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Abstract

The in$uence of the Marangoni e&ect on phase inversion behaviour is examined by integrating a microscopic study of the drop
coalescence process, in which thin 9lm drainage in the presence of insoluble surfactant occurs, into a macroscopic phase inversion
model which has been developed previously using a Monte Carlo technique. This is achieved via an immobility factor, obtained from
a comparison of the 9lm drainage times for surfactant-laden systems and surfactant-free systems as a function of the drop approach
velocity, surface P;eclet number, initial surfactant concentration and the Hamaker constant, which is then used to modify the coalescence
probability in the phase inversion model. On the one hand, the results indicate that the Marangoni e&ect removes any in$uence that the
viscosity ratio has on phase inversion due to immobilisation of the interface, thus shielding the $ow in the 9lm from the e&ects of the
$ow in the dispersed phase; the point at which phase inversion occurs therefore tends towards equivolume holdups with the addition of
surfactant. On the other hand, when comparisons are made with pure systems in which surfactant is absent, the system is seen to be either
stabilised or de-stabilised from inversion depending on the viscosity ratio of the system. This is attributed to the in$uence of surfactant
on the dispersion morphologies on either side of the inversion (i.e. water-in-oil dispersions and oil-in-water dispersions) and depends on
the dispersed phase holdup; the Marangoni e&ect is felt stronger when the dispersed phase holdup is low.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Phase inversion is the phenomenon whereby the phases
of a dispersion of two immiscible liquids spontaneously
interchange under conditions determined by the properties,
phase volume holdup and energy input. In the inversion
process, the dispersed phase therefore inverts to become the
continuous phase and the initially continuous phase inverts
to become the dispersed phase. Phase inversion is com-
monly encountered in a wide range of industrial processes.
In liquid–liquid extraction, phase inversion is highly unde-
sirable since the design of the contacting equipment is based
on a preferred direction of transfer of the solute to give op-
timum mass transfer rates. On the other hand, phase inver-
sion is an integral process step in the manufacture of butter,
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which consists of water drops in a fat continuum, from milk,
which essentially consists of fat globules in a water contin-
uous phase.

Until now, process equipment involving phase inversion
has been designed based on empirical knowledge and ex-
perience on methods of best practice. Little, however, is
known about the fundamental mechanisms and parametric
behaviour of the inversion process, often due to the inher-
ent diEculty in isolating the e&ects of individual parameters
where in many cases con$icting observations and postula-
tions have been reported. This places a severe limitation on
the design of equipment and the conditions under which the
equipment can be operated.

The value of theoretically based predictions of the crit-
ical dispersed phase holdup, i.e. the point at which phase
inversion occurs, cannot be underestimated as the amount
of time consuming and labour-intensive experimentation re-
quired would substantially decrease with the availability of
such tools. Nevertheless, there have been rather few attempts
to predict the phase inversion holdup theoretically despite
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extensive research e&orts. Instead, several empirical corre-
lations have been proposed. Unfortunately, these have a lim-
ited applicability range and there has been considerable vari-
ation between their predictions for a satisfactory model to
be identi9ed (Yeo, Matar, Perez de Ortiz, & Hewitt, 2000a).

In addition, computational models developed to predict
phase inversion behaviour have also been limited to date.
Juswandi (1995) attempted to simulate the inversion of a dis-
persion of immiscible spherical drops existing in a thin liq-
uid 9lm $owing as an annulus around a gas core in pipe$ow
using a Monte-Carlo-type scheme. However, this model is
limited since it does not accurately account for the actual
hydrodynamics of the $ow: 9lm drainage has not been con-
sidered when accounting for drop coalescence. Although
their results were suggested to be in good agreement with
the experiments of Brooks and Richmond (1994b), no at-
tempts were made to show this in detail let alone to match
the experimental geometry and conditions of the $ow.

This work was later modi9ed by the authors (Yeo, Matar,
Perez de Ortiz, & Hewitt, 2000b, 2002a) to predict phase
inversion behaviour for liquid–liquid dispersions occurring
in agitated vessels. The phase inversion process is simu-
lated using the Monte Carlo-type technique developed by
Juswandi (1995). However, a number of signi9cant modi9-
cations are made in an attempt to account for the hydrody-
namics of drop coalescence and drop break-up. In addition, a
framework for allowing for drop inter-penetration, a feature
that becomes increasingly prominent at high drop concen-
trations, to be interpreted as drop deformation is included.

Practical liquid–liquid systems of interest normally con-
tain surface-active-agents in the form of trace contaminants
accumulating at the phase interface or in the form of addi-
tives deliberately added to the dispersion. The presence of
these surfactants act to alter the interfacial properties giving
rise to interfacial tension gradients which, in turn, induce
additional tangential interfacial stresses commonly known
in the literature as Marangoni stresses. These stresses have
a signi9cant e&ect on the dynamics of the drops within the
dispersion. Consequently, the behaviour of the phase inver-
sion process is also altered as a result since phase inversion,
widely regarded to represent the instability of the system,
depends on a dynamic balance between the di&erent hydro-
dynamic processes of the drop, namely, drop coalescence,
drop break-up and drop deformation.

Experimental studies attempting to isolate the e&ect
of surfactant with regards to all other physico-chemical
parameters in the system are extremely diEcult and there-
fore few such studies have been reported. The majority
of these investigations mainly focus on the characteris-
tics of the surfactant, that is, on the e&ect of varying the
hydrophilic–lipophilic balance (HLB) on phase inversion
(Brooks & Richmond, 1994a; Vaessen, 1996; Silva, Peña,
Miñana-P;erez, & Salager, 1998; Zerfa, Sajjadi, & Brooks,
1999). On another front, work has also been conducted to
examine the e&ects of inter-phase Marangoni convection
due to the mass transfer of solute, a problem relevant to

solvent extraction (Sawistowski, 1971; Clarke & Sawis-
towski, 1978; Chiang & Ho, 1996). There is, however, a
lack of experimental data which investigates the in$uence
of Marangoni e&ects due to adsorption of surfactant at the
interface on phase inversion behaviour.

It is with this motivation that this speculative study has
been conducted. Moreover, as mentioned above, the eluci-
dation of the in$uence of individual physical parameters on
phase inversion behaviour in isolation to one another is dif-
9cult through experimental methods. However, in a compu-
tational model, it is easy to conduct systematic parametric
studies by holding all other parameters constant whilst ex-
amining the e&ect of varying a single parameter. In addition,
whilst many investigators have suggested that a logical ob-
vious conclusion would be that a system’s tendency to invert
is decreased when surfactant is present due to Marangoni
e&ects acting to inhibit drop coalescence, we 9nd in our
simulations that this might not always necessarily be true.
We postulate that although the presence of surfactants in-
creases dispersion stability, it is possible that this is true for
both sides of the inversion in cases where the surfactant’s
aEnity for the oil and the aqueous phases are more or less
equal, i.e. the surfactant stabilises both the water-in-oil dis-
persion as well as the oil-in-water dispersion. The critical
dispersed phase holdup would then be dependent on the rel-
ative stabilities of the dispersion morphologies. It follows
that the minimisation of the system’s energy is a critical
consideration in the modelling of the phase inversion pro-
cess, an assumption not di&erent from that of Luhning and
Sawistowski (1971), Fakhr-Din (1973), Tidhar, Merchuk,
Sembira, and Wolf (1986), Yeo, Matar, Perez de Ortiz, and
Hewitt (2002b).

In this work, we attempt to investigate the in$uence of the
Marangoni e&ect on phase inversion behaviour by incorpo-
rating a microscopic study of the thin intervening continuous
phase 9lm drainage process between two surfactant-coated
drops as they approach and possibly coalesce into the macro-
scopic Monte Carlo technique for simulating phase inversion
described above (Yeo et al., 2000b, 2002a). Recognising the
limitations of the model and the dearth of experimental data
against which we can validate our model, we present a pre-
dictive tool in the hope that our speculative results will give
rise to further experimentation and investigation in this area.

It will be shown that the addition of surfactant can ei-
ther lead to lower or higher critical dispersed phase holdups,
which is somewhat contrary to suggestions made previously
(Selker & Sleicher, 1965) that the presence of surfactants
will always result in the stability of the system against in-
version; this suggestion is directly based on the inference
that if surfactant stabilises drops against coalescence, then
the system will also be stabilised against inversion. The re-
sults of our speculative model suggest that this may not
necessarily always be the case: the viscosity ratio is the de-
termining factor. Speci9cally, we 9nd that, for dispersed to
continuous phase viscosity ratios below 1, phase inversion
occurs at higher dispersed phase holdups in agreement with
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previous postulations. However, if the dispersed phase is
more viscous than the continuous phase, we 9nd the reverse
to be true: inversion occurs at lower dispersed phase holdups
if the system is contaminated with surfactant compared to
pure systems. The stability of both dispersion morphologies
needs to be taken into account since the introduction of sur-
factant stabilises both sides of the inversion; the extent of
stabilisation depends on the dispersed phase holdup.

The rest of this paper is organised as follows. The next
section describes both the microscopic model for thin 9lm
drainage between two drops in the context of surfactant in-
$uenced coalescence as well as the macroscopic description
of phase inversion using a Monte Carlo technique. Attention
is also given to the way both models are interfaced through
an immobility factor. This is followed by a discussion of the
results and, 9nally, by the concluding remarks.

2. Description of models

In this section, we present the multi-scale model described
above, which attempts to predict the phase inversion of
a liquid–liquid dispersion occurring in turbulently agitated
vessels when insoluble surfactant is present at the dispersion
interfaces. Although the scope is limited to agitated vessels
in the present work, this model can be further generalised
to other dispersed liquid–liquid systems in which the turbu-
lence is suEciently intense so that the collision of the drops
within the system occurs by inertial impaction.

The model consists of two sub-models, a microscopic 9lm
drainage model and a Monte Carlo technique for simulating
phase inversion at the macroscopic level. As such, this sec-
tion will be further sub-divided into two parts. We will 9rst
brie$y describe the 9lm drainage model which will then be
followed by a discussion on the Monte Carlo technique for
predicting phase inversion behaviour. Only the more impor-
tant details of both models are reported in this paper. The
reader is referred to the previous work by the authors for the
detailed derivation of the 9lm drainage model (Yeo, 2002;
Yeo, Matar, Perez de Ortiz, & Hewitt, 2002c, d) and for
a more complete description of the phase inversion model
(Yeo et al., 2000b, 2002a).

It should be noted that we will only consider the in$uence
of the Marangoni e&ect on the drop coalescence process.
The in$uence of the Marangoni e&ect on the drop break-up
process is assumed to be negligible. This can be concluded
by a comparison of the time scale for the drop break-up pro-
cess and that for Marangoni driven spreading of surfactant
at the interface. The time scale for drop break-up, T ∗

b , for a
drop with diameter d∗ can be de9ned as

T ∗
b =

d∗√
u∗2

=
d∗

(�2N ∗3D∗2

I d∗)1=3
=

1
N ∗

(
d∗

�D∗
I

)2=3

; (1)

where u∗2 is the mean square of the relative velocity $uc-
tuations between two diametrically opposite points on the
surface of a drop (the asterisk ∗ indicating a dimensional
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Fig. 1. Schematic representation of the drainage region of the thin inter-
vening continuous phase 9lm trapped between two drops.

quantity), N ∗ the agitation speed and D∗
I the impeller diam-

eter, whereas the time scale for Marangoni driven spread-
ing of surfactant on the interface of the same drop, T ∗

c , is
de9ned as

T ∗
c =

�∗d∗

S∗
; (2)

where �∗ is the viscosity of the continuous phase and S∗

is a spreading parameter de9ned by S∗ = �∗0 − �∗m, where
�∗0 and �∗m represent the interfacial tension corresponding
to the least contaminated part of the interface and that of
the interfacial region saturated with surfactant at concentra-
tion, �∗

m, respectively. A comparison between the two time
scales de9ned above indicates that the time scale for surfac-
tant transport by Marangoni convection [typicallyO(10−1)–
O(10−3) s] could be up to three orders of magnitude larger
than the time scale for drop break-up to occur [typically
O(10−4) s]. Therefore, the assumption that the in$uence of
the Marangoni e&ect is negligible is justi9able within this
context.

2.1. Film drainage model

2.1.1. Model description and underlying assumptions
Two spherical liquid drops which are incompressible and

Newtonian, each with radius R∗i (the label i = 1; 2 indicat-
ing drops 1 and 2) and initially undeformed, are considered
to approach each other at constant velocity V ∗ along the
line of their centres in the axial coordinate, z∗. The region
of the draining 9lm, also Newtonian and incompressible, is
shown in Fig. 1, which depicts clearly the well-known dim-
pling process that accompanies 9lm drainage. The simplify-
ing approximations adopted in this work are as follows (Yeo
et al., 2002d):

1. The liquid 9lm in the drainage region considered is suf-
9ciently thin, so that a small parameter �, which de9nes
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the relative length scales of the axial and radial dimen-
sions, can be prescribed:

� ≡ h∗0
R∗0

�1: (3)

Here, h∗0 and R∗0 are the initial 9lm thickness at r∗ = 0
(r∗ being the radial coordinate) and the initial rim radius,
i.e. the radial position at which the dimple rim appears
initially, respectively.

2. Both the velocity and the velocity gradient in the dis-
persed phase i decrease to zero over a characteristic cir-
culation length of viscous penetration of order L∗i , where
(Li & Liu, 1996; Yeo, Matar, Perez de Ortiz, & Hewitt,
2001)

L∗i =
h∗0R

∗
i

R∗0
: (4)

The axial pressure gradient in the dispersed phase can
then be neglected compared to the radial pressure gradi-
ent since L∗i is assumed to be small relative to the drop
radius, R∗i .

3. The e&ect of the variation in the drop radii on the 9lm cur-
vature can be neglected since h∗0�R∗0�R∗i . Thus, sym-
metry relative to the plane z∗=0 can be assumed and the
relative drop sizes can be approximated with an equiva-
lent radius, R∗, where

1
R∗

=
1
2

(
1
R∗1

+
1
R∗2

)
: (5)

4. Since symmetry at the plane z∗ = 0 is assumed, we
can also assume that the interfacial properties are the
same at both interfaces (Lin & Slattery, 1982b; Danov,
Valkovska, & Ivanov, 1999). Therefore,

�∗1 = �∗2 = �∗: (6)

�∗i is the interfacial tension at the interface of drop i which
is a function of the interfacial concentration of insoluble
surfactant, �∗.

5. We initially impose the presence of a dilute monolayer
of insoluble surfactant with uniform concentration �∗

0 at
the 9lm–drop interface.

6. Disjoining pressure e&ects in the form of van der Waals
forces are considered in this model, characterised by
the so-called Hamaker constant, whereas electric double
layer e&ects are assumed to be negligible.

2.1.2. Mathematical formulation
The following transformations are applied to render the

problem dimensionless:

r ≡ r∗

R∗0
; z ≡ z∗

h∗0
; h ≡ h∗

h∗0
; p ≡ h∗0

S∗
p∗;

t ≡ �S∗

�∗R∗0
t∗; vr ≡ �∗

�S∗
v∗r ; � ≡ �∗d

�∗
;

Ri ≡ R∗i
R∗0
; � ≡ �∗

�∗
m
; � ≡ (�∗ − �∗m)

S∗
: (7)

In the above scalings, h denotes the dimensionless 9lm thick-
ness, t is the dimensionless time and �∗d is the viscosity of
the dispersed phase; p is the dimensionless pressure in the
9lm whereas vr and vri are the dimensionless radial veloci-
ties in the 9lm and in the dispersed phase i, respectively.

Given approximations 1 and 2, it is possible to apply
the lubrication approximation both in the draining 9lm and
in the drops. Adopting a cylindrical coordinate system, we
therefore write for the axisymmetric draining 9lm

@p
@r

=
@2vr
@z2

; (8)

and for the drops,

@pi
@r

= �
@2vri
@z2

: (9)

By accounting for the tangential shear stress balance
across the interfaces,

@vr
@z

∣∣∣∣
z=h1

− � @vr1
@z

∣∣∣∣
z=h1

=
@�
@r
; (10)

�
@vr2
@z

∣∣∣∣
z=h2

− @vr
@z

∣∣∣∣
z=h2

=
@�
@r
; (11)

it can be shown (Yeo et al., 2001, 2002d) that the 9lm
evolution equation reads

@h
@t

=
1

12r
@
@r

(
rh3 @p

@r

)
− 1
r
@
@r

(rhvrint ): (12)

The interfacial velocity, vrint , in Eq. (12) above is given by

vrint =
R
2�
@�
@r

− hR
4�

@p
@r
: (13)

The normal stress jump condition across the interface can
be expressed in dimensionless terms as (Yeo et al., 2001,
2002d)

p=
2
R
��∗m
S∗

− 1
2
�2�∗m
S∗

[
1
r
@
@r

(
r
@h
@r

)]

+
(
 ∞ +

B
hm

)
: (14)

Here,

 ∞ ≡ h∗0
S∗
 ∗

∞; B ≡ B∗

S∗h∗m−1

0

; (15)

where  ∗
∞ is the van der Waals interaction potential per

unit volume of a semi-in9nite liquid 9lm in the limit of
approaching the liquid–liquid interface, B∗ is the Hamaker
constant and m is a parameter. For 9lm thicknesses below
120 TA, typical values of B∗ ∼ 10−21 J and m= 3 have been
reported (Chen & Slattery, 1982; Chen, 1985).

The dimensionless transport equation for interfacial sur-
factant concentration can be written as

@�
@t

+
1
r
@
@r

(rvrint�) =
1
Pes

[
1
r
@
@r

(
r
@�
@r

)]
; (16)
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where Pes is the surface P;eclet number, de9ned by

Pes =
S∗h∗0
�∗D∗

s
; (17)

to describe the relative signi9cance of surfactant transport
due to Marangoni stresses and surface di&usion. In Eq. (17),
D∗
s is the surface di&usivity. Closure of the above set of

equations is achieved by a linear surfactant equation of state,
justi9able for dilute surfactant concentrations (Yeo et al.,
2002c, d):

�∗ = �∗0 +
(
@�∗

@�∗

)
�∗: (18)

Since �∗ = �∗
m when �∗ = �∗m, it follows that(

@�∗

@�∗

)
=
S∗

�∗
m
: (19)

It then follows from the scaling for �∗ that the modi9ed
interfacial tension due to the addition of surfactant reads

�∗ = �∗0 − S∗�: (20)

In dimensionless terms, the surfactant equation of state reads

�= 1 − �: (21)

Given that the spherical drop is initially undeformed and
laden with a uniform of surfactant concentration �0, the
initial conditions are (Yeo et al., 2002c, d)

h(r; 0) = h00 +
r2

�R
; (22)

where h00 is the initial 9lm thickness at r = 0, and

�(r; 0) = �0: (23)

The following boundary conditions apply (Yeo et al.,
2002c, d):

@h
@r

∣∣∣∣
r=0

= 0; (24)

@3h
@r3

∣∣∣∣
r=0

= 0; (25)

@h
@t

∣∣∣∣
r=∞

= −V; (26)

p|r=r∞ = 0; (27)

@�
@r

∣∣∣∣
r=0

= 0; (28)

@�
@r

∣∣∣∣
r=r∞

= 0; (29)

Table 1
Solution grid for obtaining immobility factors as a function of various
parameters

Parameter Range

V 0:01; 0:1; 1
Pes 1; 100; 10 000
�0 0; 0:001; 0:0025; 0:01; 0:1
B 10−4; 10−5; 10−7

where r∞ denotes a radial distance far from the region in
which the hydrodynamic action takes place. Due to scaling,
the dimensionless approach velocity V is de9ned as

V =
V ∗�∗

�2S∗
: (30)

2.1.3. Solution methodology
The two coupled fourth-order nonlinear parabolic partial

di&erential equations describing the evolution of the 9lm
thickness and the surfactant concentration at the interface
given in Eqs. (12) and (16) were solved numerically to-
gether with the initial conditions in Eqs. (22) and (23), and
the boundary conditions given by Eqs. (24)–(29) using the
Method of Lines (Schiesser, 1991; Yeo et al., 2001). We dis-
cretise the spatial domain using fourth-order centred di&er-
ences and advance the solution in time using Gear’s method
(Matar & Troian, 1999). The solution mesh consisted of
up to 1000 uniform points, convergence being achieved
upon grid re9nement. We halt the computations when the
9lm thickness decreases to approximately 0.1 dimensionless
units since the increasingly singular spatial derivatives in
the vicinity of the rupture region became increasingly dif-
9cult to resolve accurately. In the simulations, we assume
R= 4, �∗m = S∗ = 40 dyn cm−1 and h00 = 1.

The ranges of parameters over which the immobility fac-
tor, U, de9ned by

U =
tdrain|�0

tdrain|�0=0
; (31)

is calculated are given in Table 1. In Eq. (31), tdrain|�0 is the
time taken for the 9lm to drain to a dimensionless thickness
of 0.1 for a surfactant-laden system and tdrain|�0=0 is that for
a pure system. These ranges have been chosen to be suf-
9ciently wide so as to determine U over the full range of
drainage dynamics. By repeating the simulation for the var-
ious combinations of parameters, we obtain 108 sets of im-
mobility factors from which a correlation for the immobility
factor can be regressed with respect to the various system
parameters. Only the viscosity ratio between the drop phase
and the continuous 9lm phase is not included since it has
been shown that the e&ect of viscosity ratio on 9lm drainage
is quickly diminished (Yeo et al., 2002c, d) since even very
minute quantities of surfactant quickly immobilises the in-
terface such that the $ow in the drop phase is negligible on
the drainage of the 9lm. Moreover, typical values for the
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surface P;eclet number and the approach velocities within
the turbulent $ow 9eld in the agitated vessel result in large
immobility factors of order 10 such that even at very low
surfactant concentrations, the interface is e&ectively immo-
bilised. Therefore, in this respect, the e&ect of the viscosity
ratio on the immobility factor can be considered negligible.

2.2. Phase inversion model

2.2.1. General approach
The Monte Carlo technique employed consists of a dis-

persion system with an initially uniform drop size distribu-
tion, the drop size used corresponding to the Sauter mean
(i.e. the surface area to volume weighted average) diameter
d32. In this work, the correlation of Chen and Middleman
(1967) for d32 was employed. The drops are initially spher-
ical and placed in a face centred cubic con9guration lattice,
the dimensions of which are determined by the dispersed
phase holdup and the initial drop size (Yeo et al., 2002a).

The algorithm for the model is shown in Fig. 2. For a
given dispersed phase holdup and dispersion morphology, a
drop is chosen at random and translated within the dispersion
lattice via a method somewhat similar to the Metropolis
Monte Carlo method (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953):

x∗ → x∗ + &(2'1 − 1); (32)

y∗ → y∗ + &(2'2 − 1); (33)

z∗ → z∗ + &(2'3 − 1); (34)

where x∗, y∗ and z∗ are the coordinates of the drops, & is
an adjustable parameter governing the magnitude of the dis-
placement and 'i (i= 1; 2; 3) are random numbers between
0 and 1. A sensitivity analysis of & between the ranges 5%
and 50% indicated that the results are largely insensitive to
& and thus a value of 10% of the maximum lattice diameter
was used (Yeo et al., 2002a).

To allow the model to be extended to high phase volume
holdups which is common in systems undergoing phase in-
version, the constraint of strict no-interpenetration of drops
in the Monte-Carlo-type scheme has to be relaxed. This is
because at high phase holdups, the movement of drops repre-
sented as rigid spheres becomes increasingly diEcult. Since
in reality, drops tend to deform allowing for greater packing
fractions to be attained, the inter-penetration of drops will
be interpreted as the ‘deformation’ of the drops in response
to $ow conditions and drop interactions within the agitated
vessel.

The extent of ‘deformation’ will be determined by a
probability governing the translation of a drop. This prob-
ability, ), penalises for drop movements which result in
large degrees of inter-penetration and is represented by

(Yeo et al., 2002a)

) = exp
(
−E

∗
d

E∗
k

)
; (35)

where E∗
d is the drop deformation energy and E∗

k is the total
kinetic energy of the system available to deform the drops.
E∗
d is given by

E∗
d = �∗XA∗i ; (36)

where XA∗i is the increase in the interfacial area as a re-
sult of the ‘deformation’ process. E∗

k , on the other hand, is
expressed by

E∗
k ∼ -∗c u∗

2d∗
3
; (37)

where -∗c is the continuous phase density. Further details of
the rules governing this probability of translation,), can be
found in Yeo et al. (2002a).

Subsequently, the probability of the moved drop coalesc-
ing with a neighbouring drop is considered. If the resulting
coalesced drop size exceeds the maximum stable drop size,
d∗max (given by Shinnar, 1961), it breaks up again into a drop
with size d∗max and a smaller drop. Another drop is then cho-
sen at random and the possibility of it breaking up is checked
(together with the possibility of the resulting daughter drops
re-coalescing with other neighbouring drops).

The above steps are repeated for a large number of moves
(approximately 2 00 000) such that ‘steady-state’ is reached
where the 9nal energy state of the system becomes largely
independent of initial drop conditions. The total interfacial
energy of the system is then calculated for this dispersion
morphology. The whole process is then repeated for the
other dispersion morphology.

The criterion for determining the point at which phase
inversion occurs used here is minimisation of interfacial en-
ergy. Given that phase inversion is a spontaneous process,
it is not unreasonable to assume that the total system energy
content is minimised at the point of inversion (Luhning &
Sawistowski, 1971) Nevertheless, since it has been found
that there is always a reduction in interfacial energy at the
inversion point without any measurable change in the power
input being detected (Fakhr-Din, 1973), the minimisation of
the total energy content of the system arises out of a redis-
tribution between the interfacial energy and the total kinetic
energy of the system. As changes in the interfacial energy
are normally observed to be of the same magnitude with
the total system energy, it can be concluded that the change
in kinetic energy would be small compared to the change
in the interfacial energy during phase inversion (Fakhr-Din,
1973). Thus, interfacial energy minimisation serves as a rea-
sonably satisfactory criterion for phase inversion.

Phase inversion from a water-in-oil (w=o) dispersion to
an oil-in-water (o=w) dispersion is thus taken to occur when
the interfacial energy for the (o=w) system becomes lower
than that of the (w=o) system. By determining the interfacial
energies for both dispersion morphologies as a function of
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With Other Drops

Fig. 2. Algorithm for the phase inversion model (Yeo et al., 2002a).

the dispersed phase holdup using the algorithm described
above, the critical dispersed phase holdup at which phase
inversion occurs can then be determined.

2.2.2. Probability of drop break-up and coalescence
The possibility of drop break-up and coalescence are

considered by comparing the probability of break-up and
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coalescence to a random number generated. The probability
of break-up, ., is given as follows (Yeo et al., 2002a):

. =  
[
exp
(
−�

∗
d

�∗

)]
+ (1 −  )

[
exp
(
We
Wecrit

− 1
)]
;

(38)

where is a weighting factor to distinguish between viscous
and inertial break-up, given by the ratio of the size of the
smallest eddies which dissipate energy due to viscous e&ects
to the diameter of the drop d∗ for which the probability of
break-up is to be evaluated on

 =
0∗

d∗
for 0∗¡d∗; (39)

and

 = 1 for 0∗¿d∗: (40)

Here, 0∗ is the Kolmogoro& length scale:

0∗ =

(
2∗

3

�∗d

)1=4

; (41)

where 2∗ is the kinematic viscosity and �∗d is the turbulent
energy dissipation per unit mass of $uid. In Eq. (38), Wecrit
is the critical Weber number above which drop break-up
occurs (Hinze, 1955):

Wecrit =
-∗u∗2d∗max

�∗
; (42)

where -∗ is the density.
The coalescence probability, 3, can be obtained from two

models using the following expression (Sovov;a, 1981):

3(v∗1 ; v
∗
2 ) =31(v∗1 ; v

∗
2 ) + 32(v∗1 ; v

∗
2 )

−31(v∗1 ; v
∗
2 )32(v∗1 ; v

∗
2 ); (43)

where v∗1 and v∗2 are the volumes of the coalescing drops.
31 is given by Coulaloglou and Tavlarides (1977):

31 = exp


−K∗

1 �
∗-∗cD

∗2

I N
∗3

�∗2

(
v∗

1=3

1 v∗
1=3

2

v∗1=3

1 + v∗1=3

2

)4

 : (44)

In the equation above, K∗
1 is a dimensional constant related

to the 9lm thickness at coalescence:

K∗
1 ∼ 1

h∗2

c
− 1
h∗2

0

; (45)

where h∗0 is the initial 9lm thickness and h∗c is the critical
9lm rupture thickness. 32 is given by Sovov;a (1981):

32 = exp

[
− K2�∗(v∗

2=3

1 + v∗
2=3

2 )(v∗1 + v∗2 )
-∗dN ∗2D∗4=3

I v∗1v
∗
2 (v

∗2=9

1 + v∗2=9

2 )

]
; (46)

where K2 is a dimensionless constant obtained through re-
gression of experimental data and -∗d the dispersed phase
density.

2.2.3. Marangoni e6ects on drop coalescence
Since 31 is a comparison between the time taken for the

9lm to drain, t∗drain, and the time that the drops spend in
contact with each other, t∗contact, i.e.

31 = exp
(
− t∗drain

t∗contact

)
; (47)

we can incorporate the immobility factor U as a multiplier
for t∗drain to allow for the in$uence of surfactant in retarding
the drainage of the 9lm through Marangoni e&ects. Eq. (44)
then reads

31U = exp


−UK∗

1 �
∗-∗cD

∗2

I N
∗3

�∗2

(
v∗

1=3

1 v∗
1=3

2

v∗1=3

1 + v∗1=3

2

)4

 : (48)

In order for U to be calculated as a function of its param-
eters, V , Pes, �0 and B, we need to evaluate these quantities
given the conditions of the macroscopic system. Whilst B
and Pes can be obtained from Eqs. (15) and (17), respec-
tively, the dimensional approach velocity, V ∗, can be found
by the following expression (Kumar, Kumar, & Gandhi,
1993):

V ∗ =
F∗(3+3�)

6��∗d∗mean(2+3�)

1 + d∗mean
h∗0

1+0:38q
1+1:69q+0:43q2

3+3�
2+3�

; (49)

where F∗ is the approach force given by Coulaloglou and
Tavlarides (1977):

F∗ ∼ -∗c �
∗2=3

d
(d∗1d

∗
2)

2

(d∗1 + d∗2)4=3 : (50)

d∗1 and d∗2 are the diameters of the colliding drop pair and
d∗mean is the mean drop diameter de9ned by

d∗mean =
d∗1d

∗
2

d∗1 + d∗2
: (51)

q is de9ned as

q=
1
�

√
d∗mean

h∗0
: (52)

In Eqs. (49) and (52), h∗0 is the initial separation between the
drops measured after the translation of the drop; V is then
obtained from Eq. (30). In addition, the interfacial tension
is also altered due to the presence of surfactant with initial
concentration �0 using Eq. (20).

3. Results and discussion

3.1. Film drainage

A typical pro9le of the evolution of the 9lm thickness
and the surfactant interfacial concentration reproduced from
Yeo et al. (2002d) is illustrated in Figs. 3(a) and (b), re-
spectively. It can be seen that as the drops approach and the
9lm begins to drain, the deformation caused to the interface
results in the surfactant concentration being depleted. As
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Fig. 3. Typical 9lm thickness (a) and surfactant interfacial concentration (b) evolution pro9le (Yeo et al., 2002d) for 15 equal time steps up to t = 62:2.
The remainder of the parameter values are: � = 1, Pes = 10000, �0 = 0:1, B = 10−3 and V = 0:5.

this depletion in the deformation region continues, interfa-
cial tension gradients arise leading to the Marangoni e&ect
attempting to re9ll with surfactant. As the interface shape
inverts from a convex shape to a concave shape, a dimple
is formed and the rim of the dimple tends to spread out-
wards together with the well-like shape in the concentration
pro9le. When van der Waals forces become signi9cant at
low 9lm thicknesses, the 9lm tends towards rupture in this
dimple region.

Fig. 4 shows the immobilisation of the interface as sur-
factant is introduced to the interface. From the 9gure, it
can be seen that the rate at which the 9lm drains decreases
quickly upon the addition of surfactant until the interface is
immobilised at some value, in this case, �0=0:01. This con-
9rms the observations made by several investigators (Allan,
Charles, & Mason, 1961; Lin & Slattery, 1982a; Klaseboer,
Chevaillier, Gourdon, & Masbernat, 2000) that only a small
quantity of surfactant is suEcient to immobilise the interface
due to the Marangoni e&ect which opposes any interfacial
mobility.

The 9lm drainage times, tdrain, and the corresponding im-
mobility factors, U, obtained from the runs generated for
the various system parameters listed in Table 1 are tabu-
lated in Tables 2–4. By regressing the data in the table to
9t a nonlinear combination of the various system parame-
ters using the least-squares 9t function in Mathematica, we
arrive at the following correlation for the immobility factor
as a function of the approach velocity, surface P;eclet num-
ber, initial surfactant concentration and the dimensionless
Hamaker constant:

U = 1 +
2:194V 0:056Pe0:259

s �0:467
0

B0:125 : (53)

By inserting Eq. (53) into Eq. (48), the e&ect of surfactant
at the microscopic level of 9lm drainage in the coalescence
process can then be investigated at the macroscopic level at
which phase inversion of the system occurs.

3.2. Phase inversion

Figs. 5(a)–(c) illustrates the e&ect of surfactant concen-
tration on the dispersed phase holdup at the phase inversion
point from a (w=o) dispersion to an (o=w) dispersion, 7d;i,
for various viscosity ratios, �, and agitation speeds, N , for
an equal density system [the e&ect of density on phase in-
version has been discussed in an earlier work (Yeo et al.,
2002a) and will not be discussed in this paper]. We have
also included the set of results for pure systems in which
surfactant is absent, as well as the scaling relations of Yeh,
Haynie, and Moses (1964):

7d;i
1 − 7d;i =

√
�∗d
�∗
; (54)

and Arirachakaran, Oglesby, Malinowsky, Shoham, and
Brill (1989), the latter relevant for phase inversion occurring
in pipe $ow but included here for comparative purposes.

In general, the trends for both pure and surfactant-laden
systems show that the phase inversion holdup increases as
the dispersed phase becomes increasingly viscous, consis-
tent with the observations of Selker and Sleicher (1965),
as well as the scaling laws given in Yeh et al. (1964) and
Arirachakaran et al. (1989). At the extreme ends of the vis-
cosity ratios, the curves tend to level o&.

As the agitation in the vessel is intensi9ed, it can be seen
that phase inversion is achieved with greater ease. This is in
qualitative agreement with the results of Quinn and Sigloh
(1963) and with the intermediate inversion curves of Mc-
Clarey and Mansoori (1978). In addition, the results also
show that when there are no viscosity di&erences between
the dispersed and continuous phases, the system inverts at
equivolume holdups in agreement with the predictions in
McClarey and Mansoori (1978). A detailed discussion of
these general trends for the case in which surfactant is ab-
sent can be found in Yeo et al. (2002a).
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Fig. 4. Comparison of the minimum 9lm thickness with time for the case of the surfactant-free system, surfactant-free system with immobile interfaces
(vrint = 0), and for surfactant-laden systems with �0 = 0:0025; 0:01 and 1 showing the immobilisation of the interfaces upon introduction of surfactant
(Yeo et al., 2002d). The remainder of the parameter values are � = 1, B = 0 and V = 0:05 and, where applicable, Pes = 10000.

A comparison of Figs. 5(a)–(c) shows that as the sur-
factant concentration is increased, the curves tend towards
a horizontal line close to the line of equivolume holdup.
This is because the presence of surfactant gives rise to the
Marangoni e&ect thereby immobilising the interfaces. As a
result, the $ow in the dispersed phase and hence the vis-
cosity ratio has negligible e&ect on the drainage of the 9lm.
Whilst this has been observed on the microscopic level in
the drainage of the thin 9lm during the drop collision pro-
cess (Klaseboer et al., 2000; Yeo et al., 2002c, d), our results
here show that this e&ect is also evident at the macroscopic
level for the entire ensemble of drops within the system.
The absence of viscosity ratio e&ects cannot be attributed
to our omission of the viscosity ratio from the immobility
factor as discussed in the previous section because viscos-
ity e&ects are still present within the model in the break-up
and coalescence probabilities [Eqs. (38) and (44)]. There-
fore, it can be concluded that Marangoni e&ects felt at the
microscopic level do indeed a&ect the stability of the entire
system at the macroscopic dimension.

It can also be seen from the trends for each given agi-
tation speed that the phase inversion holdup increases for
�¡ 1, but decreases for �¿ 1 when surfactant is present
for the surfactant concentrations considered. The exception
to this observation is the case of extremely low surfactant
concentrations and high agitation speeds (N = 25; 40 s−1)
in which the phase inversion holdup increases for �¿ 1 as
seen in Fig. 5(a). This exceptional case will be dealt with
at the end of this section. In general, however, the inversion
process becomes increasingly diEcult upon the addition of
surfactant for �¡ 1 and relatively easier for �¿ 1. This

is perhaps contrary to previous suggestions that the pres-
ence of surfactant will delay the onset of phase inversion to
higher dispersed phase holdups (Selker & Sleicher, 1965).
While this is a direct inference from the fact that the pres-
ence of surfactant inhibits coalescence and hence results in
the stability of a dispersion, there has not been substantial
experimental evidence over a wide range of viscosity ratios
to validate this suggestion. Here, we suggest a possible ex-
planation for why this may not always be true.

Since the immobility factor, U, is only a function of B,
�0, and Pes, and only a weak function of V , it can be shown
from the de9nitions of these dimensionless quantities in Eqs.
(15), (17) and (30), respectively, that U is only dependent
on the initial 9lm thickness, h∗0 , if �0, S∗, �, and N are held
constant. Since h∗0 is primarily inversely proportional to the
dispersed phase holdup, then it follows that Pes is inversely
proportional to the dispersed phase holdup whereas B is pro-
portional to it. Therefore, from Eq. (53), it becomes evident
that U decreases as the dispersed phase holdup increases.
In other words, the Marangoni e&ect on immobilising the
interface and hence retarding drop coalescence is felt more
strongly for dilute dispersions than for concentrated disper-
sions. The dispersed phase holdup may therefore be an im-
portant factor when considering the stability of system on a
macroscopic level.

For �¡ 1, phase inversion from a (w=o) dispersion to
an (o=w) dispersion occurs at dilute (w=o) concentrations
when surfactants are absent. Therefore, the (w=o) dispersion
morphology is generally dilute whereas the corresponding
(o=w) dispersion is concentrated and hence the Marangoni
e&ect would retard coalescence to a greater extent for the
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Fig. 5. E&ect of water-to-oil viscosity ratio on inversion holdup for an equal density system for three initial surfactant concentrations: (a) �0 = 0:0001,
(b) �0 = 0:01, and (c) �0 = 0:1 (note that the lines were added to aid clear viewing of the trends rather than on a theoretical basis).
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Table 2
Film drainage times and immobility factors as a function of various
parameters for V = 0:01

Pes �0 B tdrain U

— 0 10−4 62.05 —
10−5 83.60 —
10−7 128.49 —

1 0.001 10−4 62.09 1.0006
10−5 91.27 1.0917
10−7 138.01 1.0741

1 0.0025 10−4 68.61 1.1057
10−5 98.00 1.1722
10−7 139.95 1.0892

1 0.01 10−4 77.47 1.2487
10−5 106.32 1.2718
10−7 140.05 1.0900

1 0.1 10−4 99.10 1.2972
10−5 108.94 1.3031
10−7 143.52 1.1170

100 0.001 10−4 65.05 1.0476
10−5 104.00 1.2440
10−7 143.20 1.1145

100 0.0025 10−4 69.33 1.1174
10−5 104.92 1.2550
10−7 151.00 1.1752

100 0.01 10−4 84.70 1.3651
10−5 134.50 1.6193
10−7 183.51 1.4282

100 0.1 10−4 117.72 1.8972
10−5 217.33 2.5997
10−7 260.00 2.0235

10 000 0.001 10−4 111.34 1.7943
10−5 167.16 1.9995
10−7 244.95 1.9064

10 000 0.0025 10−4 119.72 1.9294
10−5 226.10 2.7045
10−7 521.25 4.0567

10 000 0.01 10−4 157.00 2.5302
10−5 324.00 3.8756
10−7 3762.50 29.2824

10 000 0.1 10−4 177.13 2.8546
10−5 444.79 5.3205
10−7 7196.40 56.0075

(w=o) dispersion than for the (o=w) dispersion if all other
parameters are held constant. Thus, the mean drop size for
the (w=o) dispersion decreases giving rise to a larger total
interfacial energy resulting in an increase in the phase in-
version holdup.

The opposite is true for the case of �¿ 1. It can be seen
from the plots that phase inversion occurs at large (w=o)
concentrations for pure systems. Therefore, upon addition
of the surfactant, the in$uence that the Marangoni e&ect
exerts on the (o=w) dispersion is greater than that for the
(w=o) dispersion resulting in a retardation of the rate of
coalescence in the (o=w) system. In the same way, there
is a decrease in the mean drop size for the (o=w) system
and a corresponding increase in the total interfacial energy
therefore making inversion from (w=o) to (o=w) easier.

For systems in which � = 1, the morphologies are in-
distinguishable for an equidensity system. Therefore, the

Table 3
Film drainage times and immobility factors as a function of various
parameters for V = 0:1

Pes �0 B tdrain U

— 0 10−4 20.10 —
10−5 29.40 —
10−7 46.86 —

1 0.001 10−4 21.10 1.0498
10−5 29.47 1.0017
10−7 46.94 1.0009

1 0.0025 10−4 21.15 1.0522
10−5 29.49 1.0023
10−7 47.11 1.0046

1 0.01 10−4 21.30 1.0597
10−5 29.69 1.0092
10−7 47.54 1.0136

1 0.1 10−4 30.06 1.4959
10−5 46.86 1.5928
10−7 55.31 1.1794

100 0.001 10−4 22.08 1.0985
10−5 33.02 1.1225
10−7 53.83 1.1478

100 0.0025 10−4 23.92 1.1901
10−5 34.09 1.1587
10−7 57.49 1.2257

100 0.01 10−4 31.38 1.5614
10−5 47.72 1.6220
10−7 65.19 1.3899

100 0.1 10−4 80.56 4.0080
10−5 174.65 5.9363
10−7 2482.65 52.9350

10 000 0.001 10−4 26.08 1.2975
10−5 34.82 1.1836
10−7 63.47 1.3534

10 000 0.0025 10−4 37.98 1.8896
10−5 35.38 1.2027
10−7 72.71 1.5503

10 000 0.01 10−4 137.77 6.8542
10−5 1161.64 39.4848
10−7 1739.07 37.0804

10 000 0.1 10−4 225.75 11.2313
10−5 1889.93 64.2395
10−7 2705.90 57.6951

strength of in$uence of the Marangoni e&ect is the same
for both (w=o) and (o=w) and hence the e&ect of surfactant
is not apparent, the inversion holdup being held constant
at 50%.

We now turn our consideration to the exception to these
trends: the case in which the surfactant concentration is ex-
tremely low (�0 = 0:0001) and the agitation is very intense
(N =25; 40 s−1). In the discussion above, we have assumed
that the contribution of the approach velocity in immobil-
ising the interface is small. However, when the agitation
speeds are high and the surfactant is very dilute, it is possible
that the e&ect of the approach velocity becomes dominant.
From Eq. (30), we note that the dimensionless approach ve-
locity is inversely proportional to h∗

2

0 , and therefore, it is not
unreasonable for the trends discussed above to be reversed
if the approach velocity term dominates in Eq. (53). Under
these conditions, the Marangoni e&ect is instead felt more
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Table 4
Film drainage times and immobility factors as a function of various
parameters for V = 1:0

Pes �0 B tdrain U

— 0 10−4 21.64 —
10−5 31.31 —
10−7 70.33 —

1 0.001 10−4 21.66 1.0009
10−5 31.35 1.0012
10−7 70.49 1.0023

1 0.0025 10−4 21.69 1.0024
10−5 31.44 1.0042
10−7 70.73 1.0057

1 0.01 10−4 21.85 1.0099
10−5 31.89 1.0186
10−7 72.07 1.0248

1 0.1 10−4 22.83 1.0551
10−5 32.95 1.0524
10−7 77.57 1.1029

100 0.001 10−4 23.77 1.0982
10−5 35.12 1.1220
10−7 84.73 1.2047

100 0.0025 10−4 24.94 1.1523
10−5 41.54 1.3266
10−7 107.20 1.5242

100 0.01 10−4 28.22 1.3042
10−5 47.70 1.5234
10−7 173.41 2.4657

100 0.1 10−4 215.83 9.9736
10−5 951.63 30.3907
10−7 1184.59 16.8433

10 000 0.001 10−4 28.68 1.3254
10−5 41.98 1.3409
10−7 107.14 1.5234

10 000 0.0025 10−4 36.70 1.6960
10−5 60.61 1.9357
10−7 133.01 1.8913

10 000 0.01 10−4 400.95 18.5280
10−5 897.47 28.6639
10−7 1921.78 27.3252

10 000 0.1 10−4 638.95 29.5265
10−5 1289.06 41.1708
10−7 2741.13 38.9753

strongly for concentrated dispersions than for dilute disper-
sions and hence the w=o dispersion would experience lower
rates of coalescence compared to the o=w dispersion. Con-
sequently, by the same reasoning given above, the phase
inversion holdup from w=o to o=w then becomes more dif-
9cult, as observed.

4. Conclusions

In this paper, we have described the results of a specu-
lative study conducted to provide insight into the in$uence
of Marangoni e&ects on the phase inversion process. This is
achieved by incorporating an analysis of Marangoni e&ects
on the 9lm drainage process during the collision and coa-
lescence of two drops initially covered by a uniform con-
centration of insoluble surfactant under a constant approach

velocity into a stochastic phase inversion model previously
developed using a Monte Carlo technique (Yeo et al., 2000b,
2002a).

The ‘interface’ between the microscopic and macroscopic
scales is an immobility factor which describes the drainage
time of the 9lm to rupture in surfactant-laden systems com-
pared to that for pure systems. This is obtained by regress-
ing the data for 9lm rupture times acquired from the 9lm
drainage model for various system parameters such as the
approach velocity, surface P;eclet number, initial surfactant
concentration and the Hamaker constant. The immobility
factor is then integrated into the coalescence probability in
the phase inversion model.

Previous investigators have deduced that if the presence
of surfactant stabilises the 9lm against coalescence, then the
system would also be stabilised against phase inversion. Our
results, however, suggest that this is not always necessarily
the case; the above postulation is only true for systems in
which the dispersed phase is less viscous than the continuous
phase. On the other hand, for high dispersed to continuous
phase viscosity ratios, the reverse is true, i.e. phase inversion
occurs at lower dispersed phase holdups. When the dispersed
and continuous phases cannot be distinguished (i.e. when
the densities and the viscosities of both phases match), then
the Marangoni e&ect does not in$uence phase inversion.
However, in the majority of cases, the e&ect of surfactant
tends to shift the inversion curves such that phase inversion
occurs close to equivolume holdups and that the e&ect of
the viscosity ratio on phase inversion is reduced. This is
attributed to the fact that the Marangoni e&ect immobilises
the interface such that it screens the $ow in the 9lm from the
$ow in the adjacent drop phase. Any e&ect due to di&erences
in viscosity between the dispersed and continuous phases
thus becomes negligible.

We suggest the following reasoning for the observa-
tion that the presence of surfactants can either stabilise or
de-stabilise a system from inverting: at a macroscopic level,
the in$uence of the Marangoni e&ect is not always the
same unlike at the microscopic level where the surfactant
always acts to stabilise the drops from coalescing. Since the
dispersed phase holdup a&ects the proximity of the drops
during the collision process, it follows that the Marangoni
e&ect in retarding drop coalescence is felt more strongly for
dilute dispersions than for concentrated dispersions.

In addition, we suggest that it is not suEcient to observe
the stability of one dispersion morphology alone to deter-
mine phase inversion; phase inversion is rather a result of
the relative stability (or instability) between the dispersion
morphologies. When surfactant is present, it stabilises both
dispersion morphologies, but to di&erent extents depending
on the dispersed phase holdup for the case of insoluble sur-
factants, examined in this paper. The crucial factor in deter-
mining the point at which phase inversion occurs is there-
fore the energies of both morphologies. This is the criterion
by which we have attempted to detect inversion in our sim-
ulation.
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Given the limitations of our stochastic model, we recog-
nise that this study must only remain as a speculative tool.
Nevertheless, we hope that the postulations made in this
paper will encourage further work and experimental veri-
9cation in this area of the in$uence of the Marangoni ef-
fect on phase inversion which carries important practical
implications.

Notation

B∗ Hamaker constant, J
d∗ drop diameter, m
d∗i diameter of drop i, m
d∗max maximum stable drop diameter, m
d∗mean mean drop diameter, m
D∗
I impeller diameter, m

D∗
s surface di&usivity, m2 s−1

E∗
d energy required to deform a drop, J
E∗
k total kinetic energy of the system, J
F∗ approach force, N
h∗ 9lm thickness, m
h∗c critical 9lm thickness, m
h∗0 initial 9lm thickness, m
h00 initial 9lm thickness at r = 0
K∗

1 ; K2 coalescence constants
L∗i characteristic circulation length of viscous pen-

etration in drop i; m
m parameter in Eq. (14)
N ∗ impeller speed, s−1

p 9lm pressure
pi pressure in drop i
Pes surface P;eclet number
q parameter de9ned by Eq. (52)
r radial coordinate in cylindrical coordinate sys-

tem
R∗ equivalent drop radius, m
R∗i radius of drop i, m
R∗0 initial rim radius of the 9lm, m
S∗ spreading parameter, dyn cm−1

t∗ time, s
t∗contact contact time for colliding drops, s
t∗drain 9lm drainage time, s
tdrain|�0 9lm drainage time for a surfactant-laden system

with concentration �0

tdrain|�0=0 9lm drainage time for a pure system
T ∗
b time scale for drop break-up, s
T ∗
c time scale for convection, s
u∗2 mean-square of the relative velocity $uctuations

between two diametrically opposite points on
the surface of a drop, m2 s−1

v∗i volume of drop i, m3

v∗r velocity in the radial direction, m s−1

vri radial velocity in drop i

vrint radial component of the interfacial velocity
V ∗ approach velocity of drops, m s−1

We Weber number
Wecrit critical Weber number
x∗ horizontal coordinate in rectilinear coordinate

system
y∗ vertical coordinate in rectilinear coordinate

system
z∗ lateral coordinate in rectilinear coordinate sys-

tem or axial coordinate in cylindrical coordinate
system

Greek symbols

& adjustable parameter governing size of
movement in the Metropolis Monte Carlo
method

�∗i interfacial tension at interface of drop i,
dyn cm−1

�∗m interfacial tension corresponding to the re-
gion at the interface saturated with surfactant,
dyn cm−1

�∗0 interfacial tension corresponding to the least
contaminated region at the interface, dyn cm−1

�∗ interfacial concentration of surfactant
�∗
m interfacial concentration of surfactant at satura-

tion
�∗

0 initial interfacial concentration of surfactant
XA∗i change in drop interfacial area, m2

� small parameter
�∗d turbulent energy dissipation per unit mass,

J kg−1 s−1

0∗ Kolmogoro& length scale, m
� viscosity ratio
3;31; 32 coalescence eEciency
�∗ viscosity of the continuous phase, cP
�∗d viscosity of the dispersed phase, cP
2∗ kinematic viscosity, m2 s−1

'i random numbers between 0 and 1 in Metropolis
Monte Carlo technique

-∗ density, kg m−3

-∗c density of the continuous phase, kg m−3

-∗d density of the dispersed phase, kg m−3

U immobility factor
7d;i dispersed phase holdup at the phase inversion

point
 break-up probability weighting factor
 ∗

∞ van der Waals interaction potential per unit vol-
ume of semi-in9nite liquid 9lm

) probability governing the move of a drop result-
ing in a certain degree of drop inter-penetration

. probability of drop break-up

Note: When the variables de9ned above are rendered di-
mensionless, the asterisk ∗ decoration is dropped.
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