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Hydrodynamic instability of a thin viscous film between two drops
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Abstract

Linear stability analysis is employed to derive analytical expressions for the growth rate of disturbances applied to a thin plane-pa
trapped between two drops. From these expressions, the band of unstable wavenumbers and the “most dangerous” wavenumber a
for systems in the absence and presence of insoluble surfactant. Marangoni effects are shown to exert a stabilizing influence and
good agreement with experimental observations is found. Subsequent nonlinear analysis indicated amplification of the disturban
rate beyond that suggested by linear theory as the film proceeded toward rupture.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Hydrodynamic inhomogeneities in thin emulsion film
have long been known to exist [1]. In the experiments
Manev et al. [2], interfacial irregularities were observ
during the film drainage process close to the critical fi
thickness. Sharma and Ruckenstein [3] suggested that
interfacial waves were likely to grow as the film thinned d
to increasing contributions of the van der Waals force. T
growth was demonstrated to enhance the thinning velo
by generating a “pumping” action on the fluid, there
decreasing the lifetime of the film.

While previous work has considered the amplitude
the interfacial waves [4] and the implications of the
waves on the thinning velocity [3], we consider the oth
important characteristic of these disturbances, namely
instability wavelength. In particular, we attempt to ident
the band of wavelengths over which the imposed instab
is amplified. The “most dangerous” wavelength, for wh
the growth rate of the disturbance is maximized, is a
identified. In addition, we compare the rate at which
instability arising from the disturbance grows with typic
velocities at which the film drains hydrodynamically d
to an applied external force in the absence of any impo
disturbances, as predicted by Reynolds’ law. This prov
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vital information on whether the disturbance provides
significant contribution to the rupture of the film.

Although surfactant effects on the thinning velocity ha
been studied [5], the analysis was limited to low viscosity
tios due to the omission of the coupling between the film
the dispersed phase. Moreover, aquasi-steady-state approx-
imation was adopted where all system variables depen
adiabatically on time through the local film thickness. In t
Note, however, the full dynamic coupling between the e
lution of the film thickness and the interfacial surfactant c
centration is considered in addition to the coupling betw
the film and dispersed-phase flows. Given the latter cons
ation, the present study is therefore valid over a wider ra
of viscosity ratios.

2. Governing equations

Starting from the usual lubrication equations to desc
the flow in the film and in the adjacent dispersed phases
evolution equation for the film thickness,h(x, t), has been
derived for a system in which an initially thin plane-paral
continuous phase film is bounded by two drops [6–8]:
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t denotes time,Γ denotes the interfacial surfactant co
centration, andC is a capillary parameter;λ ≡ µ∗/µ∗

d and
L ≡ L∗

i /L
∗
f , whereµ∗ andµ∗

d are the continuous and di
persed phase viscosities, and,L∗

i andL∗
f are the character

istic length scales of dropi and that of the local thinnin
region in the film, respectively. The asterisk (∗) indicates di-
mensional quantities. Here, we adoptL= 4. We have scale
the streamwise and vertical directions,x∗ andz∗, with L∗

f

andh∗
0, respectively, andt∗ scales asµ∗L∗

f /εS
∗, h∗

0 being
the initially flat film thickness between the drops and,S∗,
the spreading pressure. For lubrication theory to hold,ε� 1,
whereε ≡ h∗

0/L
∗
f . In (1),B is the Hamaker constant, defin

asB ≡ B∗/S∗h∗m−1

0 , wherem= 3 for h∗ � 120 Å.
The evolution equation governing the transport of

surfactant monolayer along the interface reads [6–8]
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where Pe is the surface Péclet number defined byPe ≡
S∗h∗

0/µ
∗D∗

s , andD∗
s is the surface diffusivity. Here,Γ ≡

Γ ∗/Γ ∗
m andC = ε2γ ∗

m/2S
∗, whereS∗ = γ ∗

0 − γ ∗
m andγ ≡

(γ ∗ − γ ∗
m)/S

∗, in which γ ∗
0 is the interfacial tension of th

pure system or that of the uncontaminated region, whileγ ∗
m

is the interfacial tension corresponding to a region satur
with surfactant at concentrationΓ ∗

m, respectively. Closur
was obtained via a linear surfactant equation of state, w
in dimensionless terms readsγ = 1− Γ [6–8].

Equations (1) and (2) therefore describe the dynamic
pling between the evolution of the film thickness and the
terfacial surfactant concentration. For pure systems,S∗ = γ ∗

0
andC = ε2/2. It should be noted that although the mag
tudes ofB andC are of orderε2, the terms containing thes
dimensionless groups in (1) and (2) are retained bec
these terms could potentially be significant due to the m
nitudes of 1/hm+1 at small film thicknesses and curvatu
respectively. The term 1/Pe is retained to control the relativ
magnitudes of the diffusional and Marangoni processes

3. Linear stability analysis

We linearize (1) and (2) about the base stateh = 1 and
Γ = Γ (0); Γ (0) is a parameter. Keeping only linear term
in the film and surfactant concentration perturbations
using a normal modes decomposition, we can write d
the relationship for the growth rate of the disturbance,ω,

ω= k2

2

[
P(mB −Ck2)− 1

Pe
−Q

]

± k2

2

{[
Q+ 1

Pe
− P(mB −Ck2)

]2
Fig. 1. The effect of the dimensionless Hamaker constant,B, the capillary
parameter,C, and the viscosity ratio,λ, on the growth rate,ω, over the
range of wavenumbers,k, for pure systems. The critical wavenumber,kc ,
and the wavenumber that maximizes the growth rate,km, for the case
B = 0.001,C = 0.0005, andλ= 1 are identified. In this case,km = 1.732
andkc = 2.449.

(3)+ 4
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4λ

)
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]}1/2

,

where

(4)P ≡ 1

4

(
1

3
+ L

λ

)
, Q≡ LΓ (0)

2λ
.

In the absence of surfactant, (3) reduces to

(5)ω= k2P(mB −Ck2),

which is similar to that obtained in [3]. Disturbances hav
Re[ω]> 0 are amplified while those with Re[ω]< 0 decay.
The competition between the destabilizing and stabiliz
mechanisms is clear: van der Waals forces promote gro
while capillary forces act to damp out short-wavelen
disturbances. There therefore exists a range of grow
modes having wavenumbers betweenk = 0 and k = kc,
kc being the critical cut-off wavenumber beyond whi
Re[ω]< 0. From (5) it can be shown thatkc = (Bm/C)1/2,
andkm = kc/

√
2, wherekm is the so-called “most dangero

mode” at which the growth rate is maximized. Thus
range of unstable wavenumbers depends only on van
Waals and capillary forces;λ andL do, however, exert a
influence on the disturbance growth rate. These conclus
are in accordance with the results shown in Fig. 1, wh
depicts the parametric dependence ofω as a functionk
on B, C, and λ. We note thatω, kc, and km decrease
that is, the system becomes more stable, with increasinC
and decreasingB, consistent with the mechanism describ
above. Increasingλ also serves to decreaseω as the interna
viscous effects of the dispersed phase dampen the insta

For typical values ofB and C, kc ranges from 0.25
to 54.8. Typical critical cut-off wavelengths above whi
instability is obtained are therefore in the range from 1−3

to 10−1 cm for characteristic film length scales of 10−2 cm.
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Fig. 2. Parametric dependence of the growth rate,ω, as a function of the
wavenumber,k, on the surface Péclet number,Pe, and the surfactant bas
state concentration,Γ (0) , for systems in which trace amounts of surfacta
are present, i.e.,S∗ ∼O(ε2γ ∗

m). Here,B = 10−3, C = 0.5, andλ= 1.

Fig. 3. Simplified illustration indicating the action of surfactant distribut
and spreading along the interface. The dashed and dotted curves rep
the base state of the film and the imposed periodic disturbance, respec
The arrows indicate the direction of the interfacial motion due to
Marangoni stresses that arise out of the surfactant concentration grad
The solid curve typically depicts the resultant state of the disturbance
as a consequence of the action of the Marangoni stresses on the int
stabilizing the film.

This is in reasonable agreement with the experiments in
where surface inhomogeneities were observed to ha
wavelength of 5× 10−3 cm. Our predictions also agree wi
those in [3], where it was suggested that the wavelen
observed in [4] applies for large film radii above 10−2 cm,
whereas the wavelengths could vary between 2.5× 10−3 cm
and 10−2 cm for smaller film radii.

We now devote our attention to systems in which inso
ble surfactant resides at the interfaces. The dispersion
tion, Eq. (3), is plotted in Fig. 2 for different values ofΓ (0).
We also note from (3) that the effect of surfactant is alw
stabilizing and the band of unstable wavenumbers is in
pendent ofΓ (0) and Pe. The maximal growth rate, how
ever, decreases with increasingΓ (0) and Pe: Re[ω] is up
to several orders smaller when surfactant is present in t
amounts, i.e.,S∗ ∼O(ε2γ ∗

m) [6,7], than in the case of pur
systems.
nt
.

.

e

-

Fig. 4. Evolution profiles of the film thickness,h, at 15 equal time step
up to t = 1124.27 initiated by a small-amplitude disturbance wave w
the fastest growing mode predicted by linear theory (k = 1.732). The other
parameters used in the simulation areB = 0.001,C = 0.0005, andλ= 1.

The stabilizing mechanism is fairly well understood a
is illustrated in Fig. 3. Any interfacial deformations resulti
from the introduction of the perturbation onto the film le
to nonuniformities in the interfacial surfactant concentrati
At the troughs of the imposed periodic wave where the
fluence of the van der Waals forces is largest, the film th
more severely than in the other regions. As a result, sur
tant is depleted from these regions, resulting in a lower
terfacial concentration. Marangoni stresses, therefore, a
spread the surfactant back into these regions from the p
of the interfacial wave where the surfactant concentratio
high. This redistribution process drags the fluid in the fi
back into the troughs, therefore decreasing the perturba
amplitude and retarding the growth of the instability. AsPe
increases, the relative contribution of Marangoni-domina
spreading to surface diffusion is increased, thereby da
ening out the perturbation, as reflected by the decreas
Re[ω]. Similarly, when more surfactant is present (i.e.,Γ (0)

increases), the concentration gradients arising from the
turbance becomes larger, therefore increasing the Maran
spreading rate and consequently decreasing Re[ω].

In [3], typical hydrodynamic thinning velocities of orde
10 Å/s are reported. In comparison, the thinning veloc
predicted by Reynolds [9] is of order 1 Å/s. From our re-
sults,ω for systems in which trace quantities of surfact
are present is of order 10−6, which corresponds to growt
rates of order 100 Å/s, suggesting that the rate at which t
instability grows is still significant compared to the rate
which the film thins hydrodynamically due to an external
proach force, in the absence of any imposed periodic dis
bances. Increasing the initial surfactant concentration,Γ (0),
leads to a reduction in the growth rates, as shown in Fig
so that saturation of the interface with surfactant retards
instability to the extent that the hydrodynamic rate of th
ning overtakes the growth rate of the instability. Therefo
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Fig. 5. Plots of the minimum film thickness against time for (a) variation of the viscosity ratio,λ, (b) variation of the Hamaker constant,B, (c) variation
of the surface Péclet number,Pe, and (d) variation of the initial surfactant concentration,Γ (0) . The base case isλ = 1, B = 0.001,C = 0.5, Pe = 10, and
Γ (0) = 0.01 for systems in which trace amounts of surfactant are present, i.e.,S∗ ∼O(ε2γ ∗

m). Each plot indicates the result of varying a single paramete
the base case for the fastest growing mode; all other parameters were held constant. For the pure system in (d),C = 0.0005 to be consistent with the definitio
of the capillary parameter.
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the role of the disturbance wave in the film rupture proc
in these surfactant-loaded systems is minimal.

4. Nonlinear effects

We now consider nonlinear effects of the instability
solving the film and surfactant concentration evolution eq
tions given by Eqs. (1) and (2) with no-flux bounda
conditions at both ends of the solution domain:∂h/∂x =
∂3h/∂x3 = ∂Γ/∂x = 0. Film thinning and subsequent ev
lution of the surfactant concentration are initiated by imp
ing a small-amplitude monochromatic wave perturbation
the initial condition:

(6)h(x,0)= 1+ 0.001 cos(kx).

The partial differential equation solver PDECOL [10] w
employed for the numerical solutions, in which discreti
tion of the spatial variables was carried out by finite elem
collocation, whereas the method of lines was adopted
time integration. The computations were carried out us
2000 grid points for the spatial domain of length 2π/k and
halted at film thicknesses of 0.1 when difficulties arose in
accurate resolution of the increasingly singular spatial de
atives in the rupture region.

Figure 4 illustrates the film thinning process instiga
by an initial perturbation wave with a wavelength associa
with the “most dangerous mode,” i.e.,k = km. The film pro-
ceeds to thin and rupture at the trough of the wave wh
the influence of the van der Waals forces is largest. The
tial growth rate of the instability calculated in the numeri
solutions was found to be linear and consistent with that
dicted by Eq. (3) using linear theory. The plots of minimu
film thickness as a function of time in Fig. 5 indicate th
while the thinning of the film is initially linear, nonlinear e
fects become increasingly evident close to the end of the
time of the film as the film tends toward rupture. Given t
linear theory already predicts a comparable if not signific
growth rate for the instability in pure systems and in syste
containing trace amounts of surfactant, as contrasted
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typical hydrodynamic thinning velocities, nonlinear theo
suggests that the instability arising out of interfacial per
bations could grow and rupture the film at much higher ra

A parametric study of the minimum film thickness plo
in Figs. 5a–5d shows the effect ofλ, B, Pe, andΓ (0) on the
film thinning process, consistent with the results of previ
related studies [6–8]. Film thinning and rupture is seen to
retarded by increasingλ, Pe, andΓ (0) and accentuated b
increasing magnitudes ofB.

5. Conclusions

Analytical expressions for the growth rate of an impos
spatial periodic disturbance on a localized plane-parallel
trapped between two drops have been derived using li
stability analysis in the lubrication approximation for bo
pure and surfactant-laden systems. From these expres
the critical cut-off wavenumber, below which all wavenu
bers lead to amplification of the instability, as well as
“most dangerous” wavenumber, at which the growth rate
the instability is maximized, have been identified. The pr
ence of insoluble surfactants at the interface is found to s
lize the film: the Marangoni effect dampens the growth of
instability due to the redistribution of surfactant and he
fluid along the interface. Comparisons of typical wav
s,

lengths with experimental and analytical observations s
that our predictions are reasonable and of similar order
magnitude. When large amounts of surfactants are pre
such that the spreading is Marangoni-dominated, the gro
rate of the instability is insignificant compared to the v
locity at which the film thins hydrodynamically. Nonline
effects are observed to amplify the instability growth ra
beyond that suggested by linear theory as the film proc
toward rupture in finite time.
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