for higher Pes (not shown).

We shall return to Fig. 7 in Section 3.2.4, wherein we exam
the effect of Pes on the dynamics.

3.2.3. Effect of background surfactant concentration.Shen
and Hartland (18) studied the effect of background sur
tant concentration in their system on the drainage of a liq
film formed between a bubble approaching a solid plane. T
found little significance of the background concentration on
thinning process in the initial stages of film thinning as
background concentration is small compared to the additi
surfactant concentration imposed on it. However, as the
thickness approached its minimum, Shen and Hartland obse
film recovery as the film began to thicken once again. Sim
observations were made in the present work. Figure 9 show
minimum film thickness as a function of time for various bac
ground concentrations. It can be seen that as the backgr
concentration is increased, the onset of flow reversal occurs
lier and at a higher minimum film thickness. This is consist
with Shen and Hartland’s observations that the cleaner the
terface, the smaller the minimum film thickness and the la
the onset of film recovery (18). As in (18), this observation c
be explained by the presence of an interfacial tension grad
arising due to the background surfactant, which opposes
outward flow of the film. It is also instructive to examine t
concentration profiles for various viscosity ratios where ba

FIG. 9. The effect of varying the background surfactant concentration,0b,

on the minimum film thickness. The other parameter values areλ = 10, Pes =
10, andB = 0.
CAL FILM DRAINAGE 241
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ground surfactant is present; these are shown in Figs. 10a–
In all cases, the surfactant concentration can be seen to s
until the background value is reached. A comparison of Figs
and 10a for clean and contaminated interfaces, respectively
the same viscosity ratio, reveals the formation of an additio
kink in Fig. 10a immediately upstream of the region in whi
the surfactant concentration decreases to its background v
this feature was independent of the size of the computationa
main. This additional kink in the concentration arises due to
presence of the background surfactant, which creates a po
concentration gradient that opposes the flow in the film lead
to flow reversal. For higher viscosity ratios (Figs. 10b and 10
this effect becomes less and less pronounced.

3.2.4. Effect of the surface Péclet number. The surface
Péclet number, Pes, represents a ratio of surfactant transport
Marangoni stresses to that by surface diffusion. In this sec
we examine the effect of varying Pes on the flow characteristic
in the absence of van der Waals forces and background con
tration effects. A range of 0.1< Pes < 100 is studied, which
represents the range between diffusive and convective sp
ing. Since we examine the case where only trace amoun
surfactant are present, values of Pes above 10 are impractica
However, we have included the case where Pes = 100 to further
elucidate the effects of spreading due to Marangoni convec

Figures 11a–11d show the surfactant concentration pro
for various Pes values from the limit of surface-diffusion
dominated surfactant transport, Pes = 0.1, to that where
Marangoni convection is the dominant driving mechanis
Pes = 100. The diffusive time scale,Td, is given by

Td = R∗
2

o

Ds
, [37]

while that for Marangoni-driven spreading,Tc, is

Tc = µ∗R∗o
εS

, [38]

from which it follows thatTd = PesTc.
At low Pes, it can thus be seen thatTd ¿ Tc and thus sur-

face diffusion acts quickly to distribute the surfactant along
interface with little disturbance caused to the film. Any int
facial tension gradients are therefore diminished owing to
dilution of surfactant, thereby reducing any spreading effe
due to Marangoni stresses. This is seen in Figs. 11a and
for Pes = 0.1 and 1 as demonstrated by the short times that
required for the concentration profile to even out at time sc
suggested by Eq. [37]. In these cases of low Pes, the film begins
to thicken again, as seen in Fig. 6a, when the interfacial ten
gradients are diminished (Fig. 6b) since there are no longer
ficient interfacial stresses to overcome the hydrodynamic eff
attempting to recover the drop curvature.
When Pes is sufficiently large [PesÀO(1)], there are
substantial interfacial tension gradients which give rise to
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FIG. 10. The effect of varying viscosity ratio on surfactant concentration profiles in the presence of background surfactant concentration,0b = 0.1: (a)λ = 0.1,
(b) λ = 1, and (c)λ = 10 up tot = 10 in equal time steps. The other the parameter values are Pes = 10 andB = 0.
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Marangoni-dominated transport, on time scales which
shorter than those associated with diffusional processes, give
Eq. [37]. The effect of Pes on the spreading process is summ
rized in Fig. 12, which clearly shows that the surfactant spre
ing rate along the interface decreases as Pes becomes large. This
trend has also been observed by Gaver and Grotberg (2
their study of surfactant spreading on thin viscous films wit
the context of surfactant replacement therapy.

It is also of interest to examine the effect of Pes on the film
profiles. Examination of Fig. 7, which depicts the influence
Pes on film thinning, reveals that the effect of Pes on the spread-
ing rate becomes more evident at higher viscosity ratios as
in Figs. 7 and 8: As Pes is increased, there is a tendency for t
film to drain faster, driven by Marangoni convection.

3.2.5. Effect of van der Waals forces on film rupture.For

very small length scales (of approximately 1000Å), intermolec-
ular forces such as van der Waals (and for much thinner film
are
n by
a-
ad-

) in
in

of

een
e

electric double layer forces) become significant and domin
the final stages of the film drainage process as the film th
to very small thicknesses. The van der Waals force creat
negative contribution to the disjoining pressure, resulting in
destabilization of the film and thus promoting rupture, where
the electric double layer force provides a positive contributi
stabilizing the film against rupture. In this paper, we have o
analyzed the effect of van der Waals forces on the drainage
rupture process.

We have shown in Section 3.2.1 that Marangoni forces al
are insufficient to induce the film to thin to zero thickness; t
is in agreement with previous studies (26). However, the fi
does thin sufficiently due to these forces to thicknesses at w
van der Waals attraction can cause the film to become unst
and proceed toward rupture as seen in Figure 3a. On the o
hand, when van der Waals forces are strong, any slight thinn
s,
of the film due to the Marangoni effect will lead to rupture of the
film. Figure 13a illustrates rapid thinning and rupture of the film



MARANGONI-DRIVEN LOCAL FILM DRAINAGE 243
FIG. 11. Surfactant concentration profiles for 15 equal time steps: (a) Pes = 0.1, t = 0 to 5, (b) Pes = 1, t = 0 to 30, (c) Pes = 10, t = 0 to 50, and
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(d) Pes = 100,t = 0 to 100. The other parameter values areλ = 1,0b = 0, and

for the case ofB = 1. Since the disjoining pressure force no
plays a dominant factor in film thinning even at early stages s
sequent to the initial deformation of the film due to Marango
forces, the rapid thinning of the film causes liquid to be driv
away from both sides of the thinning region. Whereas
outspreading wave due to film thickening at the surfactant le
ing edge has been observed in previous cases illustrate
Section 3.2.1 where the magnitude ofB is moderate, film thick-
ening, in this case, also occurs in the region upstream of
thinning zone. The associated surfactant concentration pr
is shown in Fig. 13b. It can be seen that the overall concen
tion profile does not deviate very significantly from the initi
concentration profile because the time scale to rupture is
small due to the large van der Waals attractive force that res
in the enhancement of the rate of film thinning. In addition,
observe that the surfactant concentration in the region upstr
of the thinning region rises above its initial value, indicating th

as the film is driven away from the thinning region toward th
center, surfactant is carried with it. Again, it can be seen tha
= 0.

w
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the region of film rupture, there is a sharp depletion of surfac
where Marangoni forces could potentially arise to refill the r
ture region and hence prevent film rupture as discussed ea
However, because the van der Waals force is extremely stro
this case, this does not occur. Instead, the film proceeds to ru
in a very short time span. In the cases we have so far prese
as well, these Marangoni forces which act against van der W
forces are insufficient to stabilize the film against rupture.

We have also studied other cases. Figure 14 represents a
cal set of results. It shows the minimum film thickness as a fu
tion of the dimensionless Hamaker constant,B, with λ = 1 and
Pes = 1 and in the absence of background surfactant conce
tion. These results indicate that rupture is delayed significa
in the case of weaker van der Waals forces. If van der W
forces are weak, for example whenB = 1× 10−3, the film does
not rupture as the hydrodynamic effects attempting to rec
the film curvature replenish the film before the film can th

e

t at
to a thickness at which the van der Waals force becomes effec-
tive. Potential rupture could occur if the dimensionless Hamaker
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FIG. 12. The effect of varying the surface P´eclet number, Pes, on the surfac-
tant spreading rate. The other parameter values areλ = 1,0b = 0, andB = 0.

constant is in the range 1× 10−2 < B < 1 for this set of param-
eter values. In addition, the rupture time,trupt, and the critical
film thickness,hcrit , defined as the values of the minimum fil
thickness at the rupture time in the absence of van der W
forces (17), can be estimated as illustrated in Fig. 14. Figur
shows the rupture times obtained for various background su
tant concentrations, indicating that the presence of backgro
surfactant slightly delays the film thinning process and he
the onset of rupture. In both figures, we see that the rupture
is of the order 10−2 to 1 s. Ruputure times resulting from dim
pling films of the order of 1 s to 10 ms have been reported
theoretical work (17) whereas Manevet al. (28) have reported

experimental coalescence times for aqueous emulsion films of
order 100 s. In systems of coalescing bubbles, experimentally

concentration may result in film rupture, which could give rise
to an alternative pathway to drop coalescence.
FIG. 13. Film thickness (semi-logarithmic plot) (a) and surfactant conce
parameter values areλ = 1, Pes = 1, and0b = 0.
T AL.
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FIG. 14. The effect of varying the dimensionless Hamaker constant,B, on
the minimum film thickness. The other parameter values areλ = 1, Pes = 1,
and0b = 0. (The arrows indicate an estimate of the rupture time,trupt, and the
critical film thickness,hcrit , for these parameter values.)

determined coalescence times of order 1 to 100 s (13, 29)
10 to 100 s (28, 30) have been obtained whereas rupture
scales of order 1 s havebeen found in this study for low viscosit
ratios and weak van der Waals forces (see, for example, Fig
whereλ = 0.1 andB = 1× 10−2).

In general, a comparison between rupture time scales
sented in this work with theoretically predicted and expe
mentally determined rupture time scales for which dimpling
the mechanism for rupture reveals that Marangoni-driven lo
drainage leading to rupture occurs on slightly faster or, at le
comparable time scales. That is, local variations in the surfac
ntration (b) profiles forB = 1 from t = 0 to 0.222 in 15 equal time steps. The other
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FIG. 15. Rupture times for various background surfactant concentrati
0b. The parameter values areλ = 1, Pes = 1, andB = 1× 10−2.

4. CONCLUSIONS

In this study, the analysis of Shen and Hartland (18) has b
extended to investigate local drainage of a continuous phas
uid film formed between two drops in the presence of interfa
concentration gradients. Contrary to the traditional notion
Marangoni forces generally act to stabilize drops against rup
and coalescence, we have found that the presence of an in
nonuniform distribution of insoluble surfactant at the interfa
can initiate localized drainage leading to the thinning of the fi
between the drops.

We have conducted a full parameteric study of the effect
the viscosity ratio, the background surfactant concentration
surface P´eclet number, and the dimensionless Hamaker cons
on the drainage process for the case where surfactant is pr
only in trace amounts. We have found that the influence of
factant on film drainage is strongest when the dispersed p
viscosity is low compared to that of the continuous phase. T
is a consequence of the decreasing retardation effect that th
persed phase exerts on the spreading of surfactant by Mara
stresses. The presence of background surfactant at the inte
was found to give rise to reverse Marangoni flow, which oppo
the outward destabilizing Marangoni flow that results from
imposed surfactant concentration profile, thereby retarding
thinning. Depending on the conditions, this flow reversal w
shown to result in refilling of the film.

When the surface P´eclet number is small, the effect of surfa
tant has been found to be negligible as diffusion acts to distri
the surfactant along the interface with little disturbance cau
to the film on a time scale much smaller than the time sc
at which Marangoni convection takes place. The film theref
recovers subsequently after initial thinning since there are
insufficient stresses arising from interfacial tension gradien

overcome the hydrodynamic effects attempting to recover
drop curvature. For small surface P´eclet numbers, the rate o
CAL FILM DRAINAGE 245
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spreading of surfactant is also low compared to the case of l
surface P´eclet numbers in which Marangoni convection increa
ingly becomes the dominant mode of surfactant transport;
effect of the P´eclet number on the rate of film thinning becom
more and more pronounced as the viscosity ratio is increase
these cases, we find that there is an enhancement of the int
cial velocity as a result of the interfacial concentration gradi
and this leads to rapid thinning of the film.

The possibility of film rupture due to van der Waals forc
was also examined. It can be concluded from our results
local film drainage can lead to the rupture of the film and hen
drop coalescence if Marangoni stresses can sufficiently thin
film down to thicknesses where van der Waals forces are ef
tive. The time scales for rupture promoted by Marangoni stres
found in this study are shown to be at least comparable to
rupture time scales occurring when dimpling takes place in
approach and collision of two drops, thus suggesting an a
native pathway to drop coalescence via local variations in
surfactant concentration.

APPENDIX: DERIVATION OF THE
SIMILARITY SOLUTIONS

It is possible to recast the numerical solutions in terms
similarity variables by first simplifying Eqs. [13] and [18] suc
that only Marangoni forces are present, that is, in the li
its 1/Pes→ 0 andε2γ ∗m/S

∗→ 0. These equations, along wit
Eqs. [9] and [21], then reduce to

∂h

∂t
= 1

r

∂

∂r

[
rh

(
R

2λ

∂0

∂r

)]
, [39]

∂0

∂t
= 1

r

∂

∂r

[
r0

(
R

2λ

∂0

∂r

)]
. [40]

Moreover, the following condition for global conservation of th
mass of surfactant,M , is imposed:

M = 2π
∫ ∞

0
r0 dr. [41]

We now introduce the following set of similarity scalings (2
into Eqs. [39]–[41]:

ξ = r

ta
, h(r, t) = H0(ξ ),

0(r, t) = G0(ξ )

tb
. [42]

Here, the surfactant leading edge is located atξ = 1. In these
transformed coordinates, Eqs. [39]–[41] are rendered tim
independent when 2a+ b− 1= 0 and 2a− b = 0 for a finite
amount of surfactant,M , in axisymmetric geometry. Thusa = 1

4
1

the
f

andb = 2, implying that the surfactant leading edge advances

ast
1
4 , for a finite mass of surfactant.
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Equations [39] and [40] can now be written as[
1

ξ

∂

∂ξ

(
ξH0R

2λ

dG0

dξ

)
+ ξ

4

d H0

dξ

]
= 0, [43]

[
G0

2
+ ξ

4

dG0

dξ
+ 1

ξ

d

dξ

(
ξRG0

2λ

dG0

dξ

)]
= 0. [44]

Integration of Eq. [44] with the boundary conditionG0 = 0 as
ξ →∞ yields

dG0

dξ
= − λξ

2R
2(1− ξ ), [45]

where2(1− ξ ) is the Heaviside function given by

2(1− ξ ) =
{

0 for ξ > 1,
1 otherwise.

[46]

Equation [45] implies thatdG0/dξ = −λ/2R for ξ ≤ 1 and
dG0/dξ = 0 for ξ > 1. The following boundary condition also
applies:H0 = 1 andG0 = 0 for ξ > 1. Substituting Eq. [45]
into Eq. [43] yields the expression

ξ2 d H0

dξ
− d

dξ
[ξ2H02(1− ξ )] = 0. [47]

By seeking a solution of the form

H0 = 2(1− ξ ) f (ξ )− g(ξ )+ 1, [48]

it can be shown that

2(1− ξ ) f (ξ ) = δ(1− ξ )

2
[49]

and

g(ξ ) = 2(1− ξ ), [50]

whereδ(1− ξ ) is the Dirac delta function given by

δ(1− ξ ) =
{∞ at ξ = 1,

0 otherwise.
[51]

The similarity solution for the evolution of the film thickness i
therefore

H0 = δ(1− ξ )

2
−2(1− ξ )+ 1. [52]

Since the position of the shock has been assumed to oc
at ξ = 1 and is determined by the total surfactant mass, we c

normalize the similarity scalings given in Eq. [42] using th
T AL.

s

cur

transformation (26)

h(r, t) = H (ξ, τ ), ξ = r

ξsta
,

0(r, t) = ξ2
s G(ξ, τ )

tb
, t = τ, [53]

such that the position of the shock in the original coordin
system,xs, is given by

xs = ξs(Q)ta, [54]

whereQ is defined by

Q = M

tc
, [55]

wherec = 0 for a finite amount of surfactant. It then follow
from Eq. [41] that, forc = 0,

ξs =
(

Q

2π
∫∞

0 ξG dξ

) 1
4

, [56]

which, upon normalization, gives

ξs =
(

Q

2π
∫ 1

0 ξG0 dξ

) 1
4

. [57]

Integration of Eq. [45] then yields

ξs =
(

4RQ

λπ

) 1
4

. [58]
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